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Abstract 
 

The same game is often played in real and virtual 

worlds.  We integrate in-person and on-line playing of 

board games such as Go, bringing the real world into 

the virtual world. A player may record an in-person 

game by placing their camera on the table next to the 

game board, taking photos of the game. After 

automatically detecting the board and playing pieces, 

we perform inference on the time series of detections 

to eliminate errors and accurately estimate long 

sequences of moves.  The game transcript may be 

studied afterwards, shared with friends and teachers, 

or added to online compilations, bringing the 

attendant benefits of online game play to an in-person 

game.  

 

 

1. Introduction 
 

1.1. Motivation 
 

Aficionados of many board games, such as the 

classics Chess and Go, often follow games by 

discussing particularly good and bad moves with each 

other, with friends, and with teachers.  This 

commentary is a large part of the social scene and 

central to skill level improvement.  These games are 

often played both in-person and online.  While the 

events of virtualized games are easily transcribed, the 

real-world game does not so easily lend itself to review 

and archival. 

Robustly transcribing the moves of a game from 

photos in a real world environment is made 

challenging by changing lighting, transient shadows, 

and occlusion by players’ hands.  Prior work has 

identified playing pieces in a single photo when none 

of these obstacles are present, but no method has yet 

addressed the transcription of an entire game in a 

natural environment. 

We present a method to transcribe the moves of a 

board game in the real world, automatically and 

unobtrusively.  A player simply places a camera on the 

table next to the board, recording a series of photos; 

our algorithm automatically finds the board and detects 

moves, creating a complete transcription of the game. 

 

 
Figure 1. A game of Go is played in a cafe, recorded 

by a digital camera on an adjacent table. 

 

1.2. Our approach 
 

In games of perfect knowledge, the entire state of 

the game is known to all players.  Board games 

represent this state visually on the board.  Typically, 

with limited sets of distinct playing locations and types 

of pieces, a single complete picture of the game is 

sufficient to determine nearly the entire state of the 

game. 

The playing board is automatically detected in the 

photos without user input, and the positions where 

game pieces may appear are found.  The game pieces 

present are detected, and misclassifications are 

eliminated by finding the most likely sequence of legal 

moves. 

Our contribution is a method to transcribe a real 

world board game from photos, combining computer 



vision techniques with inference to create a robust 

system. This approach is applicable to many games, as 

demonstrates by its application to the game of Go. 

This paper is organized as follows.  Section 2 

summarizes related research. Section 3 describes the 

algorithm in detail, and section 4 presents empirical 

tests. Section 5 provides further discussion and 

directions for future work. 

 

2. Related work 
 

The task of recording Go games with a camera 

requires two major elements. First, the board must be 

automatically identified. Second, each possible 

location of a stone must be classified as a black stone, 

white stone, or an empty intersection. 

The Go board is a 19x19 rectangular grid of black 

lines on a wooden board. Camera calibration 

techniques, such as [5], provide a framework for 

developing a board detection algorithm. The Hough 

accumulator representation of the detected lines may 

be directly used to detect the grid, as in [1] and [6].  In 

another method [1], line intersections are detected by 

classifying SIFT features, and another performs a 

genetic algorithm search [3].  

Classifying image patches into a small set of 

possible objects is a well studied problem [8]. To 

detect Go stones in single photos, the neighborhood 

brightness is thresholded in [2] and [4], and a cascade 

of three classifiers, is applied in [1]. Reported results 

are insufficiently reliable for an automatic whole-game 

recording system. 

 

3. Methods 
 

3.1. Detecting the board 
 

The board is found automatically by detecting 

edges, then lines, then a subgrid, and finally the full-

size grid.  First, edges of all orientations are found 

with a radially-symmetric laplacian filter.  Lines found 

with a Hough transform line detector are clustered into 

two groups according to their orientations using K-

means.  For each cluster, edges at the dominant 

orientation of the cluster are found with an oriented 1D 

Laplacian filters, and lines are found with a Hough 

transform and maximum-likelihood refinement. 

RANSAC is applied to find a confidently-identified 

subgrid of the whole grid.  Two lines of each 

orientation form a rectangle; a rectangle and a guess at 

grid spacing define a homography.  Each guessed 

homography is scored by how well the implied 

gridlines match detected edges. 

The best-scoring subgrid is chosen and greedily 

grown by hypothesizing new grid lines in each 

direction and accepting the best match until reaching 

the full 19x19 size.  Once the board is found in the first 

image, all images are warped to an overhead 

orthographic view and cropped. A median filter in the 

time dimension is applied to the image sequence to 

remove most of the players’ hands. 

 

 
Figure 2. Lines are detected (horizontal lines shown in 

green) and a subgrid is found using RANSAC (blue).  

The subgrid is greedily grown to full size to detect the 

board. 

 

3.2. Detecting stones 
 

With the board detected and image rectified, the 

19x19 grid of 361 locations where a stone might 

appear are known. A template of the expected stone 

shape and color is correlated with the image, and the 

maximum response to each template in the 

neighborhood of the candidate location provide 

classification probabilities. 

This classifier, and any classifier operating 

independently on each time step, is prone to errors in 

the presence of shadows, occluding hands, and similar 

artifacts.  Rather than adopting a more sophisticated 

classifier, we reduce errors by performing inference 

over time. Any imperfect classifier will benefit from 

the inference method described below. 

 

3.3. Inference model and notation 
 

In this section, we construct a hidden Markov 

model relating the true state of the board to the 

classification probabilities from 3.2.  The HMM 

constrains the true sequence of states to be a legal 

sequence of moves according to the rules of the game.  



For a general board game, consider variables L1, L2, 

…, LN corresponding to each of the N locations on the 

board where a playing piece might be placed, and 

photoi(t) be the image patch of location i at time t. 

Each variable L takes on one of a small number of 

values to indicate what type of playing piece (if any) is 

present.  Let the state of the entire board at time t be 

denoted B(t), an assignment of a value to each variable 

Li(t), i=1…N.  Let a sequence S be an ordered set of T 

board states {B(1), B(2), …, B(T)}. 

In the game of Go, we have N = 361 playing 

locations each with 3 possible values (black-, white-, 

or no-stone).  The board state B specifies a value for 

each of the 361 locations, as well as extra variables to 

note the time and which player’s turn is next.  In 

transcribing a game, the sequence S corresponds to the 

state of the board in each picture 1…T.  A sequence S 

={B(1), B(2), …, B(T)} is a “legal sequence” if B(1) 

is the empty board, and B(t) is the result of a legal 

move from state B(t-1) for t=2…N. 

 

3.4. Probabilistic formulation 
 

We find a maximum a posteriori solution of the 

most likely sequence given the evidence (photos), 

maximizing p(S|photos), out of all legal sequences. 

With each photo independent, this is the product: 

(1) p(S|photos) = Πt=1…T p(B(t) | photo(t)) 

We can use Bayes rule to instead maximize: 

(2) Πt=1…T p(photo(t) | B(t)) ×p(B(t)) 

Here, the prior p(B(t)) encodes only the distinction 

between legal and illegal board state sequences. The 

rules of this game obey the Markov property: 

(3) p(B(t)) = p(B(t) | B(t-1). 

Maximizing (2) is thus equivalent to maximizing: 

(4) Πt=1…T p(photo(t) | B(t)) × p(B(t) | B(t-1)) 

To evaluate this function, p(photo(t) | B(t)) is 

factorized over the N independent locations, as the 

likelihood of stone detection, p(photoi(t) | Li(t)), at 

each Li determined by the image patch classifier: 

(5) p(photo(t) | B(t)) = Πi=1…N p(photoi(t) | Li(t)) 

Now we have the final form to maximize: 

(6) Πt { [ Πi p(photoi(t)|Li(t)) ]×p(B(t)|B(t-1)) }. 

 

3.5. The likely sequence is the shortest path 
 

Consider the graph G whose nodes are all possible 

states at all times, B(t)
k
 with k={all board states}, 

t=1…T. Include a node representing the empty board 

at time t=0.  Allow a directed edge from state B(t)
j
 to 

B(t+1) 
k
 if B

j
 is the result of a legal move from B

k
. An 

edge is always added from B(t)
k
 to B (t+1) )

k
, the 

unchanged board at the next time step.  The weight of 

an edge is the negative log of the likelihood of its 

destination: 

(7) weight= -log[ p(photo(t)|B(t)) ×p(B(t)|B(t-1) ] 

Add a zero-weight edge from all nodes at time T to 

a single terminal node. Any path from the start node 

(the empty board at time zero) to the terminal node 

represents a sequence of board states S.  The shortest 

such path maximizes (6). 

 

 
Figure 3. This Hidden Markov Model consists of 

many states at each time step (only a few shown), 

corresponding to all possible board configurations at 

that time step. Nonzero transition probabilities 

between states are sparse, corresponding to legal 

moves in the game (represented as arrows ).  One legal 

transition is always “no change.”  The most likely 

sequence of states is the shortest path. 

 

3.6. Application of the A* search algorithm 
 

The graph described above is exponentially large.  

For the game of Go, there are 3
361

 board states in total 

at each time step.  Approximately 361
T
 of these states 

are reachable from the start state in T time steps. The 

Viterbi dynamic programming algorithm is thus 

inapplicable due to memory limitations.  The graph 

must be searched implicitly, generating nodes on the 

fly. 

The graph is searched using an augmented A* 

algorithm [7].  The A* algorithm requires an 

admissible heuristic to give a lower bound on the 

shortest path., which we provide by relaxing the legal-

move restriction and simply taking the most likely 

board configuration by photo alone.  We augment the 

standard A* algorithm by using a transposition table 

with Zobrist hashing [9] to avoid considering a path 

through a node B if a better path through that node has 

already been found. 

The best estimate of the first move will likely be 

clear after only a short time. A good approximation to 

the single T-step problem is obtained by solving (T-D) 

smaller problems of D steps.  For each problem, the 

Start 

node 

t=1          t=2          t=3 

Terminal 

node 



first node of this path is greedily assumed correct.  A 

new D-step search may then be conducted starting at 

that node.  The results presented are achieved with 

D=20, corresponding to 40 seconds of real time.  State 

transition probabilities are assumed to be a uniform 

distribution over legal moves and zero otherwise.  

 

4. Results 
 

The algorithm was tested empirically by recording 

several games and manually marking the true sequence 

of moves.  The parameters are tuned to have zero or 

few false negatives (undetected stones).  We evaluate 

our algorithm based on the number of corrections a 

user would need to make to obtain the true move 

sequence.  A mistake is counted when the algorithm 

detects a nonexistent stone.  The algorithm is not 

penalized for timing errors, only actual false positives. 

 

Game Mistakes in 

Simple 

classifier 

Mistakes 

after A* 

correction 

Number 

of 

moves 

in game 

1 65 0 31 

2 414 0 70 

3 110 14 115 

4 61 11 49 

 

5. Discussion and future work 
 

Parsing a real world scene into objects is 

challenging, but possible when a sufficient model of 

the scene is available.  Board games provide well-

defined scenes on the limit of recognizability, which 

our algorithm transcribes into semantic events. 

A simple classifier operating independently at each 

time step produces many errors, but constraining the 

global time sequence of events to conform to known 

rules eliminates many of these mistakes. 
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