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Consider the two friends leaning against one another in Figure 6.1A. The freebody
diagram of one leaning friend is shown in Figure 6.1C. In going from 6.1A to 6.1C, we
zoomed-in and drew a boundary around the system (friend 1) to isolate him from his
surroundings, as shown in Figure 6.1B. This boundary is an imaginary surface and the
system is (by definition), the “stuff” inside this imaginary surface. The rest of the world is

. everything else. You can think of the boundary as a shrink wrap around the system.

After drawing the boundary, we identified the external loads acting on the system at or
across this boundary and drew them on the isolated system at their points of application.
These loads represent how the surroundings push, shove, and twist the system. In a

freebody diagram we draw the system (the “stuff” inside the imaginary surface) and replace _

the surroundings with the loads these surroundings apply to the system. It is important to

~-recognize-that “we-are not -ignoring the surroundings==-we simply replace them with the ™

loads that the system experiences because of them.

A freebody diagram is a drawing of a system and the loads acting on it and is perhaps the
most important tool in this book. Creating a freebody diagram involves separating the
portion of the world that you’re interested in (the system) from its surroundings (the rest of
the world), then drawing the system. Next all the loads (forces and couples) acting on the

system are identified and added to the drawing.

This chapter is devoted solely to creating freebody diagrams. We build on the work in
prior chapters and on the Analysis Procedure presented in Chapter 1. Creating a freebody
diagram is part of the DRAW step in the Analysis Procedure. We can use the freebody
diagram to write the equations of equilibrium, which are in turn used to determine the
relaﬁonship between loads (but we are getting ahead of ourselves; that’s covered in the next

chapter!).

6.1 TYPES OF EXTERNAL LOADS

Some of the loads acting on a system act across the boundary of the system; the principle
example of this type of load is gravity (which manifests itself as weight). Another is
magnetic force, which results from electron-magnetic field interaction. Other loads act

directly on the boundary and are caused by:
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+ solid contact between the system and the rest of the world. These loads, called
solid boundary conditions, are either some physical connection (e.g., a bolt,
wire, or weld) or simply where the system rests against the rest of the world. Solid
~ boundary conditions are comprised of the contact and bonding forces of normal
contact, friction, tension, compression, and shear that we introduced in Chapter 4,

+ fluid pressing on the boundary. These loads, called fluid boundary
conditions, are either a pressure (force per area) on the boundary and/or forces

tangent to the surface.

In practice, a system may be loaded by a combination of gravity, solid boundary conditions

and fluid boundary conditions, as illustrated in Figure 6.2. Notice that at some
boundary locations no loads act. At other locations there are so-called known loads—for

" example, in Figure 6.2, a 40 kN gravity force acts on the boat, and a 20 N horizomtat force - - -

results from the hand pulling on the lever).

Regardless of the nature of a load acting on a system, when that load is drawn on a
freebody diagram it is represented by a vector or a distribution of vectors acting at a point
of application. Itis given a unique variable label (e.g., the force acting at point A in Figure
6.2B in the x direction is labeled Fay), and its magnitude (if known) is written next to the

vector.

6.2 PLANAR AND NON-PLANAR SYSTEMS

Defining the loads at boundary conditions is easier if we can classify the system as a
planar system, which is a system where all the loads (forces and couples) acting on the
system can reasonably be assumed to lie in a single plane. This is generally the case when
known loads, gravity loads, and the points of application associated with solid and fluid
boundary conditions are all in a single plane. Figure 6.3A shows an example of a planar
system; it is possible to classify this system as planar because the gravity force, cable
tension, and pin-connection are all in a single plane. Sometimes planar systems are
referred to as two-dimensional (2D) systems. The freebody diagram associated with a
planar system typically requires only a single plan view of the system (reference back to

Chapter 1 here).

A system with a plane of symmetry in regards to both its geometry and the loads acting on
it may also be treated as a planar system. A plane of symmetry is a plane such that the

9/29/01 (Sheppard, copyright 2001) (Fall’01, Final) 6-3A






portion of the system on one side of the plane is a mirror image of the portion that is on the
other side. Figure 6.3B illustrates a system with a plane of symmetry and how it can be

treated as a planar system.

If 1t is not possible to define a single plane such that all forces and couples are in this plane,
or there is no plane of symmetry, the system is classified as a non-planar system.
Figure 6.3C shows an example of a non-planar system; it is not possible to define a
plane that contains the gravity force, cable tension and pin-connection. Sometimes non-
planar systems are referred to as three-dimensional (3D) systems. The freebody diagram
associated with a non-planar system typically requires an isometric drawing or multiple

plan views.

Sample Problem #1 Identifying planar and non-planar systems

6.3 SOLID BOUNDARY CONDITIONS—PLANAR SYSTEMS

Now we look at how to identify and draw the loads acting at solid boundary conditions
associated with planar systems. Consider the system in Figure 6.4A for which we want
to draw a freebody diagram. At the boundary we identify:

* simple contact without friction (at A),

* a cable attached to the system (at B),

* a spring attached to the system (at C),

* contact with friction (at D),

* the system fixed to its surroundings (at E)

* the system pinned to its surroundings (at F),

* a link attached to the system (at G),

* a force of known direction and magnitude (at H),

* a couple of known direction and magnitude (at I).

At each location we consider whether the rest of the world acts on the system with a force
and/or a couple. As a general rule, if a boundary location prevents the translation of the
system in a given direction, then a force acts on the system in the opposite direction.
Likewise, if rotation is prevented, a couple opposite the rotation acts on the system.

At A (simple contact without friction) This solid boundary condition results from the

system resting against a smooth, frictionless surface. Simple contact consists of a force
acting on the system that is normal to the surface on which the system rests (see Figure
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6.5A, upper surface). This force prevents the system from moving into the surface and is
oriented so as to push on the system, as shown in Figure 6.5B. Since the upper surface
is smooth, friction between the system and its surroundings is very small. Therefore, we
choose to neglect this very small friction and assume that there is no force component

tangent to the surface.

In Figure 6.4B (the freebody diagram of Figure 6.4A) the force resulting from simple
contact at A is represented by F,; we know its direction is normal to the surface so as to

push on the system.

At B (a cable) This solid boundary condition consists of a force acting on the system; its

line of action is along the axis of the cable. The force represents the cable pulling on the

system since the cable is in tension, as illustrated in Figure 6.6.

In Figure 6.4B the force from the cable at B is represented by Fy; we know its direction

is along the cable axis, so as to pull on the system.

AtC (a spring) This solid boundary condition consists of a force that pushes or pulls on
the system; its line of action is along the axis of the spring. If the spring is extended by an
amount A, the spring is in tension and the force is oriented so as to pull on the system
(Figure 6.7A). If the spring is compressed by an amount A, the force is oriented so as to
push on the system (Figure 6.7B). The magnitude of the force is proportional to the
amount of spring extension or compression, and the proportionality constant is known as
the spring constant, ’k.” In other words, the magnitude of the force is equal to the product

of “k” and the spring extension or compression:
Fe=k(A)
where k is the spring constant in units of force/length (e.g., N/mm).

In Figure 6.4B the spring force at C is represented by F¢; we know its direction is along
the spring axis. Furthermore, if the spring is in tension (compression), the force will act so

as to pull (push) on the system.

AtD (contact with friction). This solid boundary condition consists of two forces. One of
these is a normal force (just like simple contact). The second force is due to friction and is
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tangent to the surface against which the system rests---therefore it is perpendicular to the
normal force. Contact with friction is illustrated in the lower surface contact in Figure

6.5A and B.

The force due to friction (Fy,,,,) is related to and limited by normal contact force (Fqma)
and the characteristics (e.g., smoothness) of the contact. Often the relationship between
Fieion a0d F | is represented in terms of the Coulumb Friction Model (reference here).
This model states that if Fy, ., <Maie Frome there will no sliding of the system relative to
its surroundings, where [ is the static coefficient of friction and ranges from 0.01-0.500
(unitless), depending on the characteristics of the contact. If, on the other hand, Fj,,
yatic Frormar there will be sliding of the system relative to its surroundings.

In Figure 6.4B the normal force at D is represented by Fpy ; we know its direction is
" "normal to the surface (in the y diréction) so as to push on the systém. The friction forceis
represented by Fp, and is perpendicular to the normal force (we have arbitrarily drawn it in

the positive x direction).

At E (system fixed to its surroundings, referred to as a fixed condition) This solid

boundary condition consists of a force and a couple. To get a feeling for a fixed condition,
consider the set-up shown in Figure 6.8 (better yet, reproduce it yourself). The ruler is
the system and your hands are the surroundings. With your left hand, firmly grip one end
of the ruler, and with your right hand, apply a force, as shown in Figure 6.8A. Notice
that your left hand automatically applies loads to the ruler in order to keep the gripped end
from moving; these loads “fix” the gripped end relative to your hand. Try applying other
loads to the ruler (see Figures Figures 6.8B and 6.8C) —notice how your left-hand
applies appropriate loads so that the gripped end remains fixed. Your left-hand is able to
apply loads (forces and couples) to the ruler at the gripped end so that the ruler remains
fixed. These loads can be represented as a force of Fiepnand=Fiefthand xi+Flefthand,yd and a
couple (pure moment) as Miyegenand= Mietimana K and are the net effect of your left-hand

gripping the ruler.

Now returning to the system depicted in Figure 6.4A, we can describe the loads acting at
the fixed condition at E as Fg=Fp,i+Fgj and the couple as Mg= Mg,k. These loads are

shown in Figure 6.4B.
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At F (the system is pinned to its surroundings, referred to as a pin joint). A pin joint is

comprised of a pin that is loosely fitted in a hole. This solid boundary condition consists of
a force. To get a feeling for the force at a pin joint consider the physical set-up in Figure
6.9A. The ruler (which is the system) is lying on a flat surface. A pencil, which is acting
like a pin, is placed in the hole in the ruler and is gripped firmly with your left-hand. The
pencil and your hands comprise the surroundings. Now load the system with your right-
hand, as shown in Figure 6.9A; notice how your left hand reacts with a force to counter
the right hand force. Also orient the load as shown in Figure 6.9B; again your left hand
counters with a force. Finally, load the ruler as shown in Figure 6.9C, and notice that
the ruler rotates because your left hand is unable to counter with a pure moment. We have
just demonstrated that there is a force acting on the system (Fleﬂ_};md) at the point-joint but
there is no couple. The force Fepang lies in the plane perpendicular to the pencil (pin)
axis. For the situation in Figure 6.9, this means that Fieg.p.q can be written as Fieg.

hand=F lefthand,xl +Fleftha.nd.yj .

Now returning to the system depicted in Figure 6.4A, we can describe the load acting at
the pin joint at F as Fg=Fg,i+Fg,j, as shown in Figure 6.4B.

At G (alink is attached to the system) This solid boundary condition consists of a force that

pushes or pulls on the system,; its line of action is along the axis of the link. We will have a
lot more to say about links in the next chapter--- for now we simply say that a link is a
member with a pin joint at each end and no other loads acting on it.

In Figure 6.4B the force at G is repreSented by Fg, acting along the axis of the link.
Since a link may either push or pull on the system, we have arbitrarily chosen to orient it

with the positive y axis.

AtH and I known loads act. These loads are the surroundings acting on the system due to
normal contact, friction, tension, compression and/or shear forces. What differentiates
these loads from those associated with other solid boundary conditions is that we generally
know both their direction and magnitude. Sometimes these known loads are referred to as
the design loads, as they are the loads that the system is intended to stand-up to.

Now returning to the system depicted in Figure 6.4A, we can describe the loads acting at
G as Fg=(10 i+20 j ) N and the couple as Mg= (500 k) Nm. These loads are shown in

Figure 6.4B.
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The freebody diagram of the planar system in Figure 6.4A is presented in Figure
6.4B. It includes loads due to solid boundary conditions, as well as the load due to

gravity.

Table 6.1 summarizes the solid boundary conditions discussed above. Other commonly
found solid boundary conditions are also included in the table. Don’t feel that you need to
memorize all of the conditions in this table-—it is presented as a “ready reference.” On the
other hand, you should be familiar with thése standard boundary conditions and the loads
that they represent.

Sample Problem #3 Evaluating the correctness of freebody diagrams

e

9/29/01 (Sheppard, copyright 2001) (Fall’01, Final) 6-8A



- BLANK FAGE —

698



Table 6.1 Standard Solid Boundary Conditions for Planar Systems

(A) ~ Description of (B)
Type of Solid Boundary Boundary Loads
Condition Condition Loads

(each cell below will have a sketch
of the connection, including symbol
used in text for denoting this
connection. Some cells will also
have small photos)

(1.) Simple contact
(without friction)

force oriented normal
to surface on which
system rests.
Direction is such that
it pushes on system.

(2.) Cable, rope, wire
'nk,

(b) M '\vk
i

force oriented along
the axis of cable.
Direction is such that

it pulls on system.

(3 ) Sprlng

force oriented along
the axis of spring.
Direction is such that
it pulls on system if
spring is in
tension,and pushes if
spring is in

| compression.

A

 (elended. -
riss),

\Fa -

(c‘.ﬂtﬂﬁﬁ‘( _
2priey)

(4.) Contact with friction

o IR

two forces, one
oriented normal to
surface so as to push
on system (F,,).
Other force (ﬁ‘ ) is
tangent to the surface
on which the system
rests.

[(5.) Fixed condition

T
1= Syt

é

N S;skm l

force in xy plane of
unknown direction
and magnitude.
Represented as x and
y components.
couple (pure
moment) about z
axis of unknown
magnitude

oy ]
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(6.) Pin joint
(pin or hole part of system)

force in plane
perpendicular to pin
axis. Point of
application is at center
of pin. Orientation
within plane
unknown, so force is
represented as x and y
components.

F+F

X y

(7.)Link

"

’
’
’
N 4

force oriented along
the axis of link. A
link can push or pull
on the system.
Magnitude unknown.

(8.) Pin-in-slot
(slot part of system) e

force oriented normal
to the axis of the slot.
Direction is such that

it can pull or push on
che S}'Stem [ SR

[

(9.). Slot-on-pin -
(pin part of system) g
S Hlvaeva
TC/

force oriented normal

to the axis of the slot.
Direction is such that
it can pull or push on
the system

(10.) Collar on shaft

2

force oriented
normal to the axis of
the shaft. Direction is
such that it can pull or
push on the system

(11.) Roller or Rocker

force oriented normal
to surface on which
system rests.
Direction is such that
it pushes on system.
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6.4 SOLID BOUNDARY CONDITIONS—NON-PLANAR SYSTEMS

We now consider how to identify and draw the loads that makeup solid boundary
conditions for non-planar systems. You will see similarities to our discussion in the prior
section on planar systeims AND some important differences. Like planar systems, if a
boundary location prevents the translation of the system in a given direction, then a force
acts on the system in the opposite direction. LikeWise, if rotation is prevented, a couple

opposite the rotation acts on the system.

Consider the system in Figure 6.10A for which we want to draw a freebody diagram.
This system is non-planar because all the points of application of solid boundary conditions
do not lie in the plane defined by the known forces. The first four solid boundary
conditions acting on this non-planar system (1. simple contact without friction, 2.
cable, 3. link, 4. spring) are identical to their planar counterparts. Associated with each

“of the boundary conditions is a force acting with a known line-of-action, as depictedin —~

Figure 6.10B.

VThe fifth (5. contact with friction) and the sixth (6. fixed) solid boundary conditions

are similar to their planar counterparts. Contact with friction involves normal (Fs ;qrma)
and friction (F g, y0n= Fsxi+Fsyj) forces, where the friction force is perpendicular to the
normal force. The fixed condition acting on a non-planar system is able to prevent the
system from translating along and rotating about any axis-—-therefore it involves a force
(F¢=Fexi+Feyj + Fgk ) and a couple (Mg= Mg, + Mgy +MsK).

The seventh solid boundary condition is a (7.) hinge; it does not restrict rotation of the
system about the hinge pin. If a hinge is one of several solid boundary conditions acting
on a system, it applies a force to the system that is perpendicular to the pin axis. In
contrast, if there is only a hinge solid boundary condition, the hinge will apply a force and
a couple perpendicular to the pin axis to the system (see Figure 6.11). We refer to this

solid boundary condition as a single hinge.

Since the hinge in Figure 6.10A is one of several solid boundary conditions acting on the
system, it applies a force perpendicular to the pin axis and no couple, as illustrated in

Figure 6.10B.
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Figure 6.10B is the freebody diagram that represents the solid boundary conditions
shown in Figure 6.10A in terms of loads (forces and/or couples). This diagram also

includes the known loads.

Other solid boundary conditions commonly found with non-planar systems are included in
Table 6.2. For example, the ball-and-socket joint restricts all translations of the system
by applying a force to the system (F=F,i+Fj+Fk). It does not restrict rotation of the
system about any axis. An example of a ball-and-socket joint familiar to practically
everyone is a human hip joint (Figure 6.12). Take a few minutes to study Table 6.2 and
notice the similarities and differences between thrust bearings, journal bearings, and
hinges. (If you are wondering why hinges and bearings apply different loads to a system
depending on their number---hold that question. We will address it in the next chapter.)

Table 6.2 is 1iot an exhaustive list of solid boundary conditions associated with non=planar -

systems. It contains commonly found and representative examples. If you find yourself
considering a solid boundary condition that is not neatly classified as one of these,
remember that you can always return to the basic characteristics associated with any solid

~ boundary condition; namely if a boundary location prevents the translation of the system in

a given direction, then a force is exerted on (acts on) the system in the opposite direction.

Likewise, if rotation is prevented, a couple opposite the rotation is exerted on the system.

sk ok o ok ok o s e e s Sk sk ke ok vk sk sk ek ok sk ke ke sk ok skokok

Sample Problem #4 Inspecting existing freebody diagrams for correctness
Sample Problem #5 Using questions to define loads at solid boundary conditions
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Table 6.2 Standard Solid Boundary Conditions for Non-Planar Systems

© - (A)
Type of Solid Boundary
Condition

(each cell below will have a sketch
of the connection, including symbol
used in text for denoting this
connection. Some cells will also
have small photos)

Description of
Boundary
Condition Loads

(B)
Loads

(1.) Simple Contact
(without friction)

3

Pres ch

3
AR GRERRDP

force oriented normal
to surface on which
system rests.
Direction is such that
it pushes on system.

(2.) Cable, rope, wire

force oriented along
the axis of cable.
Direction is such that

it pulls on system. -

force oriented along
the axis of spring.
Direction is such that
it pulls on system if
spring is in tension
and pushes if spring
is in compression.

A7 \F;' )
FagiRey

(extended - (com("“”(
spros)_ 2priey)

(4.) Link

force oriented along
the axis of link. A
link can push or pull
on system.
Magnitude unknown.

.

two forces, one
oriented normal to
surface so as to push
on system (F,).
Other force (f‘x+ F,)
is tangent to the
surface on which the
system rests.

(6.) Fixed condition

Fixed connection {embedded ot welded)
> z .

force of unknown
direction and
magnitude.
Represented by its x,
y and z components.
couple (pure
moment) of
unknown direction
and magnitude,
represented asits x, y
and z components.

9/29/01 (Sheppard, copyright 2001) (Fall’01, Final)
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force in plane
perpendicular to shaft
axis. Point of
application is at center
of shaft. Orientation
within plane
unknown, so force is
represented by x and
y components.

T7'B.) Single Hinge
(consists of shaft and articulated
| collar)

o8

force in plane normal
to shaft axis.
Represented as:
couple (pure
moment), with
components about
axes perpendicular to
shaft axis.

(8.) Ball and socket
(ball or socket part of svstem)

3 a
[}
[}

P
PR N
x

¥

force of unknown
direction and

“}-magnitude. -

(9A.) Journal Bearing

(shaft or sleeve part of system)
(consists of a shaft running through
a frictionless collar)

force in plane
perpendicular to shaft
axis. Point of
application at center of
shaft. Orientation
within plane
unknown, so force
represented as x and y
components.

force in plane normal
to shaft axis.
Represented as:
couple (pure
moment), with
components about
axes perpendicular to
shaft axis.

two forces, one in
plane perpendicular to
shaft axis (F+ Fy).

1{ The other force is In

the direction of shaft
axis (F,,), and is
sometimes referred to
as the “thrust force”.
Point of application is
at center of shaft.

9/29/01 (Sheppard, copyright 2001) (Fall’01, Final)
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(10B.) Single Thrust Bearing | two forces, onc in | F + F,+ F,
(consists of a shaft running through | plane perpendicular to | M,+ M,

a frictionless collar) shaft axis (F,+ F,.)
The other force is m
the direction of shaft
axis (F,), and
sometimes referred to :
as the “thrust force.” !
Point of application is TONAE
at center of shaft. G
couple (pure e
moment), with
components about
axes perpendicular to

shaft axis.
(11.) Collar on shaft with pin | force oriented normal gf,

Direction is such that
it can pull or push on
“the system. .. :

couple (pure
moment) about axis
normal to plane.

(collar or shaft part of system) to axis of shaft.

two forces, one F+F,
oriented normal to
point of contact on S
surface (F,). Other
force normal to
rolling-direction (F,).
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6.5 SOLID BOUNDARY CONDITIONS CONSISTING OF DISTRIBUTED FORCES

Up to this point we have modeled solid boundary conditions as loads acting at a single
location on the system boundary. In actuality, all solid boundary conditions consist of
forces distributed over a finite surface area—for example, if you press down on a table
with your hand, the force you apply to the table is distributed over a finite area (Figure
6.13A). For many practical applications, we can “condense” or sum this distributed force
into a single point force (Figure 6.13B). There are, however, solid boundary conditions
comprised of distributed forces where we explicitly consider the loads to be distributed;

Figure 6.14 shows some examples.

The key idea that we want to get across is that solid boundary conditions consisting of
distributed forces must be included in the system’s freebody diagram. These forces can be
represented in the diagram as distributed forces or as a single net force (see Figure 6.15).

" “This single forceis the total force tepresented by the distributed force and is-located—so as -

to create the same moment as the distributed force. For the uniformly distributed force in
Figure 6.15 we are able to find this location by inspection. In Chapter 8 we will show
you how to find the location for non-uniformly distributed forces. The important point for
your current work is that these distributed forces are included in the freebody diagram.

6.6 FLUID BOUNDARY CONDITIONS

The very nature of fluids acting on the boundary of a system is that they are distributed; for
example, consider Figure 6.16. Like distributed loads associated with solid boundary
conditions, the loads at fluid boundaries are included in a freebody diagram, either as
distributed loads or as a single force and/or couple—see Figure 6.16B. In Chapter 8 we
discuss in greater detail distributed loads due to fluids acting on the system.

6.7 FREEBODY DIAGRAM DETAILS
We now outline a process for drawing a freebody diagram of a system; this is the DRAW

step in our Analysis Procedure.

1. Before diving into drawing, take time to study the physical situation. Consider
what loads are present at boundaries and ask yourself if you have ever seen a similar
connection. Study actual hardware (if available); pick it up or walk around it to really
get a sense for how the loads act on the system. This inspection helps in making
modeling assumptions (e.g., how loads interact with syétem, what is important, etc).
Classify the system as a planar or non-planar system--- if the system can be

9/29/01 (Sheppard, copyright 2001) (Fall’01, Final) 6-16A
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classified as planar, drawing the freebody diagram and writing and solving the
conditions of equilibrium (as covered in the next chapter) all become easier. If you are
" unsure, consider the system to be non-planar. Also, consider asking for advice from

others.

2. Define (either by imagining it or actually drawing it) a boundary that isolates the system
from the rest of the world, then draw the system that is within the boundary. The
drawing should contain enough detail so that distances and locations of loads acting on
the system can be shown accurately. Sometimes multiple views of the system will be
needed, especially if the system is .non-planar. Establish an overall coordinate

system. State any assumptions you make.

3. Identify gravity forces acting on the system and draw them at appropriate centers of

“gravity!. Inchide a Vvariable 1abel and the force magmitude (if known). - Continue to~

make note of any assumptions you make.

4. Identify loads that are specified in the problem statement (so called known loads) that

are due to either solid or fluid boundary conditions. Add these loads to the drawing of

(( B the system, placing each load at its point-of-application; identify each load with a
= variable label and magnitude. Also add known distributed loads to the drawing.

5. Identify solid boundary conditions, both those that act at discrete points and those
that consist of distributed forces. If possible, classify each solid boundary condition as
one of the standard connections (Table 6.1 for planar systems and Table 6.2 for non-
planar systems) in order to idcntify the loads. If not, consider how the surroundings
restrict motion (either translation and/or rotation) in order to identify the loads acting on
the system at this boundary condition. Add these loads to the drawing of the system,
placing each load at its point-of-application.

6. Identify fluid boundary conditions. Add these loads to the drawing of the system,
showing them either as a distributed load or as its equivalent single-point load.

You now have a freebody diagram of a system, as well as a list of the assumptions made in
creating it. A freebody diagram is an idealized model of a real system. By making

( ! In Chapter 8 we will show how to find the center of gravity of a system.
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assumptions about the behavior of connections, dimensions, and the material, we are able
to simplify the complexity of the real system into a model that we are able to analyze. We
might want the model to exactly describe the real situatioh, but this is generally not an
achievable goal, due to limitations of, for example, information, time, and/or money. We
do want a model that we can trust and that gives results that closely approximate the real

situation.

In creating a model, an engineer must decide which loads are significant. For example, a
hinge is often modeled as having no friction about its axis. Yet for most hinges, grease,
dust, and dirt have built up and there is actually some friction — some resistance to
rotation. If friction is large enough to affect the behavior of the door (e.g., large enough to
keep the door from swinging freely), we should include it in our model. But if the friction
is small enough that the door can still swing freely, we may conclude that it is not
significant for the problem at Haﬁd;“aﬁd'mcdél“the hinge loads as shown in Figure 6:17: -

Often significance of loads is judged by the relative magnitude or location of the loads.
For example, the weight of a sack of groceries is probably insignificant relative to the
weight of an automobile that carries them home, but very significant if carried home by a
cyclist on her bicycle. If you are in doubt about the significance of a load you should
include it as significant. In many of the examples in this book, we will “set the stage” by
making some of the assumptions regardiﬁg significance (that is, stating that a joint is
frictionless). In others it will be up to you to judge the significance of a load based either
on your own experience or on the advice of other engineers. Any loads that were
considered to be too small to be significant are not included in the freebody diagram, but

“should be noted in the assumption list.

Sample Problem #6 Creating freebody diagrams (2D)
Sample Problem #7 Creating freebody diagrams (3D)

6.8 KEYWORDS AND CONCEPTS
6.9 HOMEWORK PROBLEMS
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6.2 PLANAR AND NON-PLANAR SYSTEMS

SP #1 Identifying planar and nonplanar systems

Task: Consider the description of each system and determine whether it can be classified

as a planar or non-planar system.

(no systems are really planar, since we live in a 3D world. Even something as thin as
paper has a third dimension. BUT, under certain conditions we can

model/approximate/assume that it is planar).

| Situation v

Answer

A. The uniform arm AB weights 60 N. The system is taken
as the arm and the wheel at A. Gravity acts in the y
direction.

The gravity force of 60 N is
in the xy plane.
Furthermore, points of
application of boundary

“I'conditions at A (normal =

forgé). B (collar guide) and
C (pulley) are also in the
same plane.

It is possible to define a
single plane that contains
all known forces and
couples, gravity, and
boundary condition
application points----
therefore, this is a planar
system.

B. The space truss has rollers at B,
C, and D. It supports a vertical 800 N force at A. The

system is taken as the space truss.

It is not possible to define a
single plane that contains
the points of application of
boundary conditions
(B,C.D) and the 800 N
force.

Therefore, this is a non-

| planar system.

(we did not consider
gravity forces acting on the

| space frame---our answer

would be unchanged even

if we had).




4

C. The beam AC is pinned to its surroundings at A and
rests against a rocker at B. Ignore gravity. The system is

| taken as the beam.

The 800 Nm couple at C
and the 500 N force are in
the xy plane, as are the
points of application of
boundary conditions at A
and B.

Therefore, this is a planar
system.

D. The beam AC is pinned to its surroundings at A and

rests against a rocker at B. Gravity acts as shown. The
system is taken as the beam. 2

It is not possible to define a

| single plane that coritains

the gravity force and the
500 N force. '

Therefore, this is a non-
planar system.

E. The 150 N door is supported at A and B by hinges.
Gravity is in the y direction. The system is taken as the

door.

If we assume that the door
is of uniform density, we

| place the 150 N at x=0.5m,

y=1.25 m. Furthermore, if
the door is thin relative to
its other dimensions, this
gravity force and the
boundary conditions at A
and B can be assumed to
lie in the xy plane.

Therefore, this is a planar
system.

| o>




F. The 150 N door is supported at A and B by hinges.
Someone attempts to open the door by applying a force of
30 N to the handle, but because of a high spot in the floor
at C, is not able to. Gravity is in the y direction. The
system is taken as the door.

It is not possible to define a
single plane that contains
the gravity force, the 30N
force acting on the handle,
and the boundary
conditions at A, B and C.

Therefore, this is a non-
planar system.

GA sem1-01rcu1ar plaie weights 300 N, whlchacts ét

center of gravity CG. Vertical cables support the plate at B
and C, and a ball-and-socket joint supports the plate at D.
The system is taken as the semi-circular plate.

The xz plane is a plane of
symmetry for this system--
-the portion of the system

‘at +y (a quarter circle and

cable force) is the mirror
image of the portion of the
system at —y (a quarter
circle and cable force).

Therefore, it is possible to
model this as a planar
system.

H. A man weighing 800 N sits at the picnic table. His
center of gravity (G,) is noted. The table weighs 200 N,
that acts at G,.. The system is taken as the picnic table.

The xy plane is a plane of
symmetry for this system--
-the portion of the system
at +z (half of the picnic
table and supports at A and
B) is a mirror image of the
portion. of the system at -z
(the other half of the
picinic table supports at C
and D).

Therefore, it is possible to
model this as a planar
system.




I. A child comes and sits down next to the man at the - With the child sitting next
picnic table in H. The system is taken as the picnic table. to the man, the xy plane is
no longer a plane of

symmetry.

Therefore, this is a non-
planar system

a
;\ \4 .



6.3 SOLID BOUNDARY CONDITIONS—PLANAR SYSTEMS

SP #2 Complete freebody diagrams

Task:
For each situation in Figures 1 and 3 the system has been defined as the block.

(a) Explain why these figures are not freebody diagrams.
(b) Create a freebody diagram of each system.

Figure 1

— g

&Boumiam)

| Figure 3

ANSWER:
(a) Both Figures 1 and 3 are not freebody diagrams because the system (the block) has not
been isolated from its surroundings---at A and B it is still connected to the rest of the

,. world. We note that the systems in both figures are planar as the boundary conditions all

L lie is a single plane.

i




Figure 1:
(b) We isolate the block using the boundary shown in Figure 1, establish an overall

coordinate system (as shown), then we note that:

at B pin joint attaches the system to its surroundings. According to Table 6.1, a pin joint
applies a force to the system. As we do not know the direction or magnitude of this
force, we represent it as two components, Fpy and Fpy. We have arbitrarily drawn
each of these in the positive direction.

at C the system rests against a surface inclined at angle o relative to the horizontal. We
are told that the surface is rough, so we must consider the presence of friction
between the inclined surface and the system. According to Table 6.1, there will be a
normal force Feporma acting on the system, oriented perpendicular to the surface so
as to push on the system, as shown. We do not know its magnitude. There is also
the friction force Fcriction that is perpendicular to Fepormal. We do not know the
magnitude of Fegriction, Or Whether it acts in the +y’ or —y’ direction (but have
arbitrarily chosen to draw it in the +y’ direction).

at A a cable pulls on the system, which we represent as a force of known direction (Fa).

The block, with forces Fgx, Fay, Fcnormal, Fcriction and Fa, each drawn at respective
point of application, constitutes a freebody diagram of the system.

Answer: Figure 2

G';"”? ca.‘e lc)

F. (priewfed normal
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Figure 3:
(b) We isolate the block using the boundary shown shown in Figure 3, establish an

overall coordinate system (as shown), then we note that:
at B system is fixed to its surroundings. According to Table 6.1, a fixed boundary

condition applies a force and a couple to the system. As we do not know the
direction or magnitude of this force, we represent it as two components, Fp, and
Fg,. We know that the couple is about the z axis, but we do not know its
magnitude; we represent it as Mp,. We have arbitrarily drawn Mg as a positive

couple.



at C slot in the block rides against a pin. The pin pushes against the block in a direction
perpendicular to the axis of the slot (Table 6.1), shown as Fc.

at A spring pushes on the system since the spring compressed by an amount A. This force
is along the spring axis and has magnitude of k(A), which we represent as a force of
known direction (Fa).

The block, with forces Fgy, Fy, Fc, and Fy, and couple Mg, each drawn at respective
point of application, constitutes a freebody diagram of the system.

Answer: Figure 4

Pl
~




SP #3 Evaluating the correctness of freebody diagrams

Task: Consider the description of each planar system and determine whether the
associated freebody diagram is wrong, incomplete or correct.

Situation

Wrong, Incomplete or
Correct Freebody Diagram?

Answer:

A. The thin rod is supported by
the smooth tube. The tube
is fixed to the wall.

Tube: lq

- X

1 contact between the tube

Tube: this freebody
diagram is correct. It
accounts for the fixed end of
the left, and the normal

and the rod. Notice that the
couple at the ‘gxed boundary
condition'ﬁ‘s own as two
forces, and not as a pure

"' moment (whichis just fin€). |

Rod: this freebody diagram
is not correct. The force Fp
in this diagram (which
represents the normal force
of the tube pushing on the
rod) should be in the other
direction. As shown, the
tube is pulling on the rod.

.
< 24 kN-m 8 1300

B. A beam is pinned at A and
rests against a smooth incline at
B.

2kN.

- '|.4bgmmu-——- HMM—4!‘4WNW'}

Beam:

This freebody diagram is
not correct. The normal
force acting on the beam at
B should be oriented
perpendicular to the inclined
surface.

g
C. A beam is fixed at A. Beam: This freebody diagram is
400\b correct
4001b ~<L ’
;f;l._ Imoo Ib c MA T
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D. A door that weighs W hangs
from hinges at A and B. The
hinge at A is able to apply a
horizontal force to the door. The
hinge at B is able to apply both
horizontal and vertical forces to
the door.

Door:

This freebody diagram is
correct

E. A man weighing 800 N sits
at the picnic table. His center of
gravity (Gy,) is noted. The table
weighs 200 N, that acts at G,.
The system is taken as the
picnic table.

Table:

This freebody diagram is
not correct. The label for
the normal force acting on
the table at B should be 2Fg,
(not Fp), as the force vector
at B represents the normal
force for two legs.

F. Supporting angle bracket for | Angle Bracket: This freebody diagram.is
a frame, with pin joints at each | incomplete. At each pin
end. joint a force in the x and y
directions should be shown.
K g
Fau Fey
7 J




G. A frame consisting of
members AB and CD supports
the pulleys, cable and weight.

Whole frame:

correct. It includes the

This freebody diagram is

forces at pins A and B, the
cable tension Feaple pulling
on the frame, and the

gravity force from block L.

_|.H. A 50-kg roller rests against a _

smooth step

 Roller:

not correct. The gravity

This freebody diagram is

force should be drawn in the
y direction.




6.4 SOLID BOUNDARY CONDITIONS—NON-PLANAR SYSTEMS

SP #4 Evaluating the correctness of freebody diagrams

Task: Consider the description of each nonplanar system and determine whether the
associated freebody diagram is wrong, incomplete or correct.

Situation Wrong, Incomplete or Answer:
Correct Freebody Diagram?
A. The triangular plate ABCis | Plate: This freebody diagram is

supported by a ball-and-socket
at A, aroller at B and a cable at
'C. The plate weighs 100 N.

not correct. Because the

‘| cable is in tension, it will

pull on the plate in the +z
direction (not in the push on
it in the —z direciton, as
shown).

B. A bar is supported by
journal bearings at A, B and C.

This freebody diagram is
correct. Because there is
not a single journal bearing
supporting the system, each
bearing applies force (and
not couple) to the system.

C.A rod is supported at A by a
journal bearing and a cable at
that extends from B to A.

This freebody diagram is
not complete. Because
there is a single joumal
bearing supporting the
system, the bearing at A

|-also applies pure moments

abou the y and z axes to the
rod.




