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[57] ABSTRACT

A method and system for process expression and resolu-
tion is described. A first language structure comprising
a possibility expression having at least one definition
which is inherently and generally concurrent is pro-
vided. Further, a second language structure comprising
an actuality expression including a fully formed input
data name to be resolved is provided. Furthermore, a
third language structure comprising an active expres-
sion initiaily having at least one invocation, the invoca-
tion comprising an association with a particular defini-
tion and the fully formed input data name of the actual-
ity expression is provided. Subsequently, the process of
resolving invocations begins in the active expression
with fully formed input data names in relation to their
associated definition to produce at least one or both of
the following: (1) an invocation with a fully formed
input data name and (2) a result data name.
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METHOD AND SYSTEM FOR PROCESS
EXPRESSION AND RESOLUTION INCLUDING A
GENERALLY AND INHERENTLY CONCURRENT

COMPUTER LANGUAGE

FIELD OF THE INVENTION

The present invention relates to a process expression
and resolution system and more particularly, to a com-
puter language which is generally and inherently con-
current thereby enabling concurrent processing within
a computer system.

BACKGROUND OF THE INVENTION

The last several years of the computer age have been
years of dramatic technological progress. Computers
have permeated the fabric of society and become indis-
pensable to commerce and government. They have
rapidly become more powerful while at the same time
becoming smaller and cheaper. Computer system tech-
nology has evolved through four generations. Innumer-
able programming languages have been implemented
and the discipline of programming has gone through at
least one revolution.

During this era of dramatic technical progress one
aspect of computing has progressed imperceptibly if at
all. The theoretical understanding of computers and
computing remains pretty much as it existed 45 years
ago and it has had very little influence on the general
progress of other aspects of computing. Almost all of
this progress is due to improved technology, direct
experience and native inventiveness.

“The theory of computer science” is largely a collec-
tion of mathematical models and conceptual view-
points, most of which existed before the first digital
computer was built. These different models such as,
automata theory, the Turing machine and formal lan-
guages all ask questions about issues of computability
and revolve around the notion of the algorithm. The
questions of computability address the foundations of
mathematics itself and deal with the limits of what can
be computed with various symbol manipulation rule
systems embodied in computational devices such as
machines and languages. To understand “the theory of
computer science” it is necessary to understand the
notion of the algorithm.

The notion of the algorithm is fundamental to mathe-
matics. To understand the significance of the notion to
mathematics it is necessary to understand the history of
its development. The term itself derives from the name
of ninth century Persian mathematician named
Mohammed ibn Musa al-Khowarizmi. In about 825
A.D., he wrote a small book describing how to calcu-
late with a new ten symbol, positional value number
system developed in India. The book described simple
procedures for carrying out addition, subtraction, mul-
tiplication and division in the new system. Around 1120
A.D., this small book was translated into Latin under
the title Liber Algorismi de numero Indorum (The Book
of al-Khowarizmi on the Hindu number system). This
translation of the book was widely distributed in Eu-
rope and it introduced the Hindu-Arabic number sys-
tem to Europe. By the mid thirteenth century, al-
Khowarizmi had been forgotten but the term algorism
(Latin for al-Kowarizmi’s book) had come generally to
refer to computation in the new number system. At this
time, an algorism was any book related to the subject.
The algorisms were the four arithmetic operations. An
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2

algorist was a person who calculated in the new number
system as opposed to an abacist who used an abacus. By
1500 A.D., the algorists had prevailed and the abacists
had largely disappeared.

These algorisms were strictly mechanical procedures
to manipulate symbols. They could be carried out by
any person by mechanically following simple rules,
even though the person had no understanding of the
theory of operation, the person needed no cleverness to
determine a correct answer. Computing with Roman
numerals on the other hand required considerable skill
and ingenuity. At this time, other examples of mechani-
cal formulation existed such as Euclid’s method to find
the greatest common denominator of two numbers. The
use of simple mechanical computation fascinated the
medieval mathematicians. They wondered if it was
possible that the whole of mathematics or even all of
human knowledge could be mechanically formulated
and calculated with simple rules of symbol manipula-
tion.

Leibniz failed in an attempt to complete just such a
formulation in the 1660s with his calculus ratiocinator
or characteristica universalis. The object of Leibniz was
to “enable the truths of any science, when formulated in
the universal language, to be computed by arithmetical
operations”. Insight, ingenuity and imagination would
no longer have been required in mathematics. After
Leibniz’s failure the idea lay fallow for two hundred
years.

When the dream of formalizing thought with me-
chanical procedures in symbols reemerged with the
symbolic logic of George Boole in 1854, it had stiff
competition to overcome in the form of Euclidian ge-
ometry. Euclidian geometry, with its axioms and rules
of reasoning from the simple to the complex was the
established model of intellectual thought in the western
world. In the 1680’s, after the discovery of analytical
geometry and having made new discoveries with his
own invention of fluxional calculus, Newton was care-
ful to cast all the mathematical demonstrations in his
presentation of these new discoveries in classical Greek
geometry. At the time, a symbolic analytical presenta-
tion would neither have been understood nor accepted.

Late into the nineteenth century symbolic computa-
tion was distrusted and discounted. Geometry, dealing
with relationships among points, lines and surfaces, was
intuitive, obvious and clear whereas algebra dealt with
arbitrary symbols related by arbitrary rules that did not
relate to any specific reality. The attitude is exemplified
by a nineteenth century astronomer who remarked that
he had not the “smallest confidence in any result which
is essentially obtained by the use of imaginary symbols”.

Toward the end of the nineteenth century Euclidian
geometry lost its philosophical preeminence and sym-
bolic computation emerged as the model of intellectual
thought. The fall of geometry was precipitated by Bo-
lyai, Gauss, Lobachevski and Riemann with the devel-
opment of non Euclidian geometries which were inter-
nally consistent and therefore just as valid a mathemati-
cal system as Euclidian geometry. The rise of symbolic
computation was nurtured by Boole, Peirce, Schroder,
Peano and Frege who were trying to establish accept-
able foundations for symbolic logic. These two streams
of endeavor culminated in Hilbert’s rigorization of Eu-
clidian geometry in terms of algebra in Grundlagen der
Geometrie (Foundations of Geometry) published in 1899
which emphasized the undefined nature of the axioms.
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“One must be able to say at all times-instead of points,
straight lines and planes- tables, chairs and beer mugs”.
Euclidian geometry was after all just one of many possi-
ble axiomatic symbolic computation systems.

As the twentieth century dawned, symbolic computa-
tion had been established as the arena of mathematical
theorizing and axiomatic systems provided the rules of
the game. The mathematicians were hot on the trail of
settling the game once and for all. They seemed to be on
the verge of fulfilling Leibniz’s dream of the universal
symbolic language that would proffer absolute certainty
and truth.

This quest was led by David Hilbert, who outlined a
program to settle once and for all the foundational is-
sues of mathematics. The program focused on the reso-
lution of three questions.

1. Was mathematics complete in the sense that every

statement could be proved or disproved?

2. Was mathematics consistent in the sense that no
statement could be proved both true and false?

3. Was mathematics decidable in the sense that there
existed a definite method to determine the truth or
falsity of any mathematical statement?

This definite method of decidability was the modern
incarnation of Leibniz’s arithmetical operations of his
universal symbolic language.

Hilbert firmly believed that the answer to all three
questions was ‘yes’, and the program was simply one of
tidying up loose ends. Hilbert was convinced that an
unsolvable mathematical problem did not exist, “every
mathematical problem must necessarily be susceptible
to an exact statement, either in the form of an actual
answer to the question asked , or by the proof of the
impossibility of its solution”.

In 1931, Kurt Godel demonstrated that any axiom
system expressive enough to contain arithmetic could
not be both complete (there existed statements that
could not be proved either true or false) and consistent
(free of contradictions) in the terms of the axiom sys-
tem. This result was the death knell for Hilbert’s pro-
gram. The answers to the first two questions were no.
There remained the question of decidability. The ent-
scheidungsproblem as Hilbert termed it. After Godel
proved that unsolvable problems (unprovable theo-
rems) could exist in an axiom system, the decidability
problem became a search for a definite method to deter-
mine if a given problem was solvable or unsolvable in 2
given axiom system.

The decidability problem appealed directly to the
notion of a definite method which was also referred to
as an effective procedure or a mechanical procedure.
This notion had always been fundamental to mathemat-
ics but had been intuitively accepted and had not been a
subject of investigation itself. In essence, a person
should know an effective procedure when that person
sees one. But, to demonstrate something about the na-
ture of effective procedures there must be a precise
characterization of what constitutes an effective proce-
dure.

Hilbert made it clear what constituted an acceptable
mathematical solution in his 1900 paper posing 23 prob-
lems which he considered important to the future of
mathematics.

“that it shall be possible to establish the correctness of

a solution by means of a finite number of steps
based upon a finite number of hypotheses which
are implied in the statement of the problem and
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4
which must always be exactly formulated”—David
Hilbert.

Satisfactorily characterizing this notion of effective
or mechanical procedure became an important founda-
tional issue in mathematics and several mathematicians
applied themselves to the problem. Among them were
Herbrand and Godel, Post, Turing, Church and Mar-
kov. Each had a totally different characterization of
effective computability which were all shown later to
be logically equivalent. In 1936, both Church with his
lambda calculus and Turing with his machine proved
that no effective procedure existed to determine the
provability or unprovability of a given mathematical
problem. Therefore, the answer to Hilbert’s third ques-
tion was also ‘no’ Leibniz’s calculus ratiocinator with its
arithmetical resolution of all questions was not possible.
Thus, ingenuity, insight and imagination cannot be done
away with in mathematics after all. ‘

Questions of effective computability have continued
to be a fundamental concern of mathematicians.
Through the 1940s and 1950s A. A. Markov tried to
consolidate all the work of the other mathematicians on
effective computability by introducing the term algo-
rithm with its modern meaning as a name for his own
theory of effectively computable functions. In the trans-
lated first sentence of his 1954 book Teoriya Algorifmov
(Theory of Algorithms) he states:

“In mathematics, “algorithm” is commonly under-
stood to be an exact prescription, defining a com-
putational process, leading from various initial data
to the desired result”—A. A. Markov.

The term algorithm was not, apparently, a commonly
used mathematical term in America or Europe before
Markov, a Russian, introduced it. None of the other
investigators, Herbrand and Godel, Post, Turing or
Church used the term. The term however caught on
very quickly in the computing community. In 1958 a
new programming language was named ALGOL (AL-
GOrithmic Language). In 1960 a new department of the
Communications of the ACM (Association for comput-
ing machinery) was introduced called “Algorithms”.

Historically, the notion of the algorithm was devel-
oped to investigate the foundations of mathematics and
has evolved in relation to the needs of mathematicians.
The algorithm in mathematics is a limiting definition of
what constitutes an acceptable solution to a mathemati-
cal problem. It is the foundational notion of what math-
ematics is all about and Turing’s machine emerged as
the preferred definition of the algorithm for mathemati-
cians.

When the computer emerged in 1945, its birth was
attended by two professional groups; electrical engi-
neers and mathematicians. It was inevitable that the
theoretical aspects of this newly emerging phenomena
would be established by the mathematicians. One of
these mathematicians, John Von Neumann, was a stu-
dent of Hilbert’s and a significant contributor to his
program to resolve the foundations of mathematics.

The computer did mathematical computation, it com-
puted one step at a time and each step was precisely
defined. Mathematics already had an established theory
of computability and a machine model of computation
(the Turing machine) that proceeded one precisely
defined step at a time. The notion of the algorithm was
quite naturally adopted by those theorizing about com-
puters as a fundamental paradigm. This activity eventu-
ally came to be called “the theory of computer science.”
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Many attempts have been made to define computer
science. These definitions view computer science as a
heterogeneous group of disciplines related to the cre-
ation, use and study of computers. A typical definition
simply offers a list of included topics such as: comput-
ability, complexity, algorithm theory, automata theory,
programming, high level languages, machine languages,
architecture, circuit design, switching theory, system
organization, numerical mathematics, artificial intelli-
gence, other applications, etc. One definition attributed
to H. Zemanek is relatively concise and suggests that
computer science consists of four distinct theoretical
domains. He said that computer science is:

1. A theory of programming, with emphasis not
mainly on the problems of distinguishing the com-
putable from the noncomputable, but rather on a
practical theory of algorithms concerned with the
construction of economical and efficient programs;

2. A theory of process and processor organization,
which takes into account the finite dimensions of
existing memories, the availability of storage hier-
archies of varying access speeds and costs, and the
desire for a reduction in computation and program
production time;

3. A theory of description for processes and computa-
tional structures in terms acceptable to the proces-
sor; and

. A theory of computer applications which would
include all features common to most numeric and
nonnumeric applications.

The most recent and comprehensive survey of the
attempts to define computer science is an article in the
Annals of the History of Computing.

Computer science appears to consist of a quite dispa-
rate group of disciplines. There is the theorist con-
cerned with formalized machines, the hardware engi-
neer concerned with logic circuits, the software engi-
neer concerned with symbolic expressions, the architect
concerned with dynamic interpreting structures, the
systems programmer concerned with interacting pro-
cesses and the user concerned with his own unique
problem. This fragmented face of computer science
seems to be a generally accepted inevitability.

Can an underlying commonality of concern be dis-
covered among these several disciplines and possibly, a
conceptual focus for computer science? Item (1) in the
above list is concerned with programming, which is the
rendering of symbolic process expression. Item (2) is
concerned with processor organizations, which is an
expression of a process to interpret symbolically ex-
pressed processes. Item (3) is directly concerned with
symbolic process expressions. Item (4) is concerned
with process expression in general. All of the disciplines
that are included under the heading of computer science
in any list are concerned in one way or another with the
creation, expression, or actualization of process expres-
sions. A logic circuit is an expression of a process that
can happen all by itself. An architecture is an expression
of a continuously acting process to interpret symboli-
cally expressed processes. A program is a symbolic
expression of a process. A programming language is an
environment within which to create symbolic expres-
sions. A compiler is an expression of a process that
translates between symbolic expressions in different
languages. An operating system is an expression of a
process that manages the interpretation of other process
expressions.
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Computer science can be viewed as primarily con-
cerned with questions about the expression of processes
and the actualization of those expressions. What are the
all the possible ways a process can be expressed? Are
some expressions superior in any sense to other expres-
sions? What are all the possible ways of actualizing an
expression. Are there common conceptual elements
underlying all expressions? What is the best program-
ming language? How can the best program be formu-
lated? How can the best architecture be built? What is
the best implementation environment? These are the
questions that occupy computer scientists and they all
revolve around the nature of process expression.

Mathematicians, on the other hand, are primarily
interested in exploring the behavior of specific pro-
cesses or classes of process. They bypass general prob-
lems of expression by appealing to a very formal and
minimalized model of expression; the algorithm as char-
acterized by the Turing machine. They are only inter-
ested in whether an expression is possible and whether
it conforms to certain specific properties. They are not
interested in all the possible ways of rendering an ex-
pression of the process and actualizing it. This, how-
ever, is precisely what computer scientists are interested
in.

Mathematics is primarily concerned with the nature
of the behavior of process regardless of how that pro-
cess is expressed. Computer science is primarily con-
cerned with the nature of the expression of processes
regardless of what particular process might be ex-
pressed. This core concern with the nature of expres-
sion itself is the unique conceptual focus that distin-
guishes computer science from the other sciences and
from mathematics. Computer science is the science of
expression.

One published definition of computer science comes
near the mark.

“computer science itself becomes no more (and no
less) than the discipline of constructing appropriate
descriptive languages”—Harold Abelson, Geraly
Jay Sussmann, and Julie Sussmann.

The notion of the algorithm has become firmly estab-
lished as a fundamental conceptual paradigm of “the
theory of computer science.”

“The notion of the algorithm is basic to all computer

programming . . . >—Donald E. Knuth.

‘. . . the basic concept of problem solving on the
computer—the algorithm”—M.S. Carberry, H. M.
Khalil, J. F. Leathrum and L. S. Levy.

“. .. the notion of the algorithm is essential to com-
puter programming”—Kurt Maly and Allen R.
Flanson.

“One of the concepts most central to computer sci-
ence is that of an algorithm”—Zenon W. Pylyshyn.

Introductory texts on computer science often begin
with a chapter on the notion of the algorithm. The
following generally covers the etymology of the word
and a definition of the notion which consists of a bela-
bored list of properties which an expression must satisfy
to qualify as an algorithm. An issue conspicuously ab-
sent from these introductory chapters is how the notion
contributes to the resolution of significant problems of
computer science. In the remaining chapters of these
texts, there is typically no further appeal to the notion of
the algorithm and rarely even a usage of the word itself.
The notion is never or very rarely appealed to in texts
on logic design, architecture, operating systems, pro-
gramming, software engineering, programming lan-

2
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guages, compilers, data structures and data base sys-
tems.

Is the notion of the algorithm really a fundamental
concept of computer science? Is it just pretentious but
harmless window dressing or has the notion actually
been detrimental to the growth and development of
computer science? Does “the theory of computer sci-
ence” have anything to do with computer science?

Computer science texts typically define the notion of
the algorithm by simply presenting a list of qualifying
properties for an algorithm. In particular, an algorithm:

1. Must be a step by step sequence of operations

2. Each operation must be precisely defined

3. It must terminate in a finite number of steps

4. It must effectively yield a correct solution

5. It must be deterministic in that given the same input

it will always yield the same solution
These properties are substantially similar to what
Hilbert proposed in 1900 and it is easy to see how this
list of restrictive characteristics serves to define what is
acceptable as a mathematical solution, but what is its
significance in computer science?
The notion of the algorithm demarcates all expres-
sions into algorithm and non-algorithm but, what pur-
pose does it serve to know that one program is an ac-
ceptable mathematical solution and another is not? Is
the expression of one fundamentally different from the
expression of the other? Is one interpreted differently
from the other? Is a different machine required for one
than the other? Do operations ordered in strict sequence
somehow work better than operations ordered with
concurrency? Are algorithms first class citizens in some
sense and non-algorithms second class citizens? Most
existing programs are considered “unacceptable” math-
ematical solutions.
Important types of programs in computer science do
not qualify as algorithms. An operating system is not
supposed to terminate nor does it yield a singular solu-
tion.
It cannot be deterministic because it must relate to
uncontrolled inputs from the outside world. Any pro-
gram utilizing random input to carry out its process
such as a monte carlo simulation or fuzzy logic simula-
tion is not an algorithm. Many programs and computers
utilize concurrency where many operations are carried
out simultaneously. Are these not algorithms? If a for-
merly sequential program qualifying as an algorithm is
parallelized by a vectorizing compiler, is it no longer an
algorithm? No program with 2 bug can be an algorithm
and it is an accepted truism that no significant program
can be demonstrated to be bug free.
Does determining whether a given expression is an
acceptable mathematical solution or not, help to iden-
tify the expression that is most readable, most efficient,
fastest or easiest to interpret? Does such a distinction aid
in building better computer systems or in writing better
programs?
These difficulties with the notion of the algorithm
have not gone unnoticed. The following observations
about algorithms are quotations from various sources.
“. .. there is an extension of the notion of algorithm
(called nondeterministic algorithms)”’—M. S. Car-
berry, H. M. Khalil, J. F. Leathrum and L. S.
Levy.

“Any computer program is at least a semi-algorithm
and any program that always halts is an algorithm’-
’—R. R. Karthage.
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“There is another word for algorithm which obeys all
of the above properties except termination and that
is computational procedure”—Ellis Horowitz and
Sartaj Sahni.

“An algorithm A is a probabilistically good algorithm
if the algorithm “almost always” generates either
an exact solution or a solution with a value that is
“exceedingly close” to the value of the optimal
solution”—Benjamin W. Wah and C. V. Rama-
moorthy.

“The procedure becomes an algorithm if the Turing
machine always halts”—Kurt Maly and Allen R.
Hanson.

“By admitting probabilistic procedures in algorithms

. ”"—F. S. Beckman.

... if, after executing some step, the control logic
shifts to another step of the algorithm as dictated
by a random device (for example, coin tossing), we
call the algorithm random algorithm”—E. V.
Krishnamurthy.

“An algorithm which is based on such convergence
tests is called an infinite algorithm”—E. V. Krish-
namurthy.

“Algorithms that are not direct are called indirect-
”—John K. Rice and John R. Rice.

“We drop the requirement that the algorithm stop
and consider infinite algorithms”—John K. Rice and
John R. Rice.

These people have sensed an inappropriate discrimi-
nation or simply an incompleteness and proposed a
remedy. Programs that do not terminate, are not deter-
ministic and do not give specific solutions are now “in-
cluded.” They are no longer simply non-algorithmic
they have positive labels, but what has been achieved by
this labeling? Do these new labels provide any useful
conceptual discrimination? A non-algorithm by any
other name is still just an expression that, however use-
ful it might be in other contexts, is unacceptable as a
mathematical solution.

Computer science does not have the same view points
as mathematics. Computer science is not in pursuit of
solely mathematical solutions, it is in pursuit of a gen-
eral understanding of process expression. Algorithm,
non-algorithm is simply not the kind of conceptual dis-
crimination that is useful in computer science. The no-
tion of the algorithm has not discouraged anyone from
creating nondeterministic, nonterminating, incorrect or
otherwise unacceptable expressions nor has it aided
anyone in creating better programs or computers.

The problem is that the notion of the algorithm taken
out of its mathematical context has been used for duties
it was never intended to fulfill. The notion of a sequence
of operations was considered by the mathematicians as
an adequate and simple rendering of process expression
and for their purposes indeed it was adequate. It was
never intended to be a paradigm of process expression
in general. Unfortunately, this is the role it came to
serve in computer science.

So how does the notion of the algorithm fare purely
as a model of process expression? The definition of the
algorithm states that a process expression should be a
strict one with a time sequence of precisely defined
operations. It does not suggest what an operation is or
how one should be precisely defined. It is, however, in
this precise definition of the operation that the basic
questions of expression must be addressed. How is the
input data and output data characterized? Just how does
the input data turn into output data? How does the data
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of one operation relate to the data of another operation?
The notion of the algorithm addresses none of these
issues. It just states that operations must be precisely
defined. This unsupported imperative is at once an ad-
mission of expressional incompleteness and a refusal to
be complete.

In whatever manner operations manage to get de-
fined the notion of the algorithm specifies that they
should be arranged in strict sequence. The only formal
relationship between operations that the notion of the
algorithm admits is that of sequential order. Is this no-
tion of arranging operations in sequence fundamental or
necessary in any sense?

The notion of a sequence of precisely defined opera-
tions is more familiarly known as the sequential process
model. The sequential process is the informal version of
the algorithm without the operational strictures of ter-
mination, effectiveness and determination. Sequentiality
is generally considered a necessary theoretical primitive
of process expression. Concurrency, for instance, is
viewed as a secondary property derived from sequen-
tiality. Several of the following quotes convey the gen-
eral attitude on concurrency.

“It (a concurrent program) consists of several sequen-
tial processes whose execution sequences are inter-
leaved.”—Ben-Ari M. Ben-Ari.

“We will build concurrent programs out of sequential
processes that are executed simultaneously.”—Per
Brinch Hansen.

“(sequential) Processes are called concurrent if their
execution overlap in time.”—Per Brinch Hansen.
¢. .. parallel composition of communicating sequen-
tial processes is a fundamental program structuring

method.”—C. A. R. Hoare.

There is much that is sequential in dealing with com-
puters, but is this sequentiality conceptually fundamen-
tal or just an artifact of the way we happen to currently
be building computers and thinking about mathematics?

In actuality, single event sequentiality is derived from
continuously functioning concurrent elements. Com-
puters are built from logic circuits which in turn are
built of networks of continuously and concurrently
operating logic gates. There is nothing sequential about
a combinational logic circuit. Many circuits operate
concurrently to carry out one sequential operation of a
computer. The most primitive operations of any process
expression must occur concurrently. Consider the con-
struction of a logic circuit in which the logic gates
operate strictly one at time sequentially. The logic gates
cannot sequentialize themselves so a sequential control-
ler must be postulated. But this controller itself must
also be constructed in terms of strictly sequential opera-
tional units which will in turn need a sequence control-
ler. The most primitive operations of any process must
be expressed in concurrently proceeding relationships.
They cannot be expressed strictly sequentially.

The notion of the algorithm fails on all counts to be a
viable model of process expression. Termination, deter-
mination and effectiveness are not necessary properties
of process expression. There can be nonterminating,
nondeterministic and incorrect expressions of useful and
valid processes. “Precisely defined operation” is not a
sufficient characterization of an expressional unit of
process. The strictly sequential composition of expres-
sional units is neither expressionally necessary nor suffi-
cient. '

When computer science was born, it borrowed sub-
stance from a particularly appropriate branch of mathe-
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matics, computability, which was founded as a disci-
pline of pure mathematics at the beginning of the cen-
tury and which studied mechanical computation using
state machines, Turing machines and formal languages
before the computer even existed. For the mathemati-
cians, a sequence of operations was the simplest canoni-
cal form of expression that allowed the comparisons
that they were interested in. They could directly com-
pare computations by comparing the number of opera-
tions and the forms of the operations themselves. They
were perfectly aware of the possibility of concurrent
operations and purposely factored such irrelevant com-
plications out of their expressions. The mathematicians
did not need anything beyond the sequential process
model of expression.

The mathematicians, with their rigorous formality
were the certified theorists among a community of
mostly engineers. The algorithmic sequential process
model was available, it was adequate, it had authority
and it had no competition. The model of computation
for mathematics became the very firmly established
model of expression for what was quite reasonably con-
sidered to be the foundational efforts in the theory of
computers. This discipline of mathematics came to be
called “the theory of computer science” while retaining
all the flavor of pure mathematics and the notion of the
algorithm came to be accepted as a fundamental para-
digm of computer science.

The computer builders and users on the other hand
were developing a sense that the computer might actu-
ally be conceptually intractable. It was pointed out
early on that a computer and any program for it were
arbitrary human artifacts. Since a2 human could build
the computer and program it any way he chose the
endeavor could not possibly be subject to any inherent
limitations in the same sense that nature is subject to its
laws or that mathematics is subject to its rules. Continu-
ing experience further suggested that computing did
indeed exhibit intractable degrees of freedom of expres-
sion. Given this perception the only approach to under-
standing so intractable a subject seemed to be experi-
ence and experiment and the only approach to manag-
ing it to be imposed rationale and convention. A com-
prehensive theory of process expression may not in fact
be possible and the mathematicians were probably
doing about as much as could be done even though it
wasn’t very useful.

As the field of computers grew, each area of comput-
ing developed its own isolated set of concepts and con-
ventions and largely ignored “the theory of computer
science”. These areas attempt to interface with each
other. For instance, architectures are designed to facili-
tate operating system functions. Compilers are optimize
to specific architectures. Languages and architectures
accommodate specific applications. But, there has not
emerged from these local efforts a unified theory that
pretends to be comprehensive and that can challenge
the mathematical models for the title “The Theory of
Computer Science”.

Even though the mathematical theories have had
little practical influence, the territory is still generally
considered to be mathematical in nature and the mathe-
matical perspective as well as the mathematical ap-
proach have permeated the disciplines of practical com-
puting. However, the mathematical perspective is the
wrong point of view. It is asking the wrong questions.
The mathematical point of view is concerned with the
behavior of classes of processes, the mapping of the
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domain to the range, the limits of behavior and anoma-
lies of behavior? A mathematician is not greatly con-
cerned with how a process is expressed. It may be ex-
pressed in any convenient language and executed on
any convenient machine.

The computer scientist on the other hand is con-
cerned about questions of expression. He wants to
know, in general, how to define the optimal program-
ming language, the best architecture to interpret pro-
grams in that language and how best to write those
programs. He is not greatly concerned with what pro-
cesses might be programmed on the computer and even
less concerned about how any particular process might
behave in terms of its domain and range.

A computer scientist is concerned about all of the
possible ways to express a process regardless of what
process is expressed. In contrast, a mathematician is
concerned with the behavior of a specific class of pro-
cesses regardless of how that process is expressed.
Mathematicians and computer scientists are pursuing
fundamentally different questions. The mathematicians
tools are not as appropriate, as once supposed, to solve
the questions of the computer scientist. The primary
questions of computer science are not of computational
possibilities but of expressional possibilities. Computer
science does not need a theory of computation rather, it
needs a theory of expression.

One pioneer of “computer science” elegantly sum-
marizes the situation:

“In particular, in theoretical computer science we
have been guilty of behaving too much like pure
mathematicians; The mathematicians’ compass has
not always guided us well in exploring computer
science. Time and again, we have valued the diffi-
culty of proofs over the insights the proved results
give us about computing; we have been hypnotized
by mathematical elegance and pursued abstraction
for its own sake. Frequently we have practiced
“intellectual counter punching” by staying with
small, previously defined (and possibly irrelevant)
problems instead of searching for new formulations
and development of theories more directly related
to computing. . . . I believe that as we explore
information processing further, there will be star-
tling surprises and that our current ideas about
computing will have to be modified substantially.’-
’—Juris Harmanis.

The following description attempts to formulate a
comprehensive theory of computer science that can
compete directly with the established mathematical
theory of computer science. In particular, an explora-
tion of process from the point of view of its expression
is attempted. In addition, the description details some of
the fundamental principles of expression and explains
how these principles produce the enormous diversity of
process expression in the physical and abstract world.
By putting forth the proper questions from the proper
perspective, it can be shown that computers are not as
artifactual and intractable as once thought but simply
one manifestation of a fundamental natural phenome-
non.

SUMMARY OF THE INVENTION

A method and system for process expression and
resolution is described. A first language structure com-
prising a possibility expression having at least one defi-
nition which is inherently and generally concurrent is
provided. Further, a second language structure com-
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prising an actuality expression including a fully formed
input data name to be resolved is provided. Further-
more, a third language structure comprising an active
expression initially having at least one invocation, the
invocation comprising an association with a particular
definition and the fully formed input data name of the
actuality expression is provided. Subsequently, the pro-
cess of resolving invocations begins in the active expres-
sion with fully formed input data names in relation to
their associated definition to produce at least one or
both of the following: (1) an invocation with a fully
formed input data name and (2) a result data name.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram showing high level description of
the preferred embodiment process expression and reso-
lution system.

FIG. 2 shows a network of association relationships
with no cycles.

FIG. 3 illustrates a variable association rule as a bag
that isolates variables and also keeps them together.

FIG. 4 illustrates the precedence of occurrence rela-
tionships among interactions for the example process.

FIG. 5 shows a rigid structure of interacting variables
that might be expected to express the example process.

FIG. 6 illustrates the relationships between input
variables and the result asserting variable.

FIG. 7 illustrates the difficulty directionality of inter-
action between directly associated variables.

FIG. 8 illustrates how many isolation variables must .
be between any two variables that assert the same value
set.

FIG. 9 illustrates how variables can be arranged in 2
standard association unit called an interaction locus that
isolates identical input and result value sets.

FIG. 10 shows one way to graphically represent an
interaction locus.

FIG. 11 shows how several interaction loci can be
directly associated to render a larger process expres-
sion.

FIG. 12 shows that the standard graphic form of
representing logic circuits is identical to the more gen-
eral form developed from the theory.

FIG. 13 is a directly associated expression with inter-
action loci which still cannot determine its own comple-
tion.

FIG. 14 is a configuration of interaction loci that will
work with a NULL value added to the value sets of the
interaction loci. '

FIG. 15 illustrates an example process in which six
distinctions can interact in nine possible ways to pro-
duce one of nine possible results.

FIG. 16 illustrates an arbitrary assignment of encod-
ings.

FIG. 17 illustrates an example rotate locus.

FIG. 18 illustrates a configuration of rotation loci to
convert a given input name to a standard recognition
name .

FIG. 19 shows a set of transform rules.

FIG. 20 illustrates an example expression.

FIG. 21 is the input section of an expression that will
recognize all of the possible input names of the process.

FIG. 22 shows a transform set which implements the
task of asserting a particular value if enabled by a
TRUE value and asserting a default result value if not
enabled.

FIG. 23 shows a prioritized collection of asserted
values.
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FIG. 24 is the complete expression that will trans-
form each possible four variable-four value input name
to a specific four variable-four value result name.

FIG. 25 shows how the input name recognition stage
can be optimized.

FIG. 26 shows how the result collection and assertion
stage can be optimized.

FIG. 27 shows the complete optimized expression to
recognize four variable-four value input names and
assert four variable-four value result names.

FIG. 28 illustrates interaction loci as Boolean logic
functions.

FIG. 29 illustrates a half adder circuit and corre-
sponding truth table.

FIG. 30 illustrates a transform set which will unam-
biguously recognize three input names that are rotation
neighbors.

FIG. 31 illustrates a locus which will generate the
appropriate result values directly.

FIG. 32 illustrates how the expression of the example
process can be expressed if custom interaction loci are
allowed.

FIG. 33 illustrates how the expression can be further
optimized by reassigning the coding of the input names.

FIG. 34 illustrates the expression of the example pro-
cess if six values are available.

FIG. 35 illustrates the expression of the example pro-
cess if nine values are available.

FIG. 36 shows that the expression becomes a pure
variable expression if fifteen values are available.

FIG. 37 illustrates an expression with fewer values
available.

FIG. 38 shows the transform table for the example
expression if only two values are available.

FIG. 39 shows the example process as a standard
logic circuit.

FIG. 40 shows transform value sets with the NULL
convention added.

FIG. 41 shows the two value NULL convention
expression of the simpler example process of FIG. 12.

FIG. 42 shows the basic example process expressed as
two value NULL convention logic.

FIG. 43 illustrates the general form for a generally
configurable process.

FIG. 44 shows a variable structure and transform rule
set to implement a memory element.

FIG. 45 shows a variable structure and transform rule
set to implement a selector element.

FIG. 46 illustrates the composite name form for a
generally configurable processor.

FIG. 47 illustrates a selector element structure.

FIG. 48 shows a variable structure and transform rule
set to implement a distributor element.

FIG. 49 illustrates a distributor element structure.

FIG. 50 illustrates the portion of a generally configu-
rable process expression that configures association
relationships for each interaction.

FIG. 51 shows the structure of the boundary element.

FIG. 52 shows a variable structure and transform rule
set to implement a NULL-VALID detector element.

FIG. 53 shows how a NULL-VALID detector can
be cascaded to accommodate any size name.

FIG. 54 shows how boundary elements communicate
to synchronize value flow.

FIG. 55 is the transform table for the protocol section
of the boundary element.

FIG. 56 shows the value change timing relationships
among the variables of the boundary element.
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FIG. 57 illustrates how name resolving expressions
are inserted between boundary elements to form larger
expressions.

FIG. 58 illustrates how boundary elements can be
pipelined.

FIG. 59 shows a fan in configuration of boundary
elements.

FIG. 60 shows a fan out configuration of boundary
elements.

FIG. 61 shows the complete generally configurable
process expression.

FIG. 62 is the example binary logic circuit shown in
FIG. 39.

FIG. 63 shows the transform set for the complete
example process.

FIG. 64 is an example process expression to be
mapped into the generally configurable process.

FIG. 65 shows the sequence thread of interactions for
the generally configurable process to perform one at a
time.

FIG. 66 illustrates a process from the viewpoint of
the generally configurable process and the viewpoint of
the arbitrary process.

FIG. 67 illustrates a preferred embodiment apparatus
for interpreting character strings.

FIG. 68 shows an example process expression as a
binary logic full adder circuit.

DETAILED DESCRIPTION
1 A Model of Process Representation

The following section of this detailed description
introduces a model of process expression that focuses
on the nature of process itself. The model will lay a
foundation for exploring the fundamental questions of
process expression. Some of the concepts explored in-
clude: what are the possible forms of process expres-
sion, what are the relationships among these various
forms, and what are the limits of process expression.

For the purpose of this detailed description, process
shall be defined in very general terms, and then, the
invocation model of process expression shall be intro-
duced. A series of examples present two domains of
expression within the invocation model and illustrate
some fundamental principles of process expression.

1.1 Process

Process is characterized as the actual occurrence of
interactions among distinctions from among a set of
possible interactions resulting in a2 new set of distinc-
tions and a new set of possible interactions. Each dis-
tinction is an interacting element different and distinct
from all other interacting elements. Each possible inter-
action is determined by a unique combination of distinc-
tions. An actual combination of distinctions determines
which possible interaction actually occurs. Each inter-
action results in 2 new set of distinctions with new inter-
action possibilities.

When a combination is formed each distinction in the
combination must be present at the place of combina-
tion and it must differentiate itself as a unique distinction
in relation to the other distinctions at the place of com-
bination. So each distinction must express a property of
place as well as a second differentiating property.

Process is a confluence of possibility and actuality.
All of the details of each possible interaction, what
combinations of distinctions can form and what new
distinctions result from each combination, must be ex-
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pressed in detail before occurrence, but which possible
interaction will actually occur cannot be expressed until
the time of occurrence when a combination of distinc-
tions is actually formed. The possibility of process and
the actuality of process are inherently separate aspects
of process and can be considered to be expressed sepa-
rately as a possibility expression and as an actuality
expression.

The possibility expression is an inherently incomplete
specification of a process. It must defer as an open ques-
tion which of the possible interactions will occur. The
actuality expression provides the answer to this ques-
tion and by combining with a possibility expression
completes the specification of a particular occurrence
of a process. The form of the possibility and actuality
expressions must correspond in the sense that the an-
swer of the actuality expression must fulfill the question
of the possibility expression. The combination of dis-
tinctions of the actuality expression must be one of the
possible combinations expressed by the possibility ex-
pression.

Process expression is essentially a matter of differenti-
ation and association. The possibility expression must
differentiate each distinction in relation to the other
distinctions and ‘then associate distinctions to express
each possible interacting combination and the new dis-
tinctions resulting from each interaction. The actuality
expression actually associates distinctions in an interact-
ing combination. :

The possibility expression of physics is the natural
laws and the existence of matter. Exactly which matter
will get together when and where is the realm of the
actuality expression. The laws of chemistry is the possi-
bility expression and the interpenetrating flux of chemi-
cals is the actuality expression. Cellular machinery and
DNA is the possibility expression and nutrients, hor-
mones and intercellular transmitters is the actuality
expression. A computer and program is the possibility
expression and data is the actuality expression.

1.2 The Invocation Model

The invocation ‘model consists of variables, values,
variable association rules and value transform rules. A
variables expresses the place of a distinction. Every
variable constantly asserts a value. The value is the
second differentiating property of a distinction. A vari-
able asserting its value expresses a unique distinction of
the process. Variable association rules specify which
variables are interactively associated with each other.
Value transform rules specify which values are interac-
tively associated with each other and what values will
result from the interaction.

1.2.1 Variable Association Rules

The variable association rules specify which variables
can interact. If two or more variables are associated
then those variables are interactively proximate. If vari-
ables are not associated by any association rule then
they are not proximate and cannot interact.

The association rules differentiate the variables by
specifying exactly how each variable is interactively
proximate with one or more other variables. Each vari-
able has a place in the process universe and each is
differentiated by its place of association in relation to
the other variables. If an association rule states that all
variables are or may be in interactive proximity then
each variable has no particular place in relation to the
other variables and there is no way to differentiate one
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variable from another. If an association rule states that
no variables are associated then it doesn’t matter
whether variables can be differentiated, they cannot
interact and are not expressionally significant.

1.2.2 Value Transform Rules

The value transform rules specify what values can
interact. A value transform rule specifies a combination
of values as the name of the rule and a set of result
values. The combination of values that forms the name
of a value transform rule specifies that the combination
of values is interactively proximate and will interact. If
a combination of values does not form the name of any
value transform rule then that combination of values is
not proximate and they will not interact. The result
values of the rule specify the values that will result from
the interaction.

Similarly to variables, values receive their differentia-
tion and place in the interaction universe from the value
transform rules. Only values that appear in value trans-
form rule names are interactively proximate and then
only in the combinations specified by the names. Values
appearing both in value transform rule names and also
as result values in other value transform rules form
relationships among value transform rules that forge the
structure of the value interaction universe and establish
each value’s place in it. A value is differentiated by its
place in relation to all the other values in the process
universe as specified by the set of value transform rules
for the process.

1.2.3 Primitive Process Interaction

Associated variables (the variables are interactively
proximate) asserting their values form a combination of
distinctions. If the combination of asserted values forms
the name of a value transform rule (the values are in-
teractively proximate) then an interaction will occur. If
two variables are in interactive proximity but their val-
ues are not in interactive proximity (the values do not
form a value transform rule name) no interaction will
occur. Conversely values can be interactively proxi-
mate but if their asserting variables are not interactively
proximate no interaction will occur.

Like the sorcerer invoking his demons by name to
perform his magical transformations a combination of
distinctions forms the name of a transform rule name,
the rule is invoked and the transformation occurs.
Hence the invocation model.

1.2.4 Interaction Composition

The next stage of process expression beyond a single
interaction among several possible interactions is the
expression of a progression of dependent interactions
each interaction being at a place in relation to all other
interactions with each place of interaction having a set
of possible interactions. The dependency relationships
among the places of interaction are expressed as name
formation dependency relationships. The name formed
for one place of interaction depends on the result dis-
tinctions of one or more other places of interaction. The
dependency relationship can be expressed as direct
association relationship between the formable name at
one place of interaction and the result distinctions from
other places of interaction. It is still not possible to
predetermine which distinctions will be asserted and
which transform name will be formed at each place of
interaction but it can be predetermined where the dis-
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tinctions forming the transform name for each place of
interaction will come from within the expression.

These dependency relationships form a network of
association relationships of result distinctions to trans-
form name forming combinations of distinctions among
the places of interaction. It is this network of association
relationships that provides each place of interaction
with its place in relation to all the other places of inter-
action.

FIG. 2 shows a network of association relationships
with no cycles. Although any configuration of associa-
tion relationships is possible this discussion will con-
sider only directed association networks with no cycles.

Each individual place of interaction is expressed by
its own possibility expression (e.g.,120,122,124 and 126)
consisting of a set of value transform rules. These indi-
vidual possibility expressions are combined into a larger
composite possibility expression through the name for-
mation dependency relationships. For example, possi-
bility expressions 120 and 126 combine to form possibil-
ity expression 122. Most of the interactions receive their
transform name distinctions from specified local places
in the structure of associations. A few name forming
distinctions, however, are not associated to any local
places and they must come from someplace external to
the structure of association relationships. These unasso-
ciated name values taken collectively are called the
input name and are the composite actuality expression
128 for the composite possibility expression. A compos-
ite actuality expression 128 will also be referred to as the
input name 128 for the composite possibility expression.
The result values of the composite possibility expression
will be referred to as the result name 130.

The composite possibility expression, including for
example 120, 122, 124 and 126 is a complete stand alone
specification of possibilities dependent only on its com-
posite actuality expression. It is a larger self contained
unit of expression (a possibility expression and an actu-
ality expression) than the interaction.

These name formation dependency relationships
among places of interaction can be expressed within the
invocation model either in terms of value transform
rules or in terms of variable association rules. This
means that the model possesses two quite different but
complementary domains of expression.

1.3 Two Domains of Expression

The value transform rules and the variable associa-
tion rules provide the model with two domains of differ-
entiation and interactive association. A process can be
expressed almost exclusively in terms of differentiation
and interactive association of values by value transform
rules or almost exclusively in terms of differentiation
and interactive association of variables by variable asso-
ciation rules. Between these two extremes there is a
large intermediate landscape of cooperative expression
with gradations of expression from each domain.

1.3.1 Pure Value Expression

At one extreme is the pure value expression for which
all differentiation and interactive association is ex-
pressed in terms of values and is specified by value
transform rules. Each distinction is a unique value and
possesses a unique place in value space in relation to all
other values. All interactive association is expressed by
correspondence among combinations of these unique
values, i.e., every value transform rule name in the
process expression is unique. There is no differentiation
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in terms of variable association rules. Variables are all
simultaneously associated or they associate indiscrimi-
nately. There is no way from the point of view of the
variables to discriminate one interaction from another.

A natural example of this form of expression is a
chemical reaction. The molecules are variables. The
composition of each molecule determines its interaction
possibilities and is its value. A liquid or gas is natures
version of the association rule that specifies that there is
no differentiation of variables. The variables (mole-
cules) will indiscriminately associate in the liquid or gas
and there is no way to tell one variable from another
except by the value it asserts. The molecules get to-
gether forming transform rule names and interact to
form new molecular values.

1.3.2 Pure Variable Expression

At the other extreme is the pure variable expression
for which all differentiation and interactive association
is expressed in terms of variables and is specified by
variable association rules. Each distinction is a unique
variable and possesses a unique place in variable space
by virtue of its association relationships with other vari-
ables. All interactive association is specified by specifi-
cally associated variables. There is no differentiation in
terms of value transform rules. There is a set of values
and a set of spanning value transform rules, i.e., there is
a transform rule for every possible combination of val-
ues. This means that all values in the expression are
constantly in interactive proximity. There is no way
from the point of view of the values to discriminate one
interaction from another.

A natural example of this form of expression is a
network of neurons. The artificial computer is also
primarily of this form.

Within the model there must always be a bit of each
domain in every process expression. There must always
be variables that associate and there must always be
values that form transform names. Nevertheless the two
ends of the territory will be referred to as pure value
and as pure variable.

1.3.3 The Intermediate Expression Territory

Expression in the intermediate territory between pure
value and pure variable is a cooperative endeavor be-
tween variable differentiation and value differentiation.
A very simple example of this cooperative expression is
the representation of numbers with different bases. Base
two numbers have only two values and very simple
value transform rules (logical truth tables) but have lots
of digits (variables) that must be properly associated.
Base ten numbers have ten values and larger, more
complex value transform rules (traditional addition and
multiplication tables) but have fewer digits (variables)
to be associated. There can be gradations of intermedi-
ate expression ranging from mostly in terms of value
differentiation and value transform rules to mostly in
terms of variable differentiation and variable association
rules as shown below in Table 1.

TABLE 1
pure value intermediate pure variable
6 expression expression expression ;
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1.4 Pure Value Expression

In a pure value expression there is no differentiation
of variables. All differentiation is in terms of values and
specified by value transform rules. Transform rules for
this part of the discussion will be represented in the
format of the transform name followed by the result
values enclosed in brackets as shown below.

name [result, result, . . .‘]

Consider an example expression with four distinc-
tions differentiated by unique values A, B, C and D and
two value transform rules that interactively associate
those distinctions. A and B interact and transform into
D. C and D interact and transform into B. The two
transform rules for the example are shown in Table 2.

TABLE 2

AB[D] or BA[D]
CD[B] or DCIB]

The linear string representation makes it appear that
ordering is significant when actually it is not. The input
names AB and BA are the same name and are both
specified for this example. There can be no order rela-
tionships among the values because there can be no
order relationships among the variables when they are
interactively proximate. They are simply two values
interacting.

The value transform rule is the simplest most primi-
tive form of process expression. No part of the rule can
be reduced to simpler terms or be more precisely stated.
The values are primitive and indivisible and the interac-
tion result is complete in itself and unambiguous.

The value transform rules specify completely who
does what with whom. As far as the variables are con-
cerned anybody can do anything with anybody but in
terms of the values only As can interact with Bs and
only Cs can interact with Ds. As cannot interact with
Ds nor Bs with Cs and so forth. There cannot be the A
of this variable and the A of that variable because there
is no this variable or that variable. Value difference is
the only way to tell anything apart for this expression.
A value expression can be elaborated and extended to
more expressional complexity by adding more values
and more value transform rules.

The result value specified by the transform rule for a
pure value expression is a different value from the val-
ues forming the transform rule name so there is no ambi-
guity about when the interaction is complete. The name
values disappear and the result values appear. These
new values can form a new unique transform rule name
with other values which results in another interaction
and more new values which can form further unique
transform rule names and so on. Each interaction possi-
bility is dependent on one or more previous interactions
to provide the values to form its transform rule name.
The process progresses in a succession of fulfilled inter-
action possibilities determined by the formability of
unique transform rule names.

The set of transform rules below in Table 3 illustrates
a value expression that proceeds in a progression of
unique name formation dependencies.

TABLE 3

AB [C,D]
CC [D,E]
DD [G,F]
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TABLE 3-continued

EF [F,G]
GG [X Y]

If there are some As and Bs present they will begin
interacting and generating Cs and Ds. The CC and DD
interactions cannot occur until there are some Cs and
Ds available. The CC and DD interactions will gener-
ate Es, Fs and Gs which will form the input names of
the EF and GG, transforms will interact and finally
produce Xs and Ys. For this process the possibility
expression is the set of value transform rules and the
variable association rule specifying that all variables are
or will become interactively proximate. The actuality
expression is the presence of the As and Bs.

The process is resolved in distinct discrete stages of
interaction. The completion of each interaction is estab-
lished by the presence of result values and the absence
of transform name values for that stage. When Xs and
Ys appear the resolution of the process is completed. It
is deterministic and directional. It can’t run backwards
and start generating As and Bs. All of these characteris-
tics are determined solely by the differentiation and
interactive association of values as specified by the
value transform rules.

1.4.1 Traditional Computation with Pure Value
Expressions

The pure value expression is unfamiliar territory in
the contemplation of process expression and computa-
tion but the following examples will illustrate that the
while the pure value end of the expression territory is
associated mainly with natural expressions such as
chemistry, physics and biology it is a fully capable dis-
crete computation environment.

There is in fact an important pure value expression
system in the history of computational thought. This is
the Roman numeral system without the subtractive
principle. (This system delineates, for example, 9 as
VIIII instead of IX). The digits of Roman numerals are
generally presented in a certain order for convenient
reading but without the subtractive principle the order
has no significance to their meaning. No matter what
arrangement the digits are presented in they represent
the same number. Each digit of a number is a variable
and each variable has a value. The variables have no
particular association relationships among themselves.
The meaning of each digit is differentiated entirely by
its value. The magnitude of the number is determined
solely by the values present. See Table 4 below.

TABLE 4
Possible values are MD,C.LX,V,I
Transform rules are IMII{v]
VVI[X]
XXXXX[L1]
LL[C]
CCCCC[D]
DD[M]

The only interactions possible in 2 Roman numeral
expression are those specified by the value transform
rules. Vs don’t interact with Xs because there is no rule
with the appropriate name. The above value transform
rules are a complete expression of the process for addi-
tion of Roman numerals. Given two Roman numbers
these rules will reduce them to 2 minimal single number
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representation. The numbers 1978 and 22 are used as
examples (see below).

MDCCCCLXX VI XXII

Referring now more particularly to FIG. 3, for exam-
ple, to add the two numbers a person could simply
throw the numbers 134 into a bag, 132 and shake. The
bag 132 itself represents the variable association rule.
The rule states that variables cannot wander off and that
external variables cannot intrude. Shaking the bag 132
specifies that all variables will eventually associate.
There is no variable differentiation. Variables associate
indiscriminately and there is no way to tell one variable
from another inside the bag 132 except by its asserted
value 134. The possibility expression is the set of value
transform rules and the bag 132. The actuality expres-
sion is the values 134 thrown into the bag.

The five Is will eventually get together and form the
name IIIII. This will invoke the value transform rule
IIIIT and the five Is will transform into a V. There are
then two Vs which will eventually make an X. The five
Xs will make an L, the two Ls a C the five Cs a D and
finally the two Ds an M. What remains in the bag are
two Ms. No more interactions are possible because
there are no value transform rules for Ms (see below).

MDCCCCLXXVIII+XXII=MM.

There are a couple of difficulties with this expression.
It is not possible to determine when the expression in-
side the bag 132 is fully resolved either from inside or
outside the bag 132. Also some of the transform rules
require the confluence of five variables which might
take a long time to occur. The Roman numeral system,
however, was never intended to be autonomously re-
solving as it assumed a rather capable meta resolution
environment that could get all the proper variables
together and could tell when its resolution was done.

The following examples will demonstrate that iso-
lated pure value expression can be fully and autono-
mously determinable. So that the reader can more easily
follow the examples the expressions from now on will
be various forms of binary integer addition. The next

example (see Table 5) introduces the first form of this’

expression and is an expression whose transform rule
names are never more than two values long.

TABLE 5
Possible values are A,B,.C.D.E
Transform rules are AA[B]
BB[C]
cclD]
DD[E]

This expression behaves similarly to the Roman nu-
meral expression. If it is assumed that A=1, B=2,
C=4, D=8, E=16it can be seen that these expressions
are equivalent to binary numbers. A number is repre-
sented by specifying the appropriate values. As with the
Roman numerals there is no significance to spatial ar-
rangement of the variables. Numbers 134 are added by
throwing them in the bag 132 and shaking (see below).

DAC+BCA=EC; 134+7=20

The above expression will complete more readily
because no interaction requires the confluence of more
than two variables but there is still no way for the ex-
pression to determine when it is completed. For an
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expression to establish its own completeness there must
be a distinct last interaction. With the above expression
there might not even be a first interaction (see below).

AC+BD=ABCD

Combining these two numbers directly results in a
minimally represented number without any interactions
at all. If no interactions occur there can be no last inter-
action to indicate completion.

To guarantee the completeness of a progression of
interactions there must be a guaranteed completeness to
the form of the values entering into the interactions.
Completeness in this case means expressing the insignifi-
cant place values as well as the significant place values
of the number. Another character will be attached to
each value to indicate its significance or insignificance.
1 means a value is significant and 0 means it is insignifi-
cant. So now AC would be represented as A1C1B0-
DOEO or EODOC1B0A1 since order does not matter.
The number of distinct values has simply been increased
to achieve more expressional differentiation.

Each input number must now be represented by five
variables and it can be guaranteed that there will be an
interaction for each possible place value whether that
place value is significant or not. This is simply a conven-
tion of name presentation among processes. As will be
seen each process can individually and locally maintain
the convention. With cumulative local support it be-
comes a collective global convention. There is still no
order relationship imposed on the variables.

For the new example the possible values may be
coded with two characters (see Table 6).

TABLE 6

Possible values are:
E(,E1,D0,D1,C0,C1,B0,B1,A0,A 1

Transform rules are:
AOAO0[BO,A0]
AOA1[BOAL]
AlAO0[BO0,AL]
AlAl[B1,A0]
C0CO [ DO,CO ]
COC1[DO,Cl1]
C1Co [ DO,Cl ]
CIC1[D1,C0}

BOBO [ CO,B0 ]
BOB1 [ C0,B1]
B1BO [ CO,B1 ]
BIB1 [ C1,B0]
DODO [ E0,DO ]
DODI [ EO,D1]
DIDO [ E0,D1 |
DIDI [ E1,D0]
EOEO [ EO0]
EOE1 [ E1]
EIE0[E1]
EIE1[E0]

The integer addition example now looks like:

E0 D1 C1 B0 A1+ E0 DO C1 B1 A1=E1 D0 C1 B0
A0;

or

134+7=20

To resolve the expression one still just throws all the
variables 134 into a bag 132 and shakes. As interact only
with As, Bs with Bs, Cs with Cs, Ds with Ds and Es
with Es. Each interaction generates a unique carry
value which will interact with its corresponding values
until no more interactions are possible. If the two input
numbers ‘are represented as five variables with each
variable asserting a different one of the five flavors of
value; Ax,Bx,Cx,Dx,Ex then the rules guarantee that
the result will be a similar number of five variables. The
convention of name presentation to the expression is
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maintained by the asserted results of the expression
which will be presented to another expression. If each
expression similarly maintains the name presentation
convention then it becomes a global convention.

Even with this regularity derived from the complete-
ness of the presented name it is still not certain when the
resolution of the process is complete. The E rule will be
invoked twice, once for the input values and once for
the carry value from the D rule. There is no way to tell
which invocation is the last one.

To eliminate this ambiguity separate distinctions and
value transform rules must be specified for the input
interactions and the carry interactions. Then there can
be a definite last interaction which will be the carry into
the E interaction.

Because of minor combinatorial explosion of the pos-
sible distinctions in this next example the values will be
presented in two parts. The characters for the positional
flavor and positional assertion are represented by two
separate tables. For instance the transform rule pres-
ented as AxAx[SBy,Az] when expanded in relation to
the x x> >y z table really represents four separate
transform rules; AOAO[SB0,A0], AOA1[SB0,A1],
A1A0[SB0,A1] and A1A1[SB1,A0] (see Table 7 be-
low).

TABLE 7

Possible values are:
Dx,Cx,Bx,Ax
UDx,UCx
TDx,TCx,TBx
SDx,SCx,$Bx
RDx, RCx, DONE x = 0,1

Transform rules are:
precedence of
occurrence
relationships

transform
rule

AxAx
BxBx
SBxTBx
CxCx
SCxRCx
TCxUCx
DxDx

[ SBy,Az ]
[SCy,TBz ]
[RCy,Bz]

[ SDy,TCz ]
[UCz ]

[ RDy,Cz ]
[TDz]
RDxSDx [UDz]
TDxUDx [ Dz, DONE ]

O\ e Ut N e

forallrules x _x >> vy z

—_—O O

0 0
I >> 0 1
0 1
1 0

The integer addition example now looks like:

E0 D1 C1 B0 Al + EODOC1 Bl Al

E1 DO C1 BO A0 DONE

The new R, S, T and U values separately track the
carry values and the carry interactions. The DxDx rule
is the input interaction and the TDxUDx rule is the
carry propagation into D which is necessarily the last
interaction. The result looks just like the previous result
except that a new result value, DONE, is confidently
generated by the last interaction.

All of the additional complexity of specification to
achieve complete control is just 2 matter of more dis-
tinctions and more value transform rules that track
intermediate values through the interactions to establish
a consistent and regular behavior that possesses a dis-
tinct last interaction. It is just more differentiation and

5

10

15

20

25

30

35

45

50

55

60

65

24

association. No new concepts or primitive elements
needed to be introduced. Control is not a primitive of
process expression. It emerges from the defined expres-
sional primitives of the model properly arranged. It is
just extra expression beyond what is required to simply
transform the process proper information.

A familiar process has been expressed with full gener-
ality in a pure value environment. The expression is
complete and self contained. Given the values, the
transform rules and the variables it will proceed quite
independently and autonomously in an orderly progres-
sion of distinct interactions leading to a distinct last
interaction which determines completion. There is no
ambiguity in its behavior and it needs no external assist-
ance to effect its resolution.

1.5 Name Formation Dependency Relationships

How an input name is expressed and resolved de-
pends on the resolution resources available. If a very
large number of value transform rules with names eight
values long were available then the example process
could be expressed and resolved in a single interaction.
The example, however, uses value transform rules with
names only two values long. Consequently the expres-
sion can not be resolved in a single interaction.

An input name that is too long to be resolved in a
single interaction must be resolved a piece at a time by
a necessarily dependent progression of multiple interac-
tions each resolving a smaller input name which is a
piece of the larger input name. The eight value input
name had to be broken up into 4 separate input interac-
tions. The results of these input interactions must be
combined to form input names for inner interactions
and so on until the proper result values for the eight
value input name are determined. The inner interactions
depend on the results of the input interactions to form
their input names. This dependence of the formation of
the input name for one interaction on the result of one
or more other interactions is name formation depen-
dency. In a pure value expression name formation de-
pendency relationships are expressed by correspon-
dence between result values and value transform rule
name values.

In the last example above for instance the transform
rule named RDxSDx is really four transform rules
RDOSDO0, RD0SD1, RD1SD0 and RD1SD1. Only one
of these input names will be formed and the correspond-
ing rule invoked. Which name is formed depends on the
CxCx rule which will result in SDO or SD1 and the
TCxUCx rule which will result in RDO or RD1. The
results of these two interactions will form one of the
four names of the RDxSDx rules. Within the context of
the expression the values to form an RDxSDx name
cannot come from anywhere else but the resolution of a
CxCx interaction and of a TCxUCx interaction. The
RDx of the RDxSDx transform name is a direct associa-
tion to the RDx result value of the CxCx transform
rules.

The precedence of occurrence relationships, for the
example as graphically shown in FIG. 4 and shown in
textual form in Table 8 below), indicates the order in
which interactions can occur for the resolving pure
value expression.

TABLE 8
Interaction stage
1 2 3 4 5 6
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TABLE 8-continued

Interaction stage

Ax Ax Ax AXx Ax Ax Ax

Ax SBx Bx Bx Bx Bx Bx

Bx TBx RCx

Bx SCx SCx UCx Cx Cx Cx

Cx TCx TCx TCx RDx

Cx SDx SDx SDx SDx UDx Dx

Dx TDx TDx TDx TDx TDx DONE
Dx

This order is determined by the input name formation
dependency relationships of the expression embodied in
the value transform rules (see Table 9).

TABLE 9

Transform rules are:

precedence of
occurrence
relationships

transform
rule

AxAx
BxBx
SBxTBx
CxCx
SCxRCx
TCxUCx
DxDx
RDxSDx
TDxUDx

[ SBy,Az]

[ SCy,TBz ]
[RCy,Bz ]

[ SDy,TCz ]
[UCz]
[RDy,Cz ]
[TDz]
[UDz]

[ Dz, DONE]

- R L i

The stage 1 interactions 136,138,140 and 142 can all
occur simultaneously or at any time. Stage 6 interaction
152 is guaranteed to be the last interaction. The input
name formation dependency relationships in the expres-
sion fully express all the possible concurrency. For
instance the TCxTCx input name cannot be formed and
the interaction 148 will not occur before the CxCx and
SCxRCx interactions occur. Even though the CxCx
interaction 140 can occur immediately the interactions
dependent on it 140, 150 and 152 140, 150 and 152 will
not occur until CxCx interaction 140 occurs. The con-
trol aspect of the expression is complete and general.
No matter how long it takes for each interaction to
occur, the expression will resolve correctly and com-
pletion of resolution can be determined by the assertion
of the DONE value. The DONE value can perhaps
open the bag and deliver the result.

This progression of interactions 136 through 152
could resolve in a soup of just the eight input variables.
Each interaction has two input values and produces one
or two result values. There will never be more that
eight values asserted at any instant and there are only
five result values. This view of resolution of the expres-
sion has the eight variables changing their asserted val-
ues as the interactions occur. Two variables get to-
gether, realize that they form a transform name and
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change their asserted values to effect the result values of 55

the transform rule. So the input variables are also the
result variables. The previous Table 8 illustrates the
value populations after each interaction stage and
which is also illustrated in graphical form in FIG. 4.
Before the first interaction stage 136, 138, 140 and 142
there are four interactable names. After the first interac-
tion stage the only interactable name is SBxTBx. After
the next stage 144 the only interactable name is
RCxSCx and so on. The result values are isolated from
the input variables by the event of the interaction.
When AxAx interacts 136 the input values disappear
and the result Ax appears. There are no more Axs and
Ax does not enter into any other transform name so it
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cannot interact further. When the DONE value is gen-
erated 152 there are one each of Ax, Bx, Cx, Dx and
DONE laying around that cannot interact further and
these constitute the result values.

1.6 The Need For Null Values

If one assumes conservation of variables, which is not
a necessary assumption, then of the eight input variables
only five are needed to assert the result values leaving
three variables that are essentially expressional waste.
These three variables must assert some value that is not
relevant to the expression. For instance if the RCxSCx
interaction generated UCx and also Bx the extra Bx
would form a transform name with the result Bx or one
of the input Bxs which in either case would mightily
confuse the resolution of the expression. So these three
left over variables must assert values different from the
values of the expression which are meaningless to the
expression. These meaningless values will be called
NULL values.

A NULL value for a pure value expression is any -
value not specified in the set of value transform rules.
The example expression can resolve in a veritable sea of
variables as long as all the other variables except the
eight input variables are asserting NULL values. The
environment that an input name is formed in must be in
an initial state in which all values of all proximate vari-
ables are NULL to the expression.

What is NULL to one pure value expression might be
quite meaningful to another pure value expression. So
there could be many process expressions resolving quite
independently in a single frothing sea of variables. This
is the form of expression in the cytoplasm of the living
cell. The specificity of interaction of the proteins sup-
ports the intermingled expression of many distinct and
independent processes resolving simultaneously.

1.7 Pure Variable Expression

In the previous examples the differentiation of dis-
tinctions and association relationships that expressed an
orderly process were specified entirely in terms of value
differentiation and association by value transform rules.
The variables themselves were indiscriminately associ-
ated and did not contribute to the differentiation of the
expression. They served simply as the medium of differ-
entiated value assertion adequately available whenever
needed. What is the nature of a process expression that
expresses differentiation of distinctions and association
relationships in terms of variables and variable associa-
tion rules.

A pure variable expression has quite different proper-
ties from a pure value expression. To explore these
differences directly the first example pure variable ex-
pression will be derived directly from the last example
pure value expression of binary addition by replicating
the name formation dependency relationships of the
example pure value expression.

A pure variable expression is expressed in terms of
direct association relationships among the variables.
Each variable is differentiated by its association place in
relation to all other associated variables. These associa-
tion relationships must be constant so a pure variable
expression is a rigid and unchanging structure of associ-
ated variables. What can change within this structure is
the values that the variables assert. Each variable can
assert two or more values so that different value trans-
form names can form within the structure of association
relationships. As the formed names are resolved, the
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result values form new names which are in turn re-
solved. A resolving pure variable expression might be
viewed as values flowing through a structure of vari-
able association relationships while a resolving pure
value expression might be viewed as variables flowing
through a structure of value association relationships.

The essential feature of a pure variable expression is
that a variable can only assert one value at a time so
each variable must be associated with a mutually exclu-
sively asserted value set in the expression. A mutually
exclusive value set is a set of values of which only one
value can be asserted at a time. These value sets are
represented in the value transform rules of the pure
value example (FIG. 4) by the x, y and z suffixes. For
instance SCx means that the asserted value can be either
SCO or SC1 but not both.

This means that there must be at least one variable
assigned to assert each mutually exclusive value set in
the expression. This further means that the value trans-
form rules cannot be presented as they were presented
for the pure value expression where a single interaction
can produce two result values. A pure value interaction
resulting in two result value sets must be expressed as
two pure variable interactions with two variables each
asserting one result value set.

If a variable must assert the result value of an interac-
tion it must also be the locus of that interaction; i.e., the
input name for the interaction must be formed by direct
association relationships between the variable asserting
the result value and the variables asserting the input
values that form the transform rule name. The result
asserting variable itself must recognize the formed input
name and assert the appropriate result value. So each
variable is a locus of value transform interaction. This
means that a value transform rule set as well as the
mutually exclusive result value set must be associated
with each variable.

For instance the transform rule set BxBx[SCy,TBz]
from the pure value expression (FIG. 4) must be broken
into two rule sets and each rule set associated with a
different variable as shown in FIG. 5. For the rule
BxBx[SCy] the two input variables 154 and 156 will be
associated with one variable 161 which can assert SC0
or SC1 and will be identified as SC in the expression
diagram of FIG. 5 and for the rule BxBx[TBz] the two
input variables 154 and 156 will be associated with an-
other variable 160 which can assert TBO or TB1 and
will be identified as TB in FIG. 5.

Now that the value transform rule has been split there
are two variables 160 and 161 that must recognize the
same asserted input name so the variables 154 and 156
asserting the input name must be directly associated to
both result value variables 160 and 161 so the two input
variables BxBx 154 and 156 have to be associated with
both the SCx variable 161 and the TBx variable 160 in
a fanout configuration.

FIG. 4 shows the name formation dependencies of
the pure value expression and FIG. 5 shows the com-
plete example of the preliminary pure variable expres-
sion derived from the pure value expression. Each en-
closed area is a variable. Each variable is labeled with
the value set it can assert such as TB, TC etc. Variable
TD 162 can assert TDO or TD1. Association relation-
ships between the variables are represented by touching
boundaries. The diagram itself expresses the variable
association rules.

The example pure variable expression (FIG. 5) was
fairly straight-forwardly derived but it will not work as
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it is presented. The nature of interaction for the pure
variable expression is quite different from the nature of
interaction for the value expression. The nature of the
variables and values haven’t changed but the nature of
their relationships is different. Discovering why this
expression will not work and what is required to make
it work will serve to introduce the pure variable expres-
sion and to illustrate the differences between the pure
variable expression and the pure value expression.

1.7.1 Continuously Interacting Structure

The variable association rules specify that the associ-
ated variables are interactively proximate permanently
and continuously. In the portion of the example shown
in FIG. 6 the two input Dx variables 164 and 166 are not
associated and cannot see each others asserted values.
The TD variable 168, however, can see both of the
input D values 164, 166 and respond to the input name
formed by the values asserted by the two variables and
assert the result value 168 for the formed name.

After TD recognizes a D,D input name and trans-
forms its own value the association relationships among
the variables do not change. TD 168 is continuously
seeing any input name formed by the two input Ds 164,
168 and it must continuously respond to that formed
input name. TD 168 cannot not assert a value. Nor can
it just assert some nondescript value if it does not recog-
nize a transform name. It must be always recognizing an
input name and asserting a result value. Therefore there
must be a set of value transform rules that span all the
possible input names that can be formed by the input
Ds.

Because a variable is always asserting a result value in
relation to a formed input name, for a result value to be
stably asserted the input name seen by the resolving
variable must be stably maintained. In other words the
input Ds 164, 166 must maintain their asserted values if
TD 168 is to maintain its asserted result value. TD’s 168
agserted result value contributes to an input name for
another variable in the expression and must itself be
stably maintained. This continues through the entire
expression until all the variables of the expression have
interacted and asserted the proper result values. So all
the input values must be stably maintained until the
entire expression is resolved.

These resolution properties are quite different from
those of a pure value expression. An interaction in a
pure value expression occurs only when a value trans-
form name is formed. The input values that formed the
input name disappear and the result values appear mark-
ing a distinct progress event in the resolution of the
expression. These new values are inherently asserted by
their variables until they form new input names and
themselves disappear in a new interaction. The pure
value expression inherently resolves in a progression of
discrete events ending with the assertion of unambigu-
ous result values. The pure variable expression on the
other hand is continuously resolving and asserting re-
sult values and this creates several difficulties with pro-
cess expression.

1.7.2 Name Formation Ambiguity

The problem with the continuous resolution nature of
the variable expression is that the example pure variable
expression exhibits ambiguity of input name formation
and direction of result propagation because of the reuse
of a value set. The portion of the example shown in
FIG. 7 illustrates the difficulty.
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Variables do not posses any inherent directionality of
interaction. There is no input end or output end to a
variable. Variable TD 174 is associated with the input D
variables 170, 172 as well as the result D variable 176.
Clearly there are input D values 170, 172 and result D
values 176 but there is no way for the TD variable 174
to know which variable a D value comes from. The TD
variable 174 can see three D values while its value trans-
form rules only recognize names with 2 D wvalues.
Which two of the three values are to constitute the
input name? What result value should the TD variable
174 assert when there are several simultaneously valid
two value D input names visible to it? The result D
variable 176 is having a backwards influence on the TD
variable 174

The D variables 170, 172, 176 have been referred to as
input and result because that was their role as mapped
from the pure value expression where they were indeed
unambiguous input and result values. Because of the
discrete event nature of the resolution of the pure value
expression the input D values 170, 172 did not get mixed
up with the result D value 176

This ambiguity of name formation is why the example
expression will not work. The result values can get
confused with the input values in name formation and
asserted values can influence interactions backwards in
the expression. This is not an invalid form of expression.
Most physical structures of nature are nondirectional-
ized associations of variables. The particles of atoms,
the atoms of molecules and gravitational systems are
pure variable expressions with continuous interaction
pulsing through their structure in all directions simulta-
neously.

This discussion, however, is concerned with process
expressions that proceed in a more or less orderly man-
ner to a more or less definite resuit. So strict directional-
ity of interaction influence must be imposed on the pure
variable expression.

1.7.3 Need for Value Isolation

The only way to establish directionality within the
defined model for a pure variable expression is to isolate
the input values from the result value with different
value sets. All variables directly associated must assert
different value sets. In the FIG. 8 it can be seen that
variables 1 and 3 , 178, 182 respectively cannot assert
the same value set without confusing variable 2 180.
Only 1 and 4 174 and 184 respectively can assert the
same value set without forming ambiguous input names
for 2 or 3 180 or 182 respectively. So there must be at
least three sets of value transform rules with noninter-
secting value sets to directionalize a variable expression
and variables asserting identical value sets must be at
least three associations apart.

It can be seen in the example, shown in FIG. 5, that
several variables violate this rule. It is obvious that the
result values can get mixed up with the input values
through the variables TB, TC and TD 160, 163 and 162
respectively. The only way to fix this ambiguity is to
isolate the assertions of identical value sets by inserting
extra buffering variables into the expression that assert
different value sets.

This may seem a complex requirement to impose on
an expression but the problem in general is quite simply
solved. By adding enough variables to an expression
and choosing two value sets that the process expression
proper does not use it can be assured that there are
always two variables between each variable asserting a
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process expression proper value and hence the use of
any identical value set by the process expression proper
will always be three variable associations apart. These
two in-between variables with their value sets can be
formed into a standard directional association unit
through which all process expression proper variable
associations are formed. This standard association unit
will be called an interaction locus.

1.8 The Interaction Locus

The interaction locus isolates its input value associa-
tions from its result value associations and establishes
directionality of interaction for pure variable expres-
sions. It doesn’t matter what value sets are used inside
the locus as long as they are different from the value sets
used by the process expression proper.

The example shown in FIG. 9 illustrates the interac-
tion locus. Variables 3, 4 and 5, 190, 192 and 194 respec-
tively are the interaction locus. Variables 3 and 4, 190
and 192 respectively are the isolation variables. Vari-
able 5, 194 is the result variable. Variables 1 and 2, 186
and 188 respectively are input variables to the interac-
tion locus which may be the result variables of other
interaction loci. Variables 1, 2 and 5, 186, 188 and 194
respectively are process expression proper variables
which will assert the value set 0, 1. Variable 3, 190 will
assert the value set X, Y. Variable 4, 192 will assert the
value set S, T. The following value transform rules sets
will be associated with each variable (see Table 10 be-

low).
TABLE 10
Variable Variable Variables
3 4 1,2,5
00[X] X[S}] S[0]
01[Y] Y[T] T[1]
10[Y]
11[X]

Variable 3, 190 only recognizes input names of 0, 1
and asserts result values X, Y. It embodies the value
transform rules for the whole interaction locus. Vari-
able 4, 192 only recognizes input names X, Y, and as-
serts result values S, T. Variables 1, 2, and 5, 186, 188
and 194 respectively only recognize input names S, T
and assert result values 0, 1. An x asserted by variable 3,
190 will result in a 0 asserted by variable 5, 194. A y
asserted by variable 3, 190 will result in a 1 asserted by
variable 5, 194.

The interaction locus establishes directionality of
interaction with a convenient and uniform convention
by isolating the input values from the result values of an
interaction. The process expression proper variables 1, 2
and 5, 186, 188 and 194 respectively all recognize and
assert the same value set but their values never get
mixed up because they are all isolated from each other
by the isolating variables of the interaction locus. The
interaction locus recognizes the value set 0, 1 as input
values and asserts the value set 0, 1 as result values.

Different transform sets can be assigned to variable 3,
190 of the interaction locus to provide interaction loci
with different name transformation functions. Variable
4, 192 is just a buffer variable always associated with
variable 3, 190 and variable 5, 194 is the result assertion
variable always associated with variable 4, 192 so the
three variables can be considered as a single unit of
expression. The expression unit can be identified by the
transform rule set associated with it. A directionalized
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rendering of an interaction locus might look something
like the diagram shown in FIG. 10.

The oval, 196 represents the isolation variables and is
the part of the interaction locus that will receive and
recognize the formed input names. T1, 196 represents
the transform rule set associated with the interaction
locus. R in the circle, 198 represents the result assertion
variable of the interaction locus. The oval, 196 is the
input end and the circle, 198 is the output end. An ex-
pression of associated loci might look like the diagram
shown in FIG. 11. The elements with I are the input
variables asserting the input name to the expression.

A little graphic stylizing will provide a more familiar
look to the expression, as shown in FIG. 12. Each inter-
action locus value transform set can be represented by a
different shape and that shape can explicitly indicate the
direction of interaction. The result variables can be
drawn out into long thin connecting lines. With the
convention of the interaction locus a pure variable ex-
pression can be viewed in the familiar terms of intercon-
nected transform elements or function elements.

The interaction locus establishes directionality of
interaction with a convenient and uniform convention
by isolating the input values from the result values of an
interaction. Real world examples of interaction loci
include the electromagnetic switch, the electronic tube
and the transistor. For the electromagnetic switch the
input current value influences a magnetic field value
which influences the physical position value of the
switch which influences the result current values. Iden-
tical input and result value domains are isolated by two
different value interaction domains just like the interac-
tion locus derived within the model. For the tube, elec-
tron flow in an input wire influences a charge in a vac-
uum which influences the electron flow in the vacuum
which influences the electron flow in the result wire.
The input and result of a transistor is similarly isolated
by different physical interaction domains.

1.8.1 The Interaction Locus as a Bounding Convention

The interaction locus is a bounding convention. It
encapsulates an expression that can be quite arbitrarily
represented itself but which presents a specific conven-
tion of interactive behavior to all other interactive ele-
ments participating in the convention. This bounding
convention establishes the first instance of what might
be called from one viewpoint an imposed expressional
abstraction or from another viewpoint an emergent
expressional facility. In either case it establishes a uni-

formity and regularity that makes the whole considera- »

bly more than the sum of its parts.

If one looks at a pure variable expression variable by
variable as just associated variables the interaction loci
might not be at all evident. There is no guarantee in any
expression that all the interaction loci look the same.
The only requirement is that the boundaries look the
same to each other. Their insides may vary dramati-
cally. In 2 modern computer for example the transistor
circuits that implement a logic gate may vary dramati-
cally between chips made by different manufacturers.
Some interaction loci have magnetic values inside and
some have mechanical values inside some have elec-
tronic values inside. Imagine an expression of a proces-
sor made from chips from different manufacturers ex-
pressed solely in terms of transistors, capacitors and
resistors with no clue as to where the boundaries of
logic value expression were or that logic values had
anything to do with the expression. Without the overlay
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of logic gates on the expression it would be just a huge
network of electronic elements and extremely difficult
to understand.

But the overlay is exactly that. There is nothing in-
trinsically “real” about it. It is just a convention that
must be maintained among consenting expressional ele-
ments. The interaction locus is an imposed regularity
and uniformity that imparts an abstract level of meaning
to the expression that the individual variables can know
nothing about and cannot anticipate the existence of. It
allows an expression of complex meaning the possibility
of which could not be projected from the nature of the
variables and values themselves.

Interaction bounding conventions both directional
and nondirectional arise spontaneously in nature.
Atoms are one form of nondirectional interaction con-
vention establishing uniform interaction boundaries
around already complex associations of variables. Liv-
ing cells exhibit directionality in terms of values. Cer-
tain value molecules are permitted into the cell and
certain value molecules are excreted and asserted by the
cell. Receptor proteins have a distinct input end and
output end and allow molecular information to pass into
the cell without the actual molecules passing into the
cell. Neurons exhibit interaction locus type directional-
ity in that specific places on the cell are input places
(dendrites) and specific places on the cell are result
places (axon) and the result places do not get confused
with the input places.

1.9 Directly Associable Interaction Loci

The example process can now be expressed in terms
of associated interaction loci and rendered entirely in
terms of the value set 0, 1. The following three interac-
tion loci value transform sets, shown in Table 11, will be
defined and will be called ADD, CARRY and DONE.
Ignore for the time being that the DONE transform set
is a nonfunctional tautology.

TABLE 11
ADD CARRY DONE
00[0] 00[0] 00[1]
o1f1] 01[0] o1[1}

10[1] -
11[0]

10[0]
11f1]

10{1]
1

FIG. 13 is a diagram of this expression. The ADD
locus is A. The CARRY locus is C. The DONE locus is
D. The variable type labels are attached to the intercon-
necting result variables in the example to show this
example’s correspondence with the previous examples.
It will be seen that there is a one to one correspondence
between the variables of the preliminary variable ex-
pression example shown in FIG. 5 and the interaction
loci of this example, shown in FIG. 13. What were
directly associated variables in the initial example are
now directly associated interaction loci in the same
association relationships.

The expression of FIG. 13 still is not an autonomous
expression. Names are always formed and interaction
activity is occurring continuously. There are no neces-
sary and discrete interaction events. If several transform
rules in an expression specify the same result value then
it is possible for 2 new input name to form and no
change event at all to occur in the expression. There can
be no guaranteed last event in the resolution of the
expression and the DONE interaction locus, 200 cannot
even begin to do its job. The completion of a resolution
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cannot be determined in terms of the expressions own
resources.

1.10 The Need for a Null Value

The essential problem is that there is no inherent way
for an expressional element to become meaningless
within the context of a pure variable expression. All
variables are constantly associated and all values are
constantly forming valid input names and interacting.
Elements of a pure value expression, on the other hand,
can disappear from the expression and become mean-
ingless by suddenly asserting some NULL value that is
not part of a value transform rule name of the expres-
sion and become meaningless to the expression.

Elements of a pure variable expression cannot just
drop out of the expression. The variables are locked in
a rigid association structure and any value that they
assert is inevitably influential in the expression and the
expression must account for them. Every possible
formed input name must be accounted for by a value
transform rule set. There are no inherently meaningless
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values so a value must be explicitly assigned to be mean-

ingless. This meaninglessness must be explicitly recog-
nized by the value transform rule sets and be integral to
the expression. The value assigned to express meaning-
lessness will be called the NULL value.

The introduction of a NULL value can resolve the
problem of resolution completion. The NULL value
essentially allows each variable to express meaningless-
ness within the structure of associations. The basic strat-
egy for the value transform rules is to specify a NULL
result value if their input name includes a NULL value.
In this manner formed input names can be recognized as
valid or invalid. A valid input name is one with no
NULL values. So although there are always input
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names formed and recognized, an invalid input name -

can suddenly become a valid input name. The variable
recognizing this suddenly valid input name will trans-
form its asserted result value from NULL to a non-
NULL result value providing a distinct resolution
progress event.

The following set of transform rules, shown in Table
12, applied to the example expression will allow the
assertion of the DONE value to be a distinct event in
the resolution.

TABLE 12
ADD CARRY DONE
00[0] 00[0] 00[1]
o1[1] o1[0] o1[1]
10[1] 10[0) 10[1]
11[0] 11[1] 11[1}
anyNULL[NULL] anyNULL[NULL) anyNULL[NULL]

The expression must begin with all asserted values in
the expression being NULL including the input values.
For the pure value expression this requirement was
simply that no values defined in the expression were
asserted in the variable soup. If there were any defined
values initially asserted besides the input name values
the resolution would be confused. The pure variable
expression has the same problem. If any of the variables
in the expression are already asserting nonNULL values
when the input name is applied to the input variables the
resolution will be confused. Therefore all the variables
in the entire expression must be asserting NULL values
when the valid input name values are applied.

It is this initial state of NULL that insures the occur-
rence of progressive interaction events. As each input

45

50

55

65

34

name is recognized by each interaction locus the as-
serted NULL values will change to meaningful non-
NULL values in an orderly progression of value trans-
forms propagating through the expression until all the
result values are valid. The expression must be reinitial-
ized to NULL before another input name resolution can
be started. This can be accomplished by simply present-
ing a NULL input name. The NULL result values will
propagate through the expression just as the valid result
values did. So the NULL convention requires that there
be an alternating cycle of valid input names with NULL
input names.

With the above transform rule sets and with the ex-
pression in an initial NULL state (the input values
NULL and all interaction loci asserting NULL values)
the entire expression will continue to assert NULL
values as long as the input name values remain NULL.
As the input name values become nonNULL the inter-
action loci begin to assert nonNULL result values.
Since all the result values are dependent on the forma-
tion of an input name, the result name will not be com-
pletely nonNULL until the input name is completely
nonNULL. For instance referring to FIG. 13 both input
Ds, 202 and 204 can be nonNULL but if one of the
other input values is NULL then the result D, 210 will
remain NULL awaiting a nonNULL carry value. The
result D, 210 will not become nonNULL until RD, 226
and UD, 208 become nonNULL. D, 210 will be the last
result value to be generated and DONE, 200 relying on
the same input name can assert the completion of the
resolution by becoming nonNULL.

The NULL convention scales up through combina-
tions of interaction loci to endow a large expression of
associated loci with the same behavior as a single locus.
The large expression will only express a completely
valid result name when a completely valid input name is
present. Because no single locus changes its result from
NULL until a valid input is present there are no race
conditions. The result values will propagate through an
expression in an orderly wavefront of valid result values
with no invalid spurious values asserted anywhere in
the expression at any stage of the resolution and finally
a valid result name for the expression is asserted. When
a result value goes nonNULL it is asserting a valid
result of a valid input name.

The assertion of the DONE nonNULL value is now
a distinct completion event but it is still not guaranteed
to be the last resolution event. Because the D result
locus, 210 and the DONE locus, 200 receive their input
names simultaneously there is still a possibility of the
DONE value, 200 being asserted before the nonNULL
D value, 210 is asserted. In the pure value expression
both values were generated simultaneously by a single
interaction but in the variable expression they are as-
serted by different interactions that may resolve at dif-
ferent speeds. The solution to this requires some reorga-
nization of the expression as shown in FIG. 14.

The result of the DONE variable is now directly
dependent on all of the result values of the expression
being nonNULL. The expression can now autono-
mously assert its own completion. With the NULL
convention and the interaction locus convention the
expression of FIG. 14 is finally a pure variable expres-
sion of the example four bit binary addition process that
will work. No new primitive expressional elements
have been postulated. It is still just variables associated
by variable association rules asserting values that form
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input names that interact and transform according to
value transform rules.

2. The Process Expression Landscape

The process expression landscape encompasses ex-
pressions with varying degrees of value differentiation
and variable differentiation. The discussion will begin
with an arbitrarily defined baseline example process
presented as a pure value expression. The discussion
will progress through several forms of process expres-
sions all representing the same example baseline process
in different forms. Finally the ultimate pure variable
form of process expression will be presented.

2.1 The Baseline Example Process

The example process shown in FIG. 15 is six distinc-
tions that can interact in nine possible ways producing
one of nine possible results. A pure value expression is
used as the baseline expression of the process because it
is straightforward and intuitively understandable. The
fifteen distinctions in the process are differentiated with
fifteen unique values. All nine possible interactions
among the six distinctions are specified in terms of value
transform rules.

Tables will be used in this discussion to represent sets
of value transform rules because they are more compact
and convenient to read than the character string repre-
sentations. It should be remembered that the table is not
a single transform rule but just a convenient presenta-
tion of a set of transform rules. The corresponding char-
acter string expressions of the transform rules for the
baseline example are also presented for the baseline
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example to show the correspondence of the two forms -

of presentation. The baseline example process was de-
fined by simply filling in the table with arbitrary values.

All the differentiation in the process is expressed by
unique values. There is no case where the same value
expresses two distinctions. The set of value transform
rules is a complete expression of all the interaction pos-
sibilities among the six input distinctions. The example
pure value representation uses transform rules with
input names two values long and will resolve in a single
interaction step.

2.2 Limited Values

The discussion will begin with the possibility that
there are not enough values to directly represent all the
distinctions of the example process. Suppose for in-
stance that there are only four values available I, J, K
and L to represent the fifteen distinctions of the process.
The expression of the distinctions will have to be en-
coded by using multiple values to represent each dis-
tinction previously represented by a single unique
value. An arbitrary assignment of encodings might be as
shown in FIG. 16.

As a result of the encoding identical values are now
used to represent more than one distinction. For in-
stance the input names IJ, 230 and JI, 232 represent two
different distinctions so the Is and Js of each input name
must be differentiated. This can only be done by differ-
entiating among the variables expressing the values.
This J means something different from that J because it
is expressed by a different variable with a specific asso-
ciation relationship to the variable of the second J. The
encoded input name must be expressed by four differen-
tiated variables. Differentiation lost by limiting value
differentiation must be made up by differentiation of
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variables. So the expression must include an association
structure of interaction loci.

2.3 Input Ambiguity of Interaction Locus

Even though identical values in the input name are
differentiated by different variables when these vari-
ables are associated at an interaction locus the variables
become interactively proximate and loose their differ-
entiation and the identical values lose their differentia-
tion. The interaction locus cannot discriminate that this
value came from the first variable and that value came
from the second variable. Inside the interaction locus
there is a collection of values just like a pure value
representation and some of these are identical values.
For instance if the input name to a locus were 1JJI the
locus can at best only determine that there are two Is
and two Js. The input name could easily have been IIJJ.
At the interaction locus all ordering is lost and only
quantities of values can be discriminated. Therefore an
arbitrary encoded input name cannot be unambiguously
discriminated in a single interaction by a single interac-
tion locus. In fact the only form of encoded input name
that can be unambiguously discriminated by a single
interaction locus is an input name with all values identi-
cal. For the current example the only unambiguously
discriminable input names are IIII, JJJJ, KKKK and
LLLL. There is only one possible input name with four
Is only one with four Js and so on.

2.4 Limited Discrimination Power of the Interaction
Locus

Furthermore an interaction locus can generate only
one value for one result variable. Since the values in the
locus are not differentiated the locus cannot decide that
this value goes to the left result variable and the other
value goes to the right result variable. Any number of
input variables can be mixed into the locus but the inter-
nal mix cannot be unmixed to several result variables.
This in itself further limits the discrimination possible in
an interaction locus. If there are only four possible val-
ues that the result variable can assert then only four
distinct input names can be discriminated by the locus.

An interaction locus with four input variables for the
current example can only discriminate four unambigu-
ous input names and can assert only four result values.
A locus with only two input variables can still unambig-
uously discriminate only four input names; II, JJ, KK
and LL and assert four result values so in general there
is a rapidly diminishing return of expressiveness for
associating more than two input variables to an interac-
tion locus. All of the examples of this discussion will
assume two input interaction loci.

The discrimination power of the interaction locus is
considerably less than the expressivity of its possible
input names. The entire encoded input name clearly
cannot be resolved in a single interaction locus. There
must be a coordinated cooperation of many interaction
loci to express the complete example process with each
locus providing a partial resolution of a small piece of
the input name. It is this progression of partial resolu-
tions that determines the input name formation depen-
dencies among the interaction loci and provides the
structure of the process.

2.5 Preliminary Considerations

Before continuing it will be remembered that for a
variable expression to be autonomous one of the values
must be assigned the NULL meaning. This would leave
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only three of the four values representing process
proper values. Having mentioned the need for the
NULL value the issue will be ignored for the bulk of
this discussion and only reintroduced at the end to es-
tablish the nature of the ultimate pure variable expres-
sion. The following discussion will sound more familiar
in relation to current practice and experience if the
NULL value issue is ignored. Traditional forms of ex-
pression deal only with the expression of process proper
distinctions. Control is introduced as carefully coordi-
nated external expressions such as system clocks, delay
lines and other timed events.

The interaction locus association structure will be
presented as a directed graph. A node is an interaction
locus. The arcs are the result variables of the interaction
locus. A spanning set of transform rules is associated
with each interaction locus that will resolve all its possi-
ble input names.

The expression must be a coordinated progression of
interaction loci. What is the fundamental rationale of
forming such an expression? How are value transform
rules assigned at each locus? How are the input name
formation dependency relationships determined? The
pure value expression was direct and intuitive but the
encoded expression is neither direct nor obvious. It was
easy to specify that A and Z go to 5 but how can it be
specified that IJ and JJ go to LT with the tools at hand?

There is no particular pattern to the example encoded
table, shown in FIG. 16, so the only general way to
approach the expression is to recognize each possible
input name and generate the appropriate result names.
Each input name can be recognized individually and
that recognition expressed by differentiated variables.
The correct set of result values can then be asserted and
these values collected to a single set of result variables.

2.6 Recognizing Input Names

The first stage of resolution is to recognize the input
names. The input name must be recognized two values
at a time with each two value name being recognized by
a single interaction locus. It has already been shown
that a single interaction locus cannot discriminate be-
tween the input names 1J-JI and II-JJ so it must take
multiple loci just to discriminate input names. Can a
single locus discriminate just IJ from all other input
names? The answer is again no because the input name
JI might be a valid input name. The only possibility of
recognizing a name with a single interaction locus is to
transform the expected input name into an unambiguous
standard recognition name with two identical values
and discriminate this standard recognition name.

2.6.1 Rotation Locus

So the first task for an interaction locus is to trans-
form single values. This can be done with appropriate
explicit transform rules at each locus or it can be done
with a more general rotation locus which can be applied
multiple times to get the desired transform. The values
can be put in some circular sequence and the rotation
locus simply states that each value is transformed into
the neighbor in a particular direction. Any value can be
transformed into any other value through the appropri-
ate number of loci. The example rotate locus is shown in
FIG. 17. For example, if the input name is I 238, then
after one rotation the result will be J 240. Further, after
two rotations, the result will be K 242.
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The standard recognition name will be chosen to be
LL. To recognize a specific input name the input values
will be rotated such that the specific input name will be
rotated to LL. If LL is not the result of the rotation then
the input name was not the specific input name to be
recognized.

The above rotate configuration, shown in FIG. 18,
will set up the input name I1J for recognition. If the input
name presented on variables A and B 234, 236 is IJ then
the result of the rotates will be the name LL. If the
result name is not LL then the input name was not IJ.

2.6.2 Equality Locus

The next task for an interaction locus is to discrimi-
nate LL from all other input names.

The set of transform rules shown in FIG. 19 generate
an L 244 for the input name LL and an I for all other
input names. The table shown in FIG. 19 is representing
a control or logical significance and has established the
convention that I means FALSE and that L means
TRUE.

With these two interaction locus transform rule sets
all the input names can be recognized. Each possible
two value input name can be recognized by a single
interaction locus. All possible names for the first two
value places of the input name can be recognized by one
group of interaction loci and all the possible names for
the second two value places of the input name can be
recognized by a second group of interaction loci. Each
two value portion of the input name is individually
recognized by a separate group of interaction loci form-
ing a recognition stage. The input variables are just
routed to each of the input name recognition stages.
One interaction locus from each recognition stage will
recognize an input name and its result value will be L
(TRUE). All the rest of the interaction loci for that
stage will assert I (FALSE) because they did not recog-
nize their name. If the input name was valid there will
be one L asserted from each recognition stage. The
combination of the two Ls from the input recognition
stages can recognize the specific four value input name
presented to the expression.

For the example expression, as shown in FIG. 20, the
input variables are labeled A, B, C and D and the result
variables are labeled X and Y.

FIG. 21 is the input name recognition section for the
example expression. In the example there are nine possi-
ble input names of four values each. Since a single locus
can only recognize two value input names the input
name recognition is broken into two stages in which
input names of two values are recognized and then these
recognitions combined to recognize the nine four value
input names. The recognition itself is represented by
nine differentiated variables. Only one variable at a time
can assert TRUE while the rest must assert FALSE. Of
course they can all be false if the input name matches
none of the recognized input names.

The single assertion of TRUE from one recognition
locus is used to generate the result name associated with
the recognized input name. The next task for an interac-
tion locus is to assert a particular value if enabled by a
TRUE value and to assert a default result value if not
enabled. The transform set shown in FIG. 22 imple-
ments this capability.

2.6.3 Assertion Locus

One input variable of the assertion locus is set con-
stantly to the desired value and the other input is the
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enable variable which will be L or I If it is L then the
constant value will be asserted on the result variable. If
the enable input value is I then the default value of I will
be asserted on the result variable. Choosing I as the
default result value is an arbitrary convention that all
other loci must relate to once it is established. It is gen-
erally convenient to choose the default value to be the
same as the FALSE value.

So all the assertion loci except one will assert I and
the selected one will assert a nondefault value which
may also be I. All these values must then be combined
through a priority network such that any nondefault
value overrides all the default values and is asserted by
the result variable for the whole expression. This prio-
ritized collection of asserted values, as shown in FIG.
23, is the last general duty of an interaction locus.

2.6.4 Priority Locus

At each of these loci either two Is will be presented
or one I and another value. In all cases the other value
will be asserted on the result variable of the locus and
will make its way through a tree of such loci to the
result variable of the whole expression.

FIG. 24 is the entire example expression to assert the
value for the Y result variable 246 including value gen-
eration and prioritized collection. The nine assertion
loci with one input set to a constant generate the Y
result value for the recognized input name. The asserted
value is then directed to the result variable via the tree
of Priority collection loci. The Y result value is shown
because it takes on all four values and makes a better
example than the X result. The X result value is gener-
ated by a similar assertion and priority network driven
in the same way by the same input name recognition
variables from the recognition loci.

The expression of FIG. 24 can be viewed as consist-
ing of two halves. The first half 248 recognizes the input
names. The second half 250 asserts the proper result
value on the result variables. Looked at another way the
expression can be viewed in three parts. There is an
input section 252 that relates directly to the input values
and recognizes pieces of the input name. There is an
internal section 254 strictly in terms of logic values
which combines the partial recognition pieces to recog-
nize the larger input name. Then there is the result
section 256 which asserts the result values based on the
logic values of the internal section.

This initial example provides a convenient context
within which many other issues of process expression
can be discussed.

2.7 Optimization

Referring now more particularly to FIG. 25, this
expression can be optimized in several straightforward
ways. In the input name recognition stage redundant
rotations can be eliminated. If the same rotation is ap-
plied to the same variable more than once the result of
a single rotation stage can be fanned out to accommo-
date the other inputs. For example, input value A 258
may have a single rotation stage 260 whose result is
fanned out to other inputs.

Referring now more particularly to FIG. 26, only J
and K need be explicitly generated for result values. In
the result generation stage the logical control values do
not have to be explicitly asserted from constants be-
cause the logic control variable is already L or I. The L
can just be passed through. Is do not have to be passed
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through at all because I is the default value. If no higher
priority value is selected the result will be 1.

The recognition stages that generate I value results
for the Y variable are still retained to control the result
generation stage for the X result variable. If there were
an II result value the recognition interaction locus for
this input name could be eliminated entirely.

There is one more straightforward optimization that
can be applied to eliminate redundant assertion loci.
The logic values can be collected 261 for each result
value before asserting that result value. This allows the
use of only one assertion locus per result value. This is
shown in the final optimized expression shown in FIG.
27.

There are likely many other clever techniques that
could be developed to achieve other optimizations. For
instance a Karnough-map-like technique might be possi-
ble to determine what minimal set of input names actu-
ally determine the result values. Such a technique might
have shown that the arbitrary encoding left the A vari-
able with a constant value and that the input names
might possibly be discriminated with only three vari-
ables.

2.8 Relation to Binary Logic Representations

Referring now to FIG. 28, the interaction loci used
for this expression can be related directly to the familiar
Boolean logic functions. The rotate locus 262 corre-
sponds to the NOT gate 264. The equality locus corre-
sponds to the AND gate. The priority collect locus 270
corresponds to the OR gate 272. There is no counter-
part of the assertion locus because a binary expression
does not have any intermediate nonlogical values to
assert.

The expression of a binary circuit follows the same
strategy as the four value example expression. It recog-
nizes input names and generates a unique result for each
unique input name. The binary expression however has
some unique advantages over a multivalue expression.
There is complete intersection between its logic values
and its expression proper values. If 0 is chosen as the
default result value then any input name that results in
all Os need not even be recognized. Only input names
that result in a 1 need be recognized. So the basic strat-
egy for binary circuits is to recognize all input names
that result in a 1. If 1 is assigned as the internal TRUE
value the truth of the recognition is the direct result
value. All the truth values from the recognition stages
are collected and that is the result of the expression.
This can be illustrated with the half adder circuit as
shown in FIG. 29.

There are only two input names 01 274 and 10 276
that generate a 1 for the S result variable 278 and only
one input name 280 11 that generates a 1 for the C result
variable 282. These three input names are recognized by
rotating the input names to the standard equality name
(11) and determining equality with an AND gate 284.
The truth value (1) of their recognition is collected
through the OR gate 286 as the result value. If none of
these input names are recognized the FALSE value (0)
of the recognizers will be asserted as the default result
value. The binary logic circuit is constructed with ex-
actly the same expression principles as the four value
example expression.

2.9 Definable Transform Sets

Can the example process be expressed more directly
with four values? Can there for instance be a more
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direct mapping from the input names to the resuit names
without going through the internal logic? It seems a
particularly inefficient use of expressive resources to
have a locus assert only two result values when there
are four possible result values.

This would mean that each recognition locus would
have to discriminate three or four input names instead
of just two input names. Since a single locus can only
discriminate four input names and not all input names
can be recognized by a single locus, one of the result
values must be assigned a meaning of FALSE which
means that the locus doesn’t recognize any name. So
each locus can recognize only three possible input
names. The only input names that a locus can unambig-
uously recognize are the input names with identical
values II, JJ, KK and LL. If I is assigned to be the
FALSE value then any three of the four unambiguous
input names can be discriminated with the result values
J, K and L. These names then are the standard recogni-
tion names for a locus and any input name can be recog-
nized by rotating it to one of these recognition names.

A single locus cannot however recognize three arbi-
trary input names. Only one rotation can be applied to
each of the two input variables of a locus so the three
input names recognized by a single locus must be rota-
tion neighbors. The same rotation must rotate one input
name to JJ the second to KK and the third to LL. For
example the input names 1J, JK and KL can be recog-
nized by a single locus by applying a single rotate to the
first variable. The transform set shown in FIG. 30 will
unambiguously recognize three input names that are
rotation neighbors.

The internal loci are now presented with all possible
combinations of the four values instead of the two logi-
cal values as in the first example. The internal expres-
sion stage is no longer logical. In short the internal loci
are faced with the same name recognition problem that
the input loci are presented with. Now however there
are only two variables in the internal name as opposed
to the four variables of the input name. The same rota-
tion neighbor strategy can be applied to these internal
names so that a single locus can recognize more than
one input name.

The transform rules for each locus can also be custom
defined to assert the desired result value for the recog-
nized input name directly. Assume the following input
name to result value mapping JJ--K, KK—J and
LL—J. The locus shown in FIG. 31 will generate the
appropriate result values directly.

Other rotationally related groups of input names
could be accommodated with similar custom loci.
There must still be several of these stages and their
result values must still be priority collected to the final
result variables.

More advantage can be gained by carefully encoding
input names instead of arbitrarily assigning input names.
The encoding shown in FIG. 32 is chosen to optimize
the expression. In this example rotational neighbors are
assigned to each side of the input. The example further
has the three letters in the locus 287 indicating the set-
tings of the diagonal values in the table. In addition, the
input value encodings 288 are conveniently remapped
to make name recognition easier. _

The reader may have noticed that the variable differ-
entiation resources are not being fully utilized. Since the
AB and CD are differentiated variables they do not
need to be differentiated with unique values and can be
assigned the same encoding input names with no ambi-
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guity. Four variables are not needed to differentiate the
input distinctions. So the input distinctions can be dif-
ferentiated with two variables with three values each.
The encoding can be improved 291 even more and a
whole stage eliminated with the expression shown in
FIG. 33.

For this particular expression the third recognition
locus 289 results in only Is so it can be eliminated along
with one priority locus 290. Apart from that, this is
probably close to the minimal form of expression of the
example process achievable with four values.

Whether an expression is rendered in terms of a few
standard loci or in terms of custom definable loci is 2
matter of choice, possibility and practicality. The fancy
interaction loci discussed here may not be possible in
most practical expression environments. For instance,
in a particular environment, it may only be possible to
detect a threshold presence of a single value.

2.10 More Available Values

What if more values were available? With six values
the input names can be expressed without replication of
values. This eliminates the ambiguity inside the interac-
tion locus that limited input name recognition to input
names of identical value. There no longer need be iden-
tical values presented to an interaction locus. The nine
result distinctions must, however, still be encoded with
two variables. The entire example process with both X
and Y result variables can now be expressed with two
custom defined interaction loci shown in FIG. 34.

If nine values are available the result values need no
longer be encoded in two variables and the entire pro-
cess can be expressed in one custom interaction locus as
shown in FIG. 35.

With fifteen values there is no longer a need for an
interaction locus at all to discriminate input values from
result values or to associate differentiated variables
because variables do not need to be differentiated in the
first place. The discussion has found its way back to the
pure value expression that defined the example process
at the start. Another way of viewing this is that the
whole expression now fits entirely inside a single inter-
action locus as shown in FIG. 36.

2.11 Fewer Available Values

Referring now to FIG. 37, what are the consequences
for the expression if there are fewer values? With three
values available the input distinctions can still be differ-
entiated with one variable of three values and the result
can still be expressed with two variables of three values.
The only difference is that a single interaction locus can
now only recognize two unambiguous input names
instead of three unambiguous input names so some extra
loci might be required in the expression. It should be
noticed that three values are optimal for this process in
that no value expression capacity is wasted. All the
possible names for both input and result are used.

Referring now to FIG. 38, when only two values are
available it becomes necessary to encode the input dis-
tinctions in two variables and the result distinctions in
four variables. Furthermore a locus now can recognize
only one unambiguous input name. In spite of this the
two value expression is simpler in terms of expressional
resources than the four value expression.

The diagram shown in FIG. 39 is a traditional logic
circuit expression of the example process shown in FIG.
38.
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2.12 NUIl Again

Although it was stated at the beginning of this section
that the examples would ignore the NULL value con-
vention the issue itself of expressing meaninglessness
within the expression could not be entirely ignored. In
a traditional logic circuit expression the meaningfulness
and meaninglessness of the values at the input and result
interfaces of the expression are established by an exter-
nal expression; usually the system clock. All values
expressed external to the expression are considered to
be expressing valid meaning on the clock edge.

Inside the logic circuit there is no external authority
and variables have to express their own meaninglessness
to the resolution of the expression themselves. This is
why there was always a value internally assigned the
meanings FALSE and DEFAULT. FALSE means “I
am not meaningful to this resolution”. DEFAULT
means “I may or may not be meaningful to this resolu-
tion depending on whether a nondefault value is as-
serted”.

The NULL value can be added to the existing logic
of any expression with its existing FALSE and DE-
FAULT values without disturbing the established logic
of the expression. For instance the NULL convention
can be added to the binary example by assigning the
transform value sets shown in FIG. 40 to the interaction
loci.

Each locus now asserts a result value only when its
input name is valid. An orderly wavefront of correct
result values propagates through the expression until
the expression is asserting all nonNULL valid result
values. When all the result values are nonNULL the
resolution is complete. There are no races and no spuri-
ous switching while the expression resolves to a valid
result state. Both the standard logic expression and the
NULL convention expression will stabilize to the same
value assertion state. They are both logically identical
but the expression with the NULL value convention
can autonomously express its own completion.

Input and result names can express validity or invalid-
ity providing an autonomous interaction coordination
capability among expressions. External control expres-
sions such as the system clock are no longer required.

2.13 The Ultimate Pure Variable Expression

It is generally accepted that two data values per vari-
able are necessary to represent information and that
Boolean logic is a minimal form of process expression.
With the NULL convention Boolean logic expression
requires three values per variable. With only two values
if one value is assigned to NULL then there is only one
DATA value available. This would seem to be insuffi-
cient resources for general process expression but this is
not the case.

A variable can be assigned to each distinction in a
pure variable expression just as a value was assigned to
each distinction in the example pure value expressions.
Just as each value in the pure value expression was
asserted or not asserted by a variable, each variable in
the pure variable expression is asserted by a data value
(ASSERT) or not asserted by a NULL value.

All of the examples discussed here except for the
Roman numeral example rely on mutually exclusive
distinction assertion sets. This means that only one dis-
tinction from the set can be asserted at a time. This can
be illustrated by the place-value representation of num-
bers. Each place in the number can assert only one of a
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set of two or more possible values. In the pure variable
expression this mutual exclusivity is inherently ex-
pressed and enforced by the nature of the variable. No
matter how many values a variable is capable of assert-
ing it can only assert one value at a time.

This expression of mutual exclusivity is not inherent
in a pure value expression but has to be established and
enforced by convention. The pure value version of the
current example process shown in FIG. 15 assumes that
only one value from the A, B, C set will be asserted and
that only one value from the X, Y, Z set will be asserted.
There is nothing inherent in the expression itself to
prevent all six values being simultaneously asserted at a
place of interaction. Similarly the pure value examples
of binary addition assumed a mutually exclusive asser-
tion convention for the presentation of each binary digit
in the input name. Referring to FIG. 4 For each of the
two input names (numbers) only one of the A0,A1l val-
ues would be asserted, only one of the B0,B1 values and
so on. It will be remembered that if the convention was
observed for the input to these examples the expression
maintained the convention for the assertion of its result
name. Once the convention is established it will be
maintained by the expressions themselves.

A similar convention can be applied to ultimate pure
variable expressions to express mutually exclusive asser-
tion sets among groups of variables. For instance one
variable can be assigned to mean AO and another to
mean Al and the convention established that only one
of the two variables can assert an ASSERT value and
the other must assert a NULL value. Similarly two
more variables can be assigned to mean B0 and Bl in a
mutually exclusive assertion group. A mutually exclu-
sive assertion group of variables can be as large as de-
sired. With mutually exclusive assertion groups of vari-
ables full generality of expression can be achieved with
variables that only assert two values; ASSERT and
NULL.

Since there is only one data value the only valid input
names that can be formed at an interaction locus are
quantities of ASSERT or NULL, all that can be done
by an interaction locus to recognize a formed name is to
count ASSERT values.

The quickest way to grasp the ultimate pure variable
expression is to compare it with the familiar example of
the half adder logic circuit previously shown in FIG.
29. The four variables A, B, C and S of the logic circuit
each with two values express four process proper input
distinctions and four process proper result distinctions.

The diagram shown in FIG. 41 illustrates a2 ultimate
pure variable expression of the half adder process
shown in FIG. 29. The number inside each interaction
locus (e.g. interaction locus 292) indicates how many
ASSERTs are required to set the result variable to
ASSERT. The following value transform rule sets
294,296 are also shown in FIG. 44 and correspond the
AND and OR logic gates. But in general an interaction
locus can have any number of inputs with any threshold
up to the number of inputs. A is ASSERT and N is
NULL.

The four input and four result distinctions expressed
with two variables and two data values in the logic
circuit are now expressed with four variables and one
data value (ASSERT) Only two of the input variables,
one from the A group 298 and one from the B group 300
can be asserted simultaneously. These two assertions
will enable the assertion of only one of the threshold 2
loci. The result of the asserting threshold 2 locus 302



5,355,496

45

will enable the assertlon of the appropriate threshold 1
result loci to assert the correct result name. If the input
convention is observed then the expression will assert
only one variable from the C group 304 and one vari-
able from the S group 292 maintaining the convention
Just like the pure value expressions did. This expression
looks more expensive in terms of expressional resources
than the binary example but it must be remembered that
this expression is expressing its own control while the
Boolean logic circuit is not.

This example ultimate pure variable expression
shown in FIG. 41 is similar to a dual rail encoded
Muller circuit expression. Muller circuits are only con-
sidered in terms of Boolean logic gates the C element
and dual rail encoding. In this context ultimate pure
variable expressions can be considered in terms of what
might be called multi rail encoding and general thresh-
old gates. Even though resolution completion can be
determined from the result assertions of 2a NULL con-
vention expression the means of the actual determina-
tion which would be the counterpart of the C element
has not been discussed here.

FIG. 42 shows the ultimate pure variable expression
of the baseline process.

The values from the pure value expressxon are over-
laid on the pure variable expression to illustrate the
correspondence between the two expressions. Only one
variable from A, B, C and one variable from X, Y, Z
will be asserted simultaneously. Given the input con-
vention this expression will assert only one of its result
variables maintaining the presentation convention.

The essence of any process is the possible interaction
relationships among the existential distinctions. The
measure of a process is the particular configuration of
possible interactions among a specific quantity of dis-
tinctions. The pure value and ultimate pure variable
expressions express the same process in very different
ways but there is still a direct correspondence between
the two. There are nine transform rules in the pure
value expression and there are nine associated interac-
tion loci in the ultimate pure variable expression. Both
expressions directly express six input distinctions with
nine interaction possibilities producing nine possible
result distinctions. The transform rules and the associ-
ated interaction loci express the same interaction rela-
tlonshlps among fifteen distinctions. These two expres-
sion both express the same process.

2.14 Summary

The discussion began with the suggestion that the
mathematical theory of computability is not an appro-
priate conceptual foundation for computer science.
That while mathematicians are primarily interested in
the behavior of processes independent of how they
might be expressed, computer scientists are primarily
interested in how processes might be expressed inde-
pendent of what process is being expressed. It was
shown that the notion of the algorithm, while providing
an adequate definitional model for considerations of
mathematical computability, was a particularly poor
model of process expression. What computer science
needed was a comprehensive and unifying theory of
process expression.

A view of process was presented which character-
ized process as the occurrence of interactions among
interacting distinctions from among a set of possible
interactions among those distinctions resulting in a new
set of distinctions and a new set of possible interactions.
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Which interaction occurs depends on the formation of a
combination of distinctions. Process expression inher-
ently has two aspects, the possibility expression which
determines the possible interactions and the actuality
expression which determines, by the formation of a
combination of distinctions, which interaction will actu-
ally occur.

The invocation model of process expression was in-
troduced as a formal conceptual accounting for this
view of general process expression. It consists of vari-
ables, values, variable association rules and value trans-
form rules. The variables asserting values express the
distinctions of the process. The rules serve to differenti-
ate and interactively associate these distinctions. Vari-
able association rules specify which variables are dis-
tinct and interactively proximate and hence interacta-
ble. Value association rules specify which values are
distinct and interactively proximate and also what result
values will be asserted as a result of each interaction.

Composite process expression is achieved as a depen-
dent progression of interactions. The dependency rela-
tionships of a progression of interactions is expressed as
name formation relationships between result distinc-
tions and input combinations of distinctions where a
name is the combination of values asserted by associated
variables.

These name formation dependency relationships can
be expressed two ways within the model. They can be
expressed as correspondence between result values and
name values of value transform rules or they can be
expressed as association relationships among variables
by variable association rules. This means that there are
two distinct but inextricable realms of expression within
the invocation model; the pure value expression form
and the pure variable expression form. It is the relation-
ship between these two realms of expression that relate
many forms of expression that appeared to be quite
distinct or only vaguely related. Of these two realms
one seems to be more fundamental than the other.

In a pure value expression differentiation and associa-
tion of meaning within the expression is almost entirely
in terms values and value transform rules. Variables are
not explicitly differentiated and consequently cannot be
explicitly associated. They are either all constantly asso-
ciated or are indiscriminately associating. Interactions
occur as variables associate and form interactable
names.

A value expression can stand alone as an independent
autonomous expression on the basis of the primitive
definitions of the model. An interaction in a value ex-
pression is a distinct resolution progress event. The
input values disappear and the result values appear. An
interaction is inherently directional because the result
values cannot be confused with the input values. Result
values are independently maintained by their asserting
variables from interaction to interaction. An expression
resolves in an orderly progression of interactions and
unambiguously expresses its own completion by the
existence of the ultimate result values.

In a pure variable expression differentiation and asso-
ciation of meaning within the expression is almost en-
tirely in terms variables and variable association rules.
The values are all continuously interactively proximate
so all the associated variables are continuously interact-
ing.

The pure variable expression form requires a liberal
dose of convention for it to achieve autonomous expres-
sion with the same expressional qualities that are inher-
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ent for the pure value expression form. It required the
NULL value convention to provide distinct interaction
events. It required the interaction locus bounding con-
vention to avoid input name formation ambiguity and
establish directionality of resolution progress. Since
these conventions could all be characterized in terms of
the primitive elements of the invocation model, no new
primitives needed to be introduced.

These conventions are mirrored in nature. The first
stages of variable association in nature form nondirec-
tional interaction boundaries and ‘result primarily in
new realms of value expression. Particles associate to
create the ninety two values of the natural elements.
The elements associate to create multitudes of molecu-
lar values. It is not until a great deal of complexity is
involved that directionalized interaction boundaries are
formed and that interaction loci in the form of certain
proteins and living cells emerge. These loci are then
combined in variable association structures to express
very complex expressions of very specifically functional
processes.

The process expression landscape which included
expressions with varying degrees of value differentia-
tion and variable differentiation was explored through a
single example process. It was discovered that the dis-
crimination power of an interaction locus could be con-
siderably less than the expressivity of its input name and
also that the input names to be resolved could be far
larger than the input name of any single interaction
locus. Consequently the coordinated cooperation of
many interaction loci, each performing a small piece of
resolution, was required in a dependent progression of
partial resolution results to express the resolution of a
larger input name. This progression of partial resolution
results provides the rationale for the name formation
dependency relationships among interaction loci which
determines the structure of the expression.

The structure of name formation dependencies de-
pends on the expressional resources available and the
constraints imposed on the expression. The first exam-
ple was limited to four values and to four transform rule
sets for the interaction loci. This required a large net-
work of name formation dependencies among lots of
interaction loci. As the constraint on the number of
transform rule sets was relaxed and transform sets were
allowed to be custom defined there was less variable
association structure with fewer interaction loci but
there was more value association structure inside the
interaction loci. As more values were allowed fewer
interaction loci were needed until with enough values
the name formation dependency relationship structure
was a structure of purely value association relationships
and no interaction locus was required at all. As fewer
values were allowed the name formation dependency
relationship structure became a structure of purely vari-
able association relationships.

If one considers altitude to be a measure of expression
cost then the process expression landscape might be
viewed as a mountainous island where the mountain
range has peaks of inefficiency and valleys of optimality
with the lowest cost expressions being found on either
side of the mountain range at the shores of pure value
and ultimate pure variable expression. Expressional
advantages accrue when the expressional resources best
match the process to be expressed. For the example
process the resources phased up with the process at one,
three, six, nine and fifteen data values. At three values
all distinctions were expressed and all formable names
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were used. With four values many formable names were
not used so the expressivity of the available values was
not fully used. At six values the input names could be
uniquely expressed so the discrimination inefficiency of
the interaction locus was reduced. At nine values both
input and result could be uniquely expressed with single
value names making the input name discrimination
much easier. A different process would exhibit different
phasing relationships.

At fifteen values all distinctions of the process were
uniquely expressed with a distinct value and the expres-
sion became a pure value expression. At one data value
all the distinctions of the process were uniquely ex-
pressed with a distinct variable and the expression be-
came an ultimate pure variable expression. The pure
value and ultimate pure variable expressions were the
simplest expressions in that they required the fewest
primitive expressional components. Furthermore, both
expressions required the same number of components
and both had identical name formation dependency
structures.

The example expressions in the landscape discussion
used the same strategy of expression to resolve an input
name. Each possible input name was individually recog-
nized and that recognition directly generated the result
value(s) for that input name. An expression can map any
arbitrary set of input names to any desired set of result
name. Such expressions correspond to combinational
logic circuits. Expressions corresponding to sequential
logic circuits are just a feedback association away. The
artificial digital computer is clearly expressible within
the model.

All forms of process expression are related by the
necessity to differentiate distinct elements and express
changes of those distinct elements through interactive
associations of those elements. All processes resolve in
a dependent progression of actual interactions within a
context of possible interactions. The activity of the
living cell is not fundamentally different from the activ-
ity of an artificial computer. Humans do it in much the
same way that nature does it. Process expression far
from being an artificial undertaking that can be arbitrar-
ily adjusted to fit any desired conceptual model is found
to have inherent limitations and necessary relationships
much like the hard physical sciences. It is all just vari-
ables and values interacting according to value trans-
form rules and variable association rules.

The invocation model of process expression provides
a conceptual foundation for considering process expres-
sion of both natural and artificial processes and unifies
seemingly disparate forms of process expression. The
invocation model provides a conceptual foundation
which can encompass and illuminate the central ques-
tions of computer science.

3 Generally Configurable Process Expression

This section of this detailed description discusses the
possibilities of generally configurable process expres-
sion. A generally configurable process is an already
expressed process that can be configured to express any
other arbitrary process. The processes discussed in the
previous section were expressed as directly associated
networks of interaction loci and will be referred to as
directly associated processes (DAPs). The discussion
will initially focus on the expression of any arbitrary
DAP by a generally configurable process expression.
Expressing more complex processes than DAPs with a
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generally configurable process will be considered at the
end of this section.

To begin with, general configurability requires ex-
pressional capabilities that a DAP cannot fulfill. Once a
DAP is expressed it cannot reconfigure itself to express
a different process. DAPs can resolve very large names
but each DAP can only resolve a specific set of possible
names. The resolution of a different set of possible
names would require a differently structured DAP.
Conditionality can be added to the DAP to accommo-
date other configurations but to accommodate all possi-
ble configurations leads to intractable combinational
explosion. So, a generally configurable process must be
expressive in ways that a DAP cannot accommodate.

The first requirement for general configurability is
cyclic iteration. There cannot be an arbitrarily sufficient
supply of interaction loci to accommodate any arbitrary
DAP and even if enough loci were available they could
not accommodate all possible association relationships.
So, an arbitrary DAP cannot be completely configured
by any already expressed process. Only part of an arbi-
trary DAP can be configured by an already expressed
process. Therefore, the expression and resolution of the
arbitrary DAP must occur a piece at a time within the
already expressed generally configurable process.

This is directly analogous to the situation of interac-
tion loci with limited input name resolution capabilities.
Larger input names have to be resolved in a dependent
progression of interaction loci that resolve the input
name a piece at a time. A generally configurable process
must be inherently limited in its immediate expressibil-
ity, so it must express an arbitrary process as a sequence
of pieces of expression. It must cycle through several
configurations each of which contributes a partial reso-
lution and the combination of which accumulates to a
resolution of the complete arbitrary process.

A piece of expression might be larger or smaller de-
pending on the capabilities of the generally configurable
process. The size of the pieces is not important, but
what matters is that each configuration cycle is a single
configuration piece of the arbitrary process. The gener-
ally configurable process can only do one configuration
at a time. For the current discussion, considering the
expression of any arbitrary DAP the pieces of configu-
ration will be individual interaction loci.

The next requirement is the independent maintenance
of values within the generally configurable process.
There must be name formation dependency relation-
ships among these pieces of configuration and hence
association relationships among them. The input name
for each interaction locus is formed from the results of
two or more other interaction loci. If interaction loci
that are configured to resolve one piece of the arbitrary
DAP must be reconfigured to resolve another piece of
the arbitrary DAP, then the loci cannot themselves
maintain their result values to form the input names of
other pieces that might be configured many cycles in
the future. The result values to form any particular
input name will be generated at different times and
possibly by the same interaction locus. These result
values that form input names for future configurations
must be maintained through arbitrary time periods in
the generally configurable process separately from the
interaction loci that generated them. Name formation
dependency association relationships among interaction
loci of the arbitrary DAP can no longer be expressed by
direct connections among loci.
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If there is a separate means of maintaining result val-
ues apart from the interaction loci that are configured to
resolve input names, it follows that there must be a
means of associating these separately maintained values
to the proper interaction locus to be resolved and a
means of associating the result of the interaction locus
to the means of value maintenance. In fact, this configu-
rability of association relationships is the essence of
general configurability.

Each interaction of the arbitrary DAP must be indi-
vidually configured within the generally configurable
process. Each interaction requires the association of a
validly formed input name to an interaction locus and
the association of the result to the independent means of
independently maintaining that result within the gener-
ally configurable process. There must be a means of
specifying which maintained values are presented as the
input name to which interaction locus and of specifying
how the result of the interaction is maintained. There
must also be a means of determining when an input
name is validly formed by maintained result values.

The essence of a DAP expression is the input name
formation dependency relationships among result val-
ues and input name values and how these formed names
are resolved. The same process can be expressed by any
means that specifies the input name formation depen-
dencies and resolves with the correct progression of
input name formations and resolutions.

There are many means of expressing these relation-
ships. A DAP expresses the relationships by direct asso-
ciation between result values and their dependent input
name values of interaction loci. A pure value expression
expresses the dependency relationships as value corre-
spondences among unique result values and uniquely
named value transform rules. A generally configurable
process must be able to express any configuration of
name formation dependency relationships among name
resolution elements (interaction loci) and to resolve the
configured process with the correct progression of
input name formations and resolutions.

The expression of the arbitrary DAP must be a speci-
fication of the sequence of configurations for the gener-
ally configurable process. This specification cannot be
an inherent part of the generally configurable process so
it must be supplied externally to the generally configu-
rable process.

A generally configurable process capable of express-
ing any arbitrary DAP must posses at least one of each
type of interaction locus, a means of independently
maintaining values and a means of configuring sequen-
ces of association relationships between the maintained
values and the interaction loci in relation to externally
presented specifications. The overall structure of a gen-
erally configurable process expression must look some-
thing like FIG. 43.

Several new conventions of expression are required
to express the generally configurable process. There
must be the means of independently maintaining values
306 over indefinite periods. There must be the means of
associating any maintained value 308 with any interac-
tion locus 312,314, 316 and means of associating the
result 310 with any value maintenance means 306. The
entire expression 320 must autonomously and continu-
ously cycle through association configurations in rela-
tion to the configuration specifications 318. The first
new convention to be defined will be 2 memory element
which will provide the means to independently main-
tain values in the generally configurable process.



5,355,496

s1

3.1 The Memory Element

The first necessity is to establish islands of indepen-
dent and stable value assertion within the larger expres-
sion. Process expression as discussed so far in the form
of a DAP has no capability to stably assert a value
independently of other expression elements. A DAP is
continuously responding to its input and its asserted
result cannot remain stable unless its presented input
remains stable.

As long as an expression locality is completely depen-
dent on external influences, it cannot be independently
assertive. The expression locality must be at least par-
tially dependent on internal influences asserted by the
locality itself. This can be achieved by associating a
result variable to an input variable forming a continuous
association loop around a specific locality of expression
which interacting with itself will form a local interac-
tion domain that can sustain an asserted result indepen-
dently of expressions external to that local domain of
interaction that are providing the rest of the input name.
The value transform rule set for the locality can be
arranged such that sometimes external influence is ef-
fective and sometimes it is not. It will be remembered
that the DAP was defined to be strictly directional and
to not have any circular association relationships. The
circular association relationship reintroduces a form of
expression that was carefully eliminated by the interac-
tion locus. But, this time the circular association rela-
tionship is specifically structured through directional-
ized elements.

In this section the value transform rule sets will be
presented in the table format like the one shown in FIG.
44 because many rule sets will have several input values
and several result values. In this example, three vari-
ables A, B and O can assert three values X, Y and N
(NULL).

In this example, there are two input variables 322,324
and one result variable 326. The result variable 326 is
associated with the input variable B 324 while the input
variable A 322 can be associated with any other variable
in the larger expression. If input variable A 322 is
NULL, the result variable O 326 stably maintains an
asserted X or Y value. When input variable A 322 be-
comes nonNULL the result variable O 326 is set to the
value asserted by input variable A 322. The value as-
serted by result variable O 326 propagates to input
variable B 324 and O’s 326 value assertion is locked by
the interaction loop between input variable B and result
variable O 326. When input variable A 322 becomes
NULL the last asserted value is independently main-
tained and stably asserted by this interaction loop.
There is a time latency associated with the memory
element. The value asserted by input variable A 322
must be maintained long enough for the result to propa-
gate through the input variable B 324. This may or may
not be significant depending on the configuration of the
larger expression.

The memory element expression convention provides
an island of independent stable value assertion. As many
memory elements as desired can be grouped together
within a larger expression to provide for the stable
maintenance of as many values as desired.

The responsibility of the group of memory elements
is to independently maintain the assertion of result val-
ues until they are used to present formed input names to
an interaction locus. Every result is destined to be part
of an input name and it cannot be predetermined which
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memory elements are to be associated with which inter-
action locus for all possible arbitrary DAPs. So the
asserted results of all memory elements must be associa-
ble with the input of each interaction locus. By the same
token the asserted results of all interaction loci must
associable with the input of all the memory elements.
There must be a general associability of the interaction
loci’s asserted results to memory element inputs and of
the memory element’s asserted values to the interaction
loci’s input.

3.2 The Selector Element

The selective association between the memory ele-
ments and the interaction loci will be accommodated by
two expression conventions. The first is a selector ele-
ment which selects one of two input values to pass on as
its result value. The second is a distributor element
which determines which of several destinations a result
value will go to.

The input name of the selector element is formed by
three variables. Two variables carry the candidate val-
ues to pass on and the third carries the value that deter-
mines which variable’s value is passed on as the result
value. In the diagram shown in FIG. 45, the S input
variable 332 carries the selecting value and the A and B
input variables 328,330 carry the candidate input values
to be asserted by the result variable O 334.

The input name to the selector element is VALID
when S input variable 332 is nonNULL and the selected
input variable 328 or 330 is nonNULL. The result vari-
able 0 334 will assert the value asserted by the selected
input variable 328 or 330. Otherwise, the input name is
not VALID and the result variable O 334 will assert
NULL. It does not matter what value the unselected
variable is asserting.

Although the transform definition treats the input as
a three value name to be resolved like any other DAP
input name, the meta view of the input name in terms of
the convention being established must view the name as
composed of three separate parts. Two parts (input
variables A and B 328, 330) are values that contribute
directly to the result. The third part (input variable S
332) does not contribute directly to the result value 334
but specifies which value of the other two variables
328,330 will form the result value 334. Input variables A
and B 328,330 are asserted from two different places in
the expression. Since input variable S 332 is determining
which value plays through as the result value it is speci-
fying which place input variables A or B 328,330 in the
expression is associated with the place of the result
variable O 334. The value selecting A. asserted on the
input variable S 332 is the name of the place of assertion
of the input variable A 328 in the expression. Similarly,
the value selecting B asserted by input variable S 332 is
the name of the place of assertion of input variable B
330 in the expression. So, the value asserted by input
variable S 332 is the name of a place in the expression.
The input variable S 332 specifies the association of one
place A 328 or another place B 330 with the place of the
result variable 0 334 in the context of the expression.
Input variable S 332 will be called a place name vari-
able. Input variables A and B 328,330 will be called data
name variables.

Composite input names with multiple parts with dif-
ferent significances will be a common feature of con-
ventions defined in the following text. The input name
of the selector element consists of a place name 332 and
two data names 328,330 as shown in FIG. 46.
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Selector elements can be cascaded to accommodate
arbitrarily large choice sets and they can be ganged to
accommodate arbitrarily long data names as shown in
FIG. 47.

In the cascaded tree of selector elements the place
name that chooses among the many data names is itself
a multiple value name. It is formed of the same values
and is no different from the data names in any respect
except for its role and its place in the expression. A
place name can be manipulated, stored and transformed
just like any data name.

Each input data name A, B, C and D 336,338,340 and
342 respectively comes from a different place in the
expression and that place in the expression now has a
name with which it can be referred to. Presenting a
particular combination of values for the place name 344
can mean “assert at place O the asserted result from the
A place in the expression.” This ability to refer to places
in the expression by names expressed just like data
names is a property that emerges through the conven-
tion of the selector and distributor element expressions
and is the seed of the possibility of symbolic process
expression.

3.3 The Distributor Element

Referring now more particularly to FIG. 48, while
the selector element expresses fan in association rela-
tionships that determine what place a result value will
come from, the distributor element expresses fan out
association relationships that determine what place a
result value will go to. A single result value can be
associated to many places in the expression through
many distribute elements but only one of the distribute
elements will be presented with a fully valid input name
and pass its input value on as a VALID result value.

The input name of the distributor element is formed
by two variables. One variable is the data name 346 and
the other is the place name 348 which determines
whether the data name 346 will be passed on as the
result value 350.

The result of the distributor elements is NULL if any
input value is NULL. When a nonNULL value is pres-
ented on variable A 346 and a nonNULL value is pres-
ented on the variable D 338 the value of variable A 346
will be asserted as the result value 350. The input cannot
be fully valid unless the D variable 348 is VALID. If the
A variable 346 is presented to several distribute ele-
ments but only one of the elements has 2 nonNULL D
value 348 then only that distributor element will pass
the value asserted by the A variable 346 on to whatever
place in the expression the result variable 0 350 is di-
rectly associated with. The other distributor elements
will assert NULL result values to the places their result
variable is associated with.

Distributor elements can be grouped to accommodate
arbitrarily large choice sets and they can be ganged to
accommodate arbitrarily long data names as shown in
FIG. 49.

The value of the A variable 352 will be passed on
only by the distributor elements that are presented with
a VALID D variable value. Each place within the
expression associated with the result of a distributor
element has a name 354 with which it can be referenced.
The place name 354 can mean “deliver the result from
place A to the D3 place in the expression”.

A selector element and a distributor element together
can associate any two places in an expression and can
move a data value from anywhere in an expression to
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anywhere else in an expression. The movement of the
data value is controlled by the place names 354 pres-
ented to the selector and distributor elements. The gen-
eral associability of memory elements with interaction
loci is now possible.

3.4 Memory-Interaction Locus Association

Referring now to FIG. 50, the memory elements
356,357, and 358 and the interaction loci 359,360 can be
associated through selector elements 361,362, and 363
and distribute elements 364,365 and 366. The selector
361, 362, 363 and distributor 364,365,366 elements allow
each memory element 356,357,358 and each interaction
locus 359,360 to be accessed by name. Assuming that
the input name of each interaction locus 359,360 is two
values long a set of four place names will completely
specify which two memory elements 356,357,358 sup-
ply the two values of the input name, which interaction
locus 359,360 resolves the input name and in which
memory element 356,357,358 the result value is stored.
Each interaction of an arbitrary process can be specified
by a different set of four place names.

Assume for the time being that by some means the
four place names are presented for a time. Then they
become NULL for a time then four new place names
are presented and this cycle just somehow continues.
Assume also that the input name to be resolved is pre-
stored in the memory.

The two input variable place names select two as-
serted values from three memory elements 356,357,358
via two select elements 361,362. The selected values are
subsequently presented to two distribute elements
365,366. The interaction locus place name directs the
distribute elements 365, 366 to present the formed input
name to one of the interaction loci 359,360. The interac-
tion locus (e.g.359) resolves the input name and asserts
a result value. The asserted result value is selected by a
select element 363 also by means of the interaction locus
place name. The result place name then directs the
result through a distribute element 364 to the input of a
single memory element (e.g. 356). This element stores
the presented value and one interaction cycle is com-
pleted.

The expression begins with all values NULL except
the values independently asserted by the memory ele-
ments 356,357,358 . As soon as the place names of the
input variables are nonNULL the input names to the
two select elements 361,362 become VALID because
the memory elements 356,357,358 are always asserting
nonNULL values. As soon as the results of the select
elements 361,362 are nonNULL and the interaction
locus place name is nonNULL then the input name to
two of the distribute elements 365,366 becomes VALID
and their result values become VALID. This presents a
VALID input name to one of the interaction loci
(e.2.359) which proceeds to resolve it . The result of the
named interaction locus (e.g. 359) becomes nonNULL
and the input name to the select element 363 becomes
VALID. The result of the select element 363 becomes
nonNULL and when the result variable place name is
nonNULL the input to the distribute element 364 be-
comes VALID. The result of the distribute element 364
becomes nonNULL and a nonNULL value is presented
to the input of one memory element (e.g. 356) and the
memory element (e.g. , 356) stores the value.

The four place names become NULL and the NULL
values propagate throughout the expression. Every
asserted value in the expression becomes NULL except-
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the values being independently asserted by the memory
elements 356,357,358. The result value recently asserted
to one memory element (e.g. 356) becomes NULL and
all of the input values to the memory elements
356,357,358 are NULL. Then four new place names can
be presented to the expression and a new cycle of valid
names begin flowing through the expression to resolve
the next interaction.

How this cycling place name presentation might be
expressed is the next convention to be defined.

3.5 The Boundary Element

A single directly associated NULL convention ex-
pression can only resolve one input name at a time and
that input name must be stably maintained on the input
variables of the expression until it is fully resolved and
the expression is asserting a VALID result value. This
result value must be stably asserted until it has fulfilled
its duties of forming other input names in the larger
expression. When the result value need no longer be
asserted by the expression itself the input name of the
expression can become NULL which will propagate
NULL value through the expression and eventually set
the asserted result value to NULL. At this point, 2 new
input name can be presented to the expression for reso-
lution.

The presentation of a sequence of input names to one
expression by one or more other expressions must be
sensitive to the NULL-VALID state of all involved
expressions. This requires a new convention of expres-
sion residing between the expressions which can resolve
questions concerning the state of the several sequen-
tially interacting expressions and mediate the transfer of
names between the expressions.

The essential interexpression event is the formation of
a VALID input name. The essential concerns of a name
resolving expression are when is a VALID input name
presented and when is the resolution of a name com-
pleted. An expression can determine through its value
transform rule set when an input name is valid but it
cannot determine when a resolution is completed be-
cause that depends on when the expressions using its
result value as part of their input name no longer need
it to be asserted. A resolution is completed when the
result value asserted by the expression has effectively
contributed to all of its associated input names. There
must be an agent associated with each name resolving
expression that can answer these concerns for each
expression and mediate the formation and resolution of
input names among the name resolving expressions.
Because the essential interexpression event is the forma-
tion of input names this agent is most conveniently
viewed as a boundary element associated with the input
of each name resolving expression. This boundary ele-
ment will isolate and bound the expression and mediate
all of its name commerce with other expressions. All
expressions that exchange sequences of names with
each other must interact through the services of a
boundary element.

The boundary element must collect the input name,
determine when it is VALID, store the input name and
stably present it to the resolving expression, determine
when resolution is complete, present a NULL input
name to the resolving expression to reset the entire
expression to NULL, recognize when the complete
expression is reset and then collect a new input name.
All of this can be achieved with a bit of memory, the
ability to recognize completely NULL and completely
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nonNULL input names and a familiar two variable
handshake protocol between boundary elements.

The memory is necessary to store the input name so
that it can be stably presented to the resolving expres-
sion independently of the expressions that asserted the
pieces of the input name. A presenting expression need
only assert its result value until the input name is stored
into the boundary element memory.

A completely VALID input name and a completely
NULL input name are the two discrete boundaries of
interexpression name transfer. A completely VALID
input name means that an input name is formed and can
be resolved. A completely NULL input name must
occur before another input name can begin forming.

The two variable handshake protocol communicates
between boundary elements these two interexpression
states of input names. The unique aspect of the NULL
convention boundary element is that the data name
itself is one of the handshake variables with its logical
states being completely NULL and completely non-
NULL. The data name itself is the communication from
the presenter to the receiver. A single acknowledge
variable communicates from the receiver to the pre-
senter. The following conversation, shown in Table 13,
summarizes the exchange. The presenter is in bold text
and the receiver is in plain text.

TABLE 13

I am presenting a name to you.

( valid result name presented to boundary
element)

I have received your name

(assert acknowledge when complete input name is
VALID)

I understand you have the name

( NULL result name presented to boundary
element)

Thank you for the name

(unassert acknowledge when complete input name is
NULL)

Referring now to FIG. 51, a boundary element 368
must consist of a memory element 370, a NULL-
VALID detection element 372,374 and a protocol reso-
lution element 376. A boundary element 368 operates
via a cooperative interplay of these three expression
elements.

The memory element 370 will accept and store any
input name presented to it when the variable EN (En-
able Name) is VALID (V) and stably assert the stored
name. When EN is NULL (N) the externally presented
input name is ignored by the memory 370. The last
stored name is stably asserted until DN (Disable Name)
is VALID which forces the asserted name to NULL.
NULL is asserted until a new input name is accepted by
EN becoming VALID. The name asserted by the mem-
ory cycles between all NULL and all VALID.

3.5.1 The NULL-VALID Detection Element

The NULL-VALID detection element 372,374 must
establish the transitions between completely VALID
names and completely NULL names for both presented
input names and names asserted by the memory 370.
When the entire presented input name is VALID the
variable PNV (Presented Name VALID) will become
VALID. When the presented input name is completely
NULL PNV will become NULL. PNV must not
change its value when the presented input name is part
VALID and part NULL. When the asserted input name
is VALID the variable ANV (Asserted Name VALID)



5,355,496

57
will become VALID. When the asserted input name is
completely NULL ANV will become NULL. ANV
also must not change its value when the asserted input
name is part VALID and part NULL.

This transition between completely NULL and com-
pletely VALID input names can be monitored with the
expression element 378 shown in FIG. 52. The result
variable 380 is associated to the input 384 to represent
the current state of the determination.

Assuming an all NULL starting name the result vari-
able O 380 is NULL. Result variable O 380 will not
change to VALID until both input variables I1 and 12
382,384 are VALID. Once result variable O 380 is
VALID it will not change back to NULL until both
input variables I1 and 12 382,384 are NULL. So the
result variable O 380 will indicate when the input names
I1 and I2 have changed from all NULL to all VALID
or from all VALID to all NULL.

These expression elements can be cascaded to accom-
modate any size input name as shown in FIG. 53.

If the result variable O 386 of the expression is NULL
it will not switch to VALID until all 8 input variables
388 through 395 are nonNULL. IF 1 input variable (e. g
388) is NULL the result of its element 396 will remain
NULL and the next element 398 in the network will
remain NULL and so forth. The result variable O 386
will not change from NULL to VALID until all as-
serted values in the network are nonNULL which
means that all of the input variables 388 through 395
must be asserting nonNULL values. Similarly, the re-
sult variable O 386 will not change from VALID to
NULL until all asserted values in the network are
NULL which means that all of the input values must be
NULL. The NULL-VALID detect expression element
insures that names presented to the boundary elements
and asserted by the boundary elements are changing
between completely VALID and completely NULL
and can be used to assert the values for the variables
PNV and ANV.

3.6 The Protocol Element

The protocol expression element controls the mem-
ory and manages the handshake conversation between
the boundary elements. This protocol conversation will
be discussed in terms of the presenting, current and next
boundary elements. The presenting boundary element is
the previous boundary element presenting an input
name to the current boundary element. The next bound-
ary element is the succeeding boundary element that the
current boundary element asserts its result name to.
This discussion will ignore the fact that there is a name
resolving expression between the boundary elements.

The protocol element’s input variables (see FIG. 54)
are PNV, ANV, EN and NA. The input names that
these variables form to the protocol element will be
called state names. PNV, ANV and EN are asserted
internally to the boundary elements 400,402, and 404.
NA (Next Acknowledge) is the acknowledge variable
from the next boundary element (e.g. 404) receiving the
asserted result name of the current boundary element
(e.g. 402). The boundary element’s result variables are
EN, DN and OA. OA (Own Acknowledge) is the ac-
knowledge variable from the current boundary element
(e.g. 407) to the presenting boundary element (e.g. 400)
that is asserting the presented input name to the current
boundary element (e.g. 402). OA of the current bound-
ary element (e.g. 402) is NA for the presenting bound-
ary element (e.g. 400). The associated boundary ele-
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ments with dependent result variables associated be-
tween each other constitute a sort of distributed state
machine. Each boundary element (e.g. 400,402 and 404)
is cycling through a distinct state name sequence that
depends on the results of other boundary elements. The
state name transform rule set for the protocol expres-
sion is in FIG. 55.

These state name transformation rules establish a
necessary sequence of state names for each boundary
element which is illustrated in the sequence diagram
shown in FIG. 56.

Assuming that the entire expression begins with a
NULL presented input name the boundary element is in
state name 1 waiting to receive a VALID presented
input name with a receive input name sequence. The
first possible event is the presentation of a VALID
input name to the boundary element which will cause
PNV to become VALID. This will form state name 5
which will set EN VALID and cause the memory to
store the presented input name and form state name 13.
EN VALID and the memory storing the input name
will eventually cause ANV to become VALID forming
state name 15. The result of state name 15 will set OA
VALID. This is the acknowledge to the boundary ele-
ment presenting the input name to the current boundary
element. OA VALID says to the presenting boundary
element that the name has been received, that it no
longer needs to be stably presented and that it can be set
to NULL. Eventually, the presenting element will set
its asserted name to NULL and the presented input
name of the current element will become completely
NULL at which time PNV will become NULL and
state name 11 will be formed. The result of state name
11 is to reset OA and EN to NULL forming state name
3 and the receive input name sequence is completed.

The protocol expression will remain in state name 3
until the acknowledge NA from the next boundary
element becomes VALID and the deliver asserted name
sequence is begun. The NA variable for the current
boundary element is the OA variable asserted by the
next boundary element. NA VALID means that the
next boundary element has received the name and the
current boundary element can unassert its result name
by setting it to NULL. NA becoming VALID forms
state name 4 which will set DN to VALID which will
cause the memory to set its asserted name to NULL.
The asserted name becoming NULL will cause ANV to
become NULL which will form state name 2. When the
NULL asserted name propagates to the next boundary
element and its PNV variable becomes NULL it will set
its OA variable to NULL which is NA for the current
boundary element. When NA becomes NULL state
name 1 will be formed. The deliver asserted name se-
quence is completed and the current boundary element
is ready to receive another input name from the present-
ing boundary element.

There are two variables that are not directly or indi-
rectly under the control of the current boundary ele-
ment. The presented input name may become VALID
at anytime after a receive input name sequence is com-
pleted and NA may become valid at anytime after the
asserted name becomes VALID which is indicated by
ANYV becoming VALID. Both of these eventualities
are accommodated by alternate state name sequences
for both the receive input name sequence and the de-
liver asserted name sequence. During a receive input
name sequence NA can become VALID anytime after
the asserted name and ANV has become valid. The
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state name sequence 16, 12 and 4 incorporates the
VALID NA and allows the receive input name se-
quence to complete without a deliver asserted name
sequence starting. The last state name 4 begins a deliver
asserted name sequence immediately after the receive
input name sequence is completed.

Any time after a receive input name sequence is com-
pleted or during a deliver asserted name sequence the
presented input name can become VALID and PNV
will become VALID. A new presented input name
cannot be received before the current asserted name has
been delivered so the receive input name sequence must
be suppressed until the deliver asserted name sequence
is completed. The state name sequence 7, 8, 6 and 5
accommodates this by incorporating PNV VALID in
the state names of the deliver asserted name sequence.
With PNV VALID the deliver asserted name sequence
will end in state name 5 which will immediately begin a
receive input name sequence.

A presented input name will be received and stored in
the memory elements and stably asserted until the next
boundary element can receive it. Then the current
boundary element is freed up to receive another pres-
ented input name. Names flow through an expression as
packets from boundary element to boundary element.
Between the boundary elements there can be any name
resolving expression. The names will flow through the
name resolving expression and be transformed before
reaching the next boundary element.

Referring now more particularly to FIG. 57, the
name transmission path from boundary element A 406
to boundary element B 408 goes through a name resolv-
ing expression 410 that will perform some transform on
the name. Boundary element A 406 will complete a
receive sequence and present a VALID asserted name.
ANV will become VALID and the name will be as-
serted until the receive input name sequence is initiated
by boundary element B 408. The asserted name will
propagate through the name resolving expression 410.
The initially NULL asserted result of the name resolv-
ing expression 410 will at some time become all VALID
and present a VALID input name to boundary element
B 408. The presentation of a VALID name to the input
initiates the receive input name sequence for boundary
element B 408. When the receive input name sequence
is initiated OA of boundary element B 408 is set
VALID which is NA for boundary element A 406 and
which initiates the deliver asserted name sequence for
boundary element A 406. The asserted name of bound-
ary element A 406 is set to NULL and this NULL name
propagates through the name resolving expression set-
ting its result to NULL. The input name of boundary
element B 408 becomes NULL and PNV of boundary
element B 408 becomes NULL. This causes boundary
element B 408 to complete its receive input name se-
quence by setting OA to NULL which is NA for
boundary element A 406 and completes the deliver
asserted name sequence for boundary element A 406.
The name resolving expression has been reset to NULL
so the boundary element A 406 can now receive an-
other input name to assert to the name resolving expres-
sion 410 for resolution. The boundary element protocol
will properly resolve with any arbitrary delay in the
data name transmission path.

A name resolving expression 410 bounded by bound-
ary elements 406,408 will cycle through completely
NULL states and completely VALID states so that the
NULL convention criteria that allows determination of
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the completion of the resolution of a name resolving
expression 410 is satisfied.

3.6.1 Boundary Element Association Structures

Boundary elements can be associated in various struc-
tures. The simplest structure is a pipeline as shown in
FIG. 58.

The pipeline is completely autonomous. A VALID
input name presented to the first boundary element 412
in the pipeline will begin a sequence of interactions that
will propagate that name from boundary element to
boundary element completely through the pipeline. As
each boundary element (e.g., 412) sees a valid input
name it will receive it and assert it to the next boundary
element (e.g. 414) in the pipeline. Several names can be
simultaneously propagating just like any other pipeline.
The propagation rate of the pipeline is determined by
the longest name transmission delay between two
boundary elements.

Boundary elements can be associated in a fan in con-
figuration that builds an input name from several as-
serted names.

In FIG. 59, three boundary elements 416,418,420 are
combining their asserted names to form the input name
for another boundary element 422. The receiving ele-
ment 422 will not recognize a VALID input name until
all three asserted names are valid. It doesn’t matter
when these asserted names became valid each one will
be stably asserted until it is acknowledged and its assert-
ing boundary element 416,418,420 goes through a de-
liver asserted name sequence. An acknowledge in the
form of a VALID NA will not occur until the receiving
element sees a completely valid input name. When a
completely VALID input name is presented the receiv-
ing element 422 will initiate a receive input name se-
quence generating a VALID OA which is fanned out to
be the NA for each asserting boundary element
416,418,420. Each asserting boundary element
416,418,420 initiates a deliver asserted name sequence
and resets its asserted name to NULL. When the NULL
name has been received from each asserting boundary
element 416,418,420 and the complete input name is
NULL, the receiving boundary element 422 will reset
OA to NULL thereby completing its receive input
name sequence and completing the deliver asserted
name sequence for each of the asserting boundary ele-
ments 416,418,420.

A fan out association where one asserting boundary
element delivers its asserted name to several other
boundary elements requires an acknowledge collector
to insure that all the receiving boundary elements have
received the asserted name before resetting it to NULL.

In FIG. 60, the acknowledge collector 424 is the
same expression as the NULL-VALID detection ele-
ment used in the boundary element. The input to the
collector 424 are the OA acknowledge variables from
each receiving boundary element 426,428,430. When all
of the OA variables are VALID indicating that all of
the receiving boundary elements 426,428,430 have seen
a VALID input name the collector 424 asserts a
VALID result variable which is the NA variable for the
asserting boundary element 432. The asserting bound-
ary element 432 can then set its asserted name to
NULL. The result of the collector 424 does not become
NULL until all the OA variables from all the receiving
boundary elements 426,428,430 are NULL indicating
that the receive input name sequence for all the receiv-
ing boundary elements 426,428,430 has been completed.
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The deliver asserted name sequence for the asserting
boundary element 432 is then completed.

Complex association structures of boundary elements
can be formed by interassociating these basic structures.
Structures can be formed that will deadlock and live-
lock and otherwise misbehave but there is an inherent
rationale for keeping the boundary element structures
simple. If a boundary element association structure is
complex in such a way that many expression elements
must be tied up maintaining their result names until they
have formed a VALID input name then that expression
might as well be expressed as a single directly associated
process. _

Boundary elements preferably are best used to parti-
tion an expression into discrete independently proceda-
ble units that may be complex internally but that have
fairly straightforward and simple interfaces between
them. This allows many expression elements to be si-
multaneously resolving names increasing the overall
throughput of the expression. So, the appropriate place
in the expression for a boundary element association is
wherever there is a fairly simple name association rela-
tionship.

An expression of associated boundary elements is like
a chain reaction poised to be triggered. A valid input
name will trigger the progression of events that is the
expressed process. As the events proceed the expression
resets itself to be triggered again. The expression is
complete in itself. No external driving influence such as
a clock is needed. There is nothing special or magic
about the expression it is just a specific associational
structure of expressional convention elements which
themselves are structures of primitive expressional ele-
ments. Nothing new beyond variables, values, value
transform rules and variable association rules has been
postulated here in.

3.7 A Generally Configurable Process

The boundary element convention completes the set
of new conventions needed to express a generally con-
figurable process. With the boundary element a se-
quence of directives each of which includes several
place names can be properly presented to the memory-
interaction locus expression. The diagram shown in
FIG. 61 illustrates a generally configurable process.

The generally configurable process expression is
completed by adding to the memory-interaction locus
expression two boundary elements 434,436 and 2 mem-
ory 438 to maintain the directives that specify the pro-
gression of association relationships. Each directive
consists of the set of the four place names discussed
earlier. At the top of the expression is a loop of two
boundary elements 434,436 that form the control as-
pects of the expression. One boundary element 436
maintains the name of the next directive and one bound-
ary element 434 maintains the current directive. The
boundary elements 434,436 are associated in a loop that
will remain actively cycling through consecutive direc-
tives as long as there is a valid next directive name.

Since the issue of 1/0 is being ignored by this exam-
ple it will be assumed that the directive memory 438 is
properly set and that the input name to be resolved is
already in the value maintenance memory 4490. Activity
is initiated when the next directive name boundary
element 436 asserts a next directive name. This name
resolves the select element 442 to pass the asserted con-
tents of one of the directive memory elements 438. This
name becomes VALID to the current directive bound-
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ary element 434 which receives the directive with a
receive input name sequence which completes the de-
liver asserted name sequence of the next directive name
boundary element 436. This frees up the next directive
name boundary element 436 to receive a new name.
This new name is the next field of the directive just
received by the current directive boundary element
434. The next directive name boundary element 436
receives this name, presents it to the select element 442
which resolves the next directive from the named direc-
tive memory element 438 and asserts it to the input of
the current directive boundary element 434.

Further activity is blocked until the current directive
is resolved through the memory-interaction locus ex-
pression 444. The next directive boundary element 436
and current directive boundary element 434 are stuck in
the middle of their respective deliver asserted name and
receive input name protocol sequences.

The current directive boundary element 434 stably
presents the place names of the current directive to the
memory-interaction locus expression 444 until the di-
rective is fully resolved. This full resolution is deter-
mined by the presentation of a valid result value to a
value maintenance memory element 440. The value
maintenance memory elements can now be defined to
be partial boundary elements 434,436. Enough protocol
is associated with each memory element 440 so that it
can perform a receive input name sequence. Since the
memory elements 440 do not do deliver asserted name
sequences the receive input name sequences are not
dependent on the completion of a deliver asserted name
sequence. The result is that whenever a valid value is
presented to a value maintenance memory element 440
that name will be received and stored and a receive
input name sequence will be initiated without delay.
The value maintenance memory elements 440, then, are
protocol sinks. They receive and resolve protocol trans-
actions but do not originate any protocol transactions.

The assertion of OA VALID by any memory ele-
ment through the OR element 446 means that a VALID
result name has been received and the resolution of the
asserted directive by the memory-interaction locus ex-
pression 444 is complete. In other words the directive
has done its job and can be removed. But the directive
cannot be removed until the next name has also been
received. So the OA acknowledge from the name for-
mation memory element 440 is associated through a
collector element 448 with the OA acknowledge from
the next directive name boundary element 436 which
means that the next directive name has been stored by
next directive name boundary element 436. These two
acknowledges indicate that the entire contents of the
directive have been resolved and the directive can be
unasserted and the next directive received by the cur-
rent directive boundary element.

The current directive boundary element 435 sets the
current directive to NULL. This NULL name propa-
gates through the memory-IL element and gets to the
memory element 440 which unasserts OA. Similarly the
protocol sequence with the next directive name bound-
ary element 436 is completed and the result of the col-
lector becomes NULL. The deliver asserted name se-
quence for the current directive boundary element 434
is completed and the new directive that is already pres-
ented to its input can be received and presented to the
memory-interaction locus expression 444. As each di-
rective is presented and resolved the arbitrary DAP is
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resolved one interaction at a time and the result is left in
the value maintenance memory 440.

Given a properly formed set of directives any desired
structure of association relationships among the avail-
able interaction loci can be expressed. Once the expres-
sion is set up and the first directive name is inserted into
the next directive name boundary element 436 the ex-
pression will begin cycling through directives and re-
solve the expression quite autonomously.

3.8 The Directive Expression

To keep the discussion in somewhat familiar territory
the binary logic expression of the example DAP from
the previous section will be used as the example for the
discussion. The example is repeated here in FIG. 62 as
it appeared in the previous section.

The transform set for the complete process is shown
in FIG. 63.

For this example the set of interaction loci are AND,
OR and NOT. The data name to be resolved must be
stored in the value maintenance memory so the first step
is to assign the input variables and each result variable
in the expression the place name of a memory element.
It will be assumed for the example that the place names
of the name formation memory elements are the letters
of the alphabet. An arbitrary assignment of letter place
names to results for the example is illustrated in the
diagram shown in FIG. 64.

This completely defines the memory assignments
necessary to express the example DAP. There must be
one directive for each interaction locus in the DAP.

The general format for a directive is shown in Table
14 below.

TABLE 14
next
locus  input 1 input 2 result directive
name name name name name

The directive for the resolution of the input name in
memory elements f and i by an AND gate with its result
assigned to n would be (as shown below):

AND fin next

The results stored in f and i form the input data name
for resolution by the AND gate 450 and the result of the
resolution is stored in n. The name next signifies the
place name in the directive memory element which
contains the next directive.

Since the generally configurable process can only
resolve one directive at a time the next step in mapping
a DAP into directives is to sequentialize the progression
of data name formations and resolutions. There are
many sequences that will suffice. The criteria as with
any other form of expression is that each input data
name is validly formed before it is resolved so any se-
quence that always generates the result components of
an input data name before that input data name is re-
solved is adequate and correct. One such sequence is
illustrated with a sequence thread passing through the
example DAP as shown in FIG. 65.

There are lots of sequence threads that will not suf-
fice. For instance, the reverse of the example thread
would be completely wrong. No input data name would
be validly formed when its resolution was directed. The
structural essence of any process expression whether it’s
expressed sequentially or concurrently is the name for-
mation dependencies among the name resolutions. The
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foltowing list shown in Table 15 is the complete se-
quence of directives to express the example DAP.

TABLE 15
name name name
directive formation formation formation directive
memory memory memory — memory memory
element DAP element  element element element
name name name name name name
1 NOT C a 2
2 NOT D b 3
3 NOT A c 4
4 NOT B d 5
5 AND A d j 6
6 AND B c i 7
7 AND C d h 8
8 AND C b g 9
9 AND D a f 10
10 AND a b e 1
11 AND e i k 12
12 AND e i 1 13
13 AND f h m 14
14 AND f i n 15
15 AND f j o 16
16 AND g h P 17
17 AND g i q 18
18 AND g j w 19
19 OR q p X 20
20 OR o n w 21
21 OR q p v 22
22 OR m 1 u 23
23 OR q o t 24
24 OR k m s 25
25 OR s t z 26
26 OR u v Y 27
27 OR w X X NULL

The sequence of directives along with the generally
configurable process form a complete process expres-
sion. A completely different process can be expressed
by presenting a different sequence of directives to the
generally configurable process.

3.9 Enhancements

Now that the issues of local stable value expression
and cyclic name presentation have been resolved the
example generally configurable process can be straight-
forwardly enhanced to a generally configurable process
equivalent to the modern computer.

Straightforward extensions to the example expression
can bring it more in line with the current vision of a
processing architecture. The memory and data paths
can be widened to accommodate larger names and the
interaction loci replaced with a set of larger directly
associated processes such as arithmetic-logic operations
to resolve the larger names. The name resolution ele-
ments are just pieces of preexpressed process that the
arbitrary processes can use in their own expression. A
resolution element can be can be as small as an interac-
tion locus or as large as another cycling expression such
as an array processor. All control is asynchronous and a
resolution element can be configured to return its own
handshake value to indicate completion.

A second alternative next directive name can be spec-
ified in the directive and the actual next directive
chosen conditionally on a resolution result value. An-
other means to the same end is to define the directive
memory place names to be consecutive numbers and
arrange the directives such that the implicit next direc-
tive name is almost always one greater than the current
directive name. An implicit next directive name can be
maintained in a small specialized memory element that
automatically increments its value each cycle. Only
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alternative conditional directive names need be explic-
itly specified in the directive itself.

The value maintenance memory can also be named
with consecutive numbers and values can be referenced
relative to indirect relationships or even to arithmetic
formulas so that the configuration of association rela-
tionships between the value maintenance memory and
the name resolution elements can be relative to previous
configurations or even conditional on the values of
input data name from the actuality expression of the
arbitrary process. Small memory elements at various
places in the expression can maintain and manipulate
place names forming a register set with indexing capa-
bility. Directives can indirectly refer to actual place
names in the memory by referring directly to these
smaller memory places and arithmetic functions on
their asserted values.

The directive memory and the data memory can be
made the same memory. The only aspect of current
processing architectures that cannot be conveniently
accommodated by the example is the imposition of a
global system clock.

With the addition of conditionality relative to the
input data name in both the determination of the next
directive and the determination of the association rela-
tionships between value maintenance memory and the
resolution elements the generally configurable process
establishes a new realm of expressivity that was not
attainable with just a DAP or with the nonconditional
generally configurable process. This is the capability to
resolve indefinite length names.

3.9.1 The Advantage of Progressive Iteration

Sequential iteration while not expressionally primi-
tive still fills an important and essential place in the
expression and resolution of processes. There are input
names that cannot be resolved any other way except
with conditional iteration.

The generally configurable process resolves an ex-
pressed arbitrary process by iterating through its speci-
fication a piece at a time. The actual expression of the
arbitrary process is literally composed during resolu-
tion. Because the arbitrary process expression is effec-
tively composed piece by piece during resolution its
composition can be conditionally redirected during
resolution based on values in the input data name. The
expression of the process can within limits adjust to the
form of its input data in a way that a DAP could not
possibly provide. A DAP cannot grow larger or smaller
but a generally configurable process can easily accom-
modate more or fewer iterations. A new dimension of
expression of process is available with the conditional
iterative resolution provided by the generally configu-
rable process.

In particular, the generally configurable processor
can resolve names of indefinite length. If the size of the
input data name cannot be predetermined its resolution
must be inherently iterative. The name must be resolved
in an unpredeterminable number of partial resolution
stages in tractable pieces at a time. Its resolution re-
quires conditional iteration. The issues of resolution of
indefinite length names is discussed more fully in the
appendix.

3.10 Two New Forms of Expression

Two dramatically different forms of process expres-
sion have emerged with the generally configurable
process. The first form of expression is one step at a time
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sequential expression and resolution. This leads to the
possibility of conditional iteration which is a necessary
form of expression for certain classes of processes. The
second form of expression is the expression of the asso-
ciation structures and interaction relationships of pro-
cess as association relationships among names repre-
sented exactly the same way that input data is repre-
sented.

While both of these forms of expression are essential,
neither is conceptually primitive. They are derived
forms that emerge from a significant body of expres-
sional conventions some of which had to appeal to
circular variable association relationships. Association
loops around interaction loci provided the memory and
NULL-VALID detectors with local stability of value
assertion. Association loops between boundary ele-
ments provided continuous autonomous cyclic activity.
These two new forms of expression cannot be achieved
without the circular association relationships intro-
duced with the conventions of the generally configura-
ble process. In other words, they can only be derived in
terms of directly associated generally concurrent pro-
cess expressions.

3.10.1 Strict Sequentiality

Strict sequentiality is generally considered to be a
process expression primitive. Far from being primitive
it has emerged late in the game by virtue of a rather
complex structure of concurrently resolving DAPs and
expression conventions with circular association rela-
tionships.

Why did strict sequentiality suddenly emerge from
expression forms that were generally concurrent? It
arose primarily because any DAP of whatever size can
resolve only one input name at a time. Internally a DAP
is generally concurrent but at its input interface it must
be strictly sequential. Each input name must be VAL-
IDly presented and resolved then unpresented and a
new input name VALIDIy presented.

Strict sequentiality is also the easiest way to generally
configure any arbitrary process by configuring the asso-
ciation relationships of one resolution step at a time.
Each resolution step has all the resources of the gener-
ally configurable process devoted to it. Also a correctly
sequenced expression eliminates the need for explicit
VALIDation of input name formation. As soon as more
than one resolution step is allowed to simultaneously
proceed in the generally configurable process compli-
cated issues of resource allocation and input name
VALIDation must be considered.

Strict sequentiality is possible because certain forms
of expression can be reduced to a progression of inde-
pendently procedable name resolutions. This reducibil-
ity stems primarily from the expressional convention of
the interaction locus that imposed directionality of in-
teraction influence on variable association expressions
and the NULL value convention that imposed discrete
resolution events. The only influence on an interaction
locus is its input name, if the input name is stable the
interaction is a discrete resolution event that can pro-
ceed quite independently at its own pace. This makes
the interaction locus an independently resolvable unit of
expression.

A directionalized process expression can be reduced
to its independently resolvable units of expression and
those units can be carried out one at a time sequentially.
The sequential expression is an exact behavioral emula-
tion of the directionalized expression. A directionalized
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process such as a DAP can be expressed and resolved
with full concurrency as directly associated interaction
loci or it can be expressed and resolved one interaction
at a time using memory to maintain result values and
form input names. The resolution events of one expres-
sion are directly mappable to resolution events of the
other expression and both expression deliver the identi-
cal final result.

Expressions that are not strictly directional such as
nondirectionalized variable associations or direct circu-
lar association - relationships similar to those of the
boundary element cannot be similarly reduced to a
sequence of independent resolution steps because there
are no independent steps of resolution. If interactions
are mutually influential in both directions then there are
no clean boundaries of influence and therefore no con-
veniently separable and independently procedable
pieces of the expression. However, these expressions are
not and cannot be algorithmic in nature.

There are many forms of process expression with
nondirectional mutually influential association relation-
ships that cannot be directly reduced to independently
procedable resolution steps. These process expressions
can be approximately simulated in terms of discrete time
steps with differential equations, but they cannot be
mapped directly to independently procedable resolu-
tion steps. They cannot be exactly emulated by a se-
quential step by step expression. The fact that a process
expression can be approximately simulated algorithmi-
cally does not mean that the process expression itself is
algorithmic. ‘

Particles in atoms and atoms in molecules are primi-
tive variable association expressions that are continu-
ously and mutually influential. For example, in 2 Hop-
field neural net every resolution element receives its
input name from all the other resolution elements so
that every resolution is dependent on every other reso-
lution. These expressions rely on multiple simultaneous
associative resolution. No piece of the expression can be
resolved independently from the other pieces of the
expression. It cannot be reduced to a sequence of partial
resolutions that accumulate to a total resolution. These
process expressions are not algorithmic. The notion of
the algorithm cannot directly encompass their resolu-
tion behavior.

The claim commonly expressed in discussions of cog-
nition or artificial intelligence that any parallel expres-
sion can be sequentialized and that therefore parallelism
or concurrency can be conveniently ignored in attempts
to understand the workings of human mentation is sim-
ply mistaken. While sequential resolution is essential to
an important class of processes it is neither primitive nor
is it universally sufficient as a form of process expres-
sion.

3.10.2 Name Relationship Expression

Perhaps the most dramatic new form of process ex-
pression that has emerged with the generally configura-
ble process is the expression of process as deferred spec-
ifications in exactly the same way that the input names
are deferred specifications for DAPs. Process can be
expressed as a configuration of values in exactly the
same way that the input data name is expressed as a
configuration of values.

Referring now more particularly to FIG. 66, 2 gener-
ally configurable process is a process that manages to
defer almost all specification. From the point of view of
the generally configurable process its actuality expres-
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sion provides almost all of the expression of the arbi-
trary process being expressed including its input data
name. From the point of view of the arbitrary process
the generally configurable process may express as little
of the arbitrary process as a few interaction loci. The
rest of the possibility expression of the arbitrary process
can be expressed in terms of relationships among names
of places in the generally configurable process. These
place names are formed as combinations of values in
exactly the same way that input data is formed.

The names presented directly to the generally con-
figurable process must of course be in terms of the val-
ues and combinations of values that the select and dis-
tribute elements recognize. A name, however, is just an
expression of correspondence whether it is a set of volt-
age values, a string of characters or a protein shape.
Relationships among correspondence references can
mirror relationships among the actual things they corre-
spond to.

The place names in the generally configurable pro-
cess can be assigned a more conveniently human read-
able form as a string of alphanumeric characters. These
names are of course not understandable by the generally
configurable process but there is a one to one mapping
between these names and the names that are under-
standable by the generally configurable process. The
same relationships among internal names that are ex-
pressed by the directives can be expressed by syntactic
relationships among these external alphanumeric names.
An arbitrary process can be conveniently expressed
externally by humans in terms of relationships among
alphanumeric names and then directly mapped into the
internal directives understandable by the generally con-
figurable process.

The form of external expressions can be even further
decoupled from the form of internal expressions. Since
any memory element can be associated with any name
resolution element there is no particular structure to the
memory. Any internal memory name can be mapped to
any external name as long as the mapping is one to one.
Therefore external names can be chosen quite arbitrar-
ily. They do not have to correspond in any way to the
internal memory names. So external process expressions
can express association relationships among arbitrarily
chosen names external names which can be mapped into
relationships among arbitrarily assigned internal mem-
ory element names. There must still, however, be a
direct relationship between the internal and external
names of the resolution elements. This is similar to the
traditional form of external expression known as assem-
bly language.

With conditional next directive and with relative
memory name reference it is possible to resolve the
same group of directives representing a piece of expres-
sion multiple times each time with-a different data asso-
ciation configuration. This means that a group of direc-
tives in memory representing a piece of expression can
be treated exactly as the directly associated name reso-
lution elements of the generally configurable process
are treated. That is, the same process expression piece in
memory can be presented over and over with different
configurations of association relationships to its input
data name and its result place in memory. Just like the
interaction loci of the example each resolution step can
resolve a different name and put the result at a different
place in memory. But these resolution steps are for
arbitrarily defined pieces of process expressed as direc-
tives in memory.
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This means that processes expressed as hierarchically
nested pieces of process expression can be mapped di-
rectly into a generally configurable process. A group of
directives can be mapped anywhere in memory and the
data to be associated with it can be mapped anywhere
into memory and the correct association relationships
among these pieces can be internally expressed by the
generally configurable process.

The generally configurable process with generally
associable memory, conditional directive sequencing
and relative memory name generation is a universal
process. Directly associated name resolving elements
are not even necessary. The transform rule set for any
interaction locus can be expressed in memory as a look
up table accessed with relative memory name forma-
tion. A value transform rule is just another form of
association relationship among names. Any directional-
ized process expressed in any external form of expres-
sion that specifies association relationships among
names can be mapped to an internal expression and
resolved in a generally configurable process.

The possibility of expressing processes solely in terms
of relationships among names has emerged from the
convention of the generally configurable process. Pro-
cesses can be expressed as association relationships
‘among names in forms radically different from the form
of their direct resolution. The expression of relation-
ships among names may be in the form of DNA, a char-
acter string, an audible utterance, a pattern of neurons
or a mathematical formula. The next section explores
the expression possibilities of alphanumeric character
strings.

3.11 Summary

Several new expression conventions were introduced
which combined to form the convention of the gener-
ally configurable process. The generally configurable
process led to the possibility of expressing processes
entirely in terms of relationships among names and
sponsored the first appearance of strict sequentiality in
process expression. This was all achieved with the in-
troduction of closed association loops of directionalized
expression elements which provided the local value
assertion stability and cyclic behavior required for a
generally configurable process.

No new primitives were postulated in this section. All
of the discussion focused on associated variables assert-
ing values that were changing according to value trans-
form rules.

4 Character String Process Expression

The last section suggested that the possible forms of
external process expressions that could be mapped into
a generally configurable process was much richer than
was immediately suggested by the expressional form of
the process itself. Any directionalized form of process
expressed in terms of relationships among names can be
mapped into a generally configurable process. Whether
expressed as a pure value expression or as a structure of
associated variables, process expression can be charac-
terized as a progression of dependent name formations
and name resolutions. This progression of dependent
name formations and name resolutions is the essence of
process expression and constitutes the only necessary
correspondence between any two forms of expression
of the same process. Any external process expression
mapped into a generally configurable process creates
two expression forms of the same process.
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Any external expression form need not relate directly
to any idiosyncrasies of an internal expression form of a
generally configurable process. Just because an internal
expression may be interpreted one name resolution at a
time does not mean that an external expression must
express strict sequentiality. A legitimate resolution se-
quence can be conveniently derived from any external
expression that explicitly expresses name formation
dependency relationships. Because an internal expres-
sion may use memory to associate and form names does
not mean that the consideration of memory and its prop-
erties must be explicit in an external expression.

This section considers expressing process as a contig-
uous string of alphanumeric characters. A character
string expression of a process must specify the same
elements and relationships that any other form of pro-
cess expression must specify. There must be 2 means for
result names to form an input name. A means to deter-
mine that the input name is validly formed. A means of
presenting the input name to its resolving agent. A
means of expressing how the name will be resolved by
the resolving agent and a means of delivering the result
name to the input names to which it contributes.

The character string form of process expression has
two fundamental differences from the forms of expres-
sion discussed so far. The first difference is that a char-
acter string expression is a purely referential form of
expression. It is not inherently active and it cannot
resolve its own process. It therefore needs assistance to
resolve. It must be mapped into another expression form
which is self resolving such as a DAP or a generally
configurable expression or it must be directly inter-
preted by an active process directly manipulating the
string. A directly interpreting active process will be
assumed in this discussion.

The second difference is that the string of characters
exists in a one dimensional expression space. Different
places in the expression cannot always be associated by
direct association within the expression space as they
can be in a three dimensional expression such as a logic
circuit. So there has to be a means of expressing direct
associations among places in the string unique to this
one dimensional environment.

Before places in the string can be associated distinct
places must be established. There must be delimiting
agents in the string to break the contiguous string of
characters into distinct places. A set of reserved syntax
characters distinct from name formation characters can
delimit places in the string and establish a type for each
place. Each delimited place contains a data name or a
place name or a syntax structure. Data names and place
names in the string are formed with name formation
characters distinct from and delimited by the syntax
characters. Each name has a unique place in the string
relative to all the other names in the string.

A limited amount of local association among places in
the string can be expressed by syntactic relationships
such as nesting and neighborness but the only way to
generally associate arbitrary places in the string is by
name correspondence. If two names syntactically asso-
ciated with any two places in the string are identical, are
visible to each other and have complimentary place
types then those two places are associated. Names that
associate places in the string will be called place names.
This allows the general associability of elements any
where in the string.

The precedent of referring to data as a progression of
formed names that are resolved and form other names
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will be continued in relation to the string expression.
With the association relationships of a string also ex-
pressed by identically formed names a string expression
becomes a complex structure of relationships among

names of many types. These different types of names 5

cannot be differentiated because all data names eventu-
ally become place names during resolution of the ex-
pression. The following discussion will keep the names
straight by referring to a name with its type.

How a combination of syntax, data names and place 10

names manage to express a process will be presented
through detailed examples. There are a multitude of
ways of structuring string expressions with different
character sets, different syntactic structures and so

forth. The form of string expression presented in this 15

section is just one possible form. The complete syntax
definition is presented here for reference only in Table
16. The syntactic structures and their meanings will be
explained in the examples.

TABLE 16
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resolution the active string 454 contains the result
string.

The active string 454 initially consists of an invoca-
tion 462 containing a fully formed input data name 464
of the actuality expression 460. The interpreter/resolu-
tion apparatus 452 constantly searches the active string
454 for invocations 462 with validly formed input data
names 464 to resolve and then searches the definition
string 456 for the definition 456 corresponding to the
invocation 462 to resolve the formed input data name
464. It 452 copies the definition 456 which may contain
more invocations 462 into the active string 454, carries
out transforms on the active string 454 related to the
resolution of the invocation 462 in relation to the defini-
tion 456 and again searches for another invocation 462
with a validly formed input data name 464 to resolve.
The resolution is complete when there are no more
invocations 462 to be resolved and the active string 454
consists of result data name objects 466.

SYNTAX DEFINITION METASYMBOLS

term to structure equivalence
OR

|
* zero or more (post superscript)
+ one or more (post superscript)
*+ zero or one (post superscript)
- followed by
TERM DEFINING SYNTAX
phrase = clause| phrase;clause | phrase?clause
clause = redefinition*-resultant*-invocation®* +-object*
redefinition = invocname(@(phrase)
resultant = linkname < phrase>
invocation = invocname(actualist-resultlist)
delayedinvoc =  invocnames#(actualist-resultlist)
invocname = invocation | defname-formalref* | defname* +-formalref+
resultlist = resultlink*
resultlink = < linkname>
actualist = actual | actualist,actual
actual = invocation®+-object*-resultref*+
resultref = S$linkname
definition = defname{(formalist-resultlistybody]
nonreplicable =  defname@](formalist-resultlist)body]
body = phrase | phrase;definition+
formalist = namelist | namelist,! | |,namelist
namelist = formalname | namelist,formainame
object = -value* | value*-formalref+ | objectstruct
objectstruct = {object} | {phrase} | {objectstruct*}
formalref = *formalname | %!
defname = value+
formalname = valuet
linkname = value+
narrative = \ any character string /
syntax = MLy <>t 01t 1@l
N|Z1? | #
value = Any set of two or more characters disjoint from the

syntax character set. Nominally A to Z and 0 to 9.
Blanks and narratives are white space.

Referring now to FIG. 1 and FIG. 67, the examples

will assume that there is a single interpreter process 452 55

or resolution apparatus 452 that scans the string directly
and resolves the expression by manipulating the string
directly. The resolution environment will consist of two
character strings the active string 454 and the definition

string 456. 60

The definition string 456 is the collection of defini-
tions 456 that makes up the possibility expression 458
for the process and it does not change during resolution.
The activity of the resolution unfolds in the active

string or active expression 454. The active string 454 65

begins with the actuality expression 460 and dynami-
cally grows and shrinks in relation to definitions 456
from the definition string 456. At the completion of the

In summary, a method and system for process expres-
sion and resolution is described. A first language struc-
ture comprising a possibility expression 458 having at
least one definition 456 which is inherently and gener-
ally concurrent is provided. Further, a second language
structure comprising an actuality expression 460 includ-
ing a fully formed input data name 464 to be resolved is
provided. Furthermore, a third language structure com-
prising an active expression 454 initially having at least
one invocation 462 is provided wherein the invocation
462 includes an association with a particular definition
456 and the fully formed input data name 464 of the
actuality expression 460. Subsequently, the process of
resolving invocations 462 begins in the active expres-
sion 454 with fully formed input data names 464 in
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relation to their associated definition 456 to produce at
least one or both of the following: (1) an invocation 462
with a fully formed input data name 464 and (2) a result
data name 466.

The first, the second and the third language struc-
tures preferably are derived from a set of production
rules selected from the group including a set of meta-
symbols, a set of terminals and a set of nonterminals. A
production rule preferably includes a nonterminal fol-
lowed by a term to structure equivalence (=) followed
by a terminal or a2 nonterminal. Alternatively, a produc-
tion rule preferably includes a nonterminal followed by
a term to structure equivalence (=) followed by a plu-
rality of terminals delimited by metasymbols. Alterna-
tively, a production rule preferably includes a nontermi-
nal followed by a term to structure equivalence (=)
followed by a plurality of nonterminals delimited by
metasymbols, or (4) a nonterminal followed by a term to
structure equivalence (=) followed by at least one ter-
minal and at least one nonterminal delimited by meta-
symbols.

The set of metasymbols preferably are selected from
the group of metasymbols including:

= term to structure equivalence;

| OR; :

* zero or more (post superscript);

20

25
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but is rich enough to embody most of the elements of
the string expression. The example character string
expression will be presented and its interpretive resolu-
tion described in detail. The resolution in all of the
examples will be presented as progressive configura-
tions of the active string 454. The presentations of the
active string 454 are informal to allow convenient read-
ability. Strictly formal rules and structures can be easily
defined for the active string 454.

The logic circuit shown in FIG. 68 and the string
expression shown in Table 17 both express the same
process. The string expression draws association and
resolution relationships in terms of invocations 462 and
definitions 456 with place name correspondence rela-
tionships and syntactic structures instead of in terms of
wires and logic gates but it expresses the same progres-
sion of input data name 464 formation dependency rela-
tionships and resolutions as the logic circuit does.

The complete resolution sequence for the string ex-
pression of the binary fulladder is presented in the fol-
lowing discussion shown in Table 17. The discussion
begins with the active string 454 which consists of one
invocation 462 (i.e., FULLADD(, 1, 0 <CARRY-
OUT >)) and one resultref (i.e., {SCARRYOUT?}). The
actuality expression 460 is the first three actuals of the
invocation 462 of FULLADD (i.e., 0, 1, 0).

TABLE 17

Active String:
FULLADD(), 1, 0 <CARRYOUT>) {SCARRYOUT}
Definition String:
FULLADD[(X,Y,C <CARRY>)

CARRY <OR(SCARRY1,SCARRY2)>
HALFADD(*C,HALFADD(*X,*Y <CARRY1>) <CARRY2>);
HALFADD[(S,T <COUT>)
COUT <AND(*S,*T)>
OR(AND(NOT(*S),*T), AND(*S,NOT(*T)))

OR[(A,B) *A*B( ) ;00[0] O1[1] 10[1] 11[1]]

ANDI(A,B) *A*B( ) ;00[0] 01f0] 10[0] 11[1]]

NOTI(A) *A();1[0] O[1]]

-+ one or more (post superscript);

*+ zero or one (post superscript); and

— followed by.

In addition, the set of terminals preferably includes (1) a
set of syntax symbols preferably are selected from the
group of syntax symbols including: ‘C, ¥, ‘I, T, ‘(’, ¥,
&<s’ t>,, c’a’ 6;1, t*a’ 1@1’ 6!” ¢ \$’ 6/a’ t?v’ a.nd (#’ as Wen as
(2) a set of at least two value symbols disjoint from the
set of syntax symbols . Further, the set of nonterminals
preferably are selected from the group of nonterminals
including: value, phrase, clause, redefinition, resultant,
invocation, delayedinvoc, invocname, resultlist, result-
link, actualist, actual, resultref, definition, nonreplica-
ble, body, formalist, namelist, object, objectstruct, for-
malref, defname, formalname, linkname, and narrative.
Furthermore, the production rules are selected from the
group of production rules found in Table 16.

In one preferred embodiment, the resolving process
continues simultaneously resolving multiple invocations
462 in the active expression 454 until all of the invoca-
tions 462 have been resolved and a fully formed result
data name 466 is left in the active expression 454. These
terms and their relationships will be fully explained in
the examples.

4.1 The Examples

Referring now to FIG. 68, the first example expres-
sion is a binary full adder circuit. It is a simple process
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4.1.1 The Invocation

An invocation 462, as shown in Table 18, is a paren-
thesis enclosure preceded by an invocname. The paren-
thesis enclose a list of associations consisting of an ac-
tual list followed by a result list. The invocname, as
shown in Table 17, associates the invocation 462 with its
resolving definition 456.

TABLE 18

invocation = invocname(actualist-resultlist)
invocname = invocation | defname-formalref* |
defname*+-formalref+

An invocation 462 is a place of input data name 464
formation and resolution in the string expression. The
actualist represents the formation of the data name 464
to be resolved. It can consist of already present objects
which are the actual data or it can consist of association
relationships with the places in the phrase from which
the objects will come from to form the input data name
464. The example FULLADD invocation 462 has a
fully formed input data name 464 consisting of already
present objects.

The resultlist associates results of the resolution of the
invocation 462 to the places in the phrase to which they
are to be delivered to form further input data names 464.
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The invocname is a place name that associates the invo-
cation 462 to the place of definition that will resolve the
input data name 464 formed in the actualist of the invo-
cation 462.

4.1.2 The Resultlist and Resultref

A resultlist consists of zero or more resultlinks. A
resultlink consists of a linkname enclosed by less than
and greater than syntax characters < >. A resultlink
associates by name correspondence to one or more
resultrefs which are the places in the phrase to where a
result of the resolution of the input data name 464 of the
invocation 462 is to be delivered. A resultref is a link-
name preceded by a §. <CARRYOUT > is a resultlink
in the association list of the example FULLADD invo-
cation 462. It associates with the resultref SCARRY-
OUT in the example. Each of these elements is shown in
Table 19 below.

TABLE 19
resultlist = resultlink*
resultlink = < linkname >
resultref = $linkname

The resultlink and resultref association relationship is
a means of delivering multiple results of an invocation
462 resolution to multiple places in an expression. When
the invocation 462 of FULLADD is resolved $CAR-
RYOUT will be replaced with the result from the defi-
nition 456 associated with < CARRYOUT> 466 in the
actualist of the invocation 462.

4.1.3 The Actualist

The actualist consists of a list of zero or more actuals
separated by comas. Each actual represents a part of the
input data name 464. An actual can be a reference to
some other place in the expression where its object will
come from or it may be an already present object. An
actual may be an invocation 462, an object, a resultref a
combination of these or it may be an empty (NULL)
string. When all of the actuals in an actualist are no
longer references but consist of present objects the
actualist is a fully formed and VALID input data name
464 and can be presented to the definition 456 associated
with the invocation 462 to be resolved. Each of these
elements is shown in Table 20 below.

TABLE 20

actual | actualist,actual
invocation®* +-object*-resultref*+

actualist =
actual =

The actualist of the invocation 462 of FULLADD in
the example consists of already present objects. It is a
fully formed input data name 464 and ready to be re-
solved. The actualist of this first input invocation 462 of
the active string 454 is the input data name 464 for the
whole process and is the actuality expression 460 of the
process.

4.1.4 The Invocname

The invocname of the invocation 462 associates the
place of the invocation 462 to the place of the definition
with the corresponding defname that will resolve the
invocation’s 462 formed input data name 464. The in-
vocname itself can be deferred by association reference
and formed during resolution so an invocation 462 itself
is not fully formed and resolvable until both the invoc-
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name is fully formed and the input data name 464 repre-
sented by the actualist is fully formed.
The invocname of the FULLADD example invoca-
tion 462 contains no association references so it is a fully
formed invocname name.

4.1.5 The Object

The actuals of the invocation 462 and the second
element of the above phrase enclosed by braces { } are
objects. An object represents data names and structured
data names. The primitive object is 2 bounded string of
characters whose bounding syntax characters do not
specify it to be some other form of name in the phrase.
For instance, the actuals in the actualist of the FUL-
LADD invocation 462 0, 1, 0 are objects by this criteria.

All association references in the phrase resolve to
objects. Every expression resolves ultimately to a struc-
ture of objects. Structures of objects are expressed by
nested braces. The braces can enclose association refer-
ences and even whole phrases. When the references and
phrases are resolved data names 466 will be left inside
the braces. One way to view a string expression is as an
object structure filled with references to where the
contents of the object come from. The resolution of the
expression is the filling in of the object structure. Each
of these elements is shown in Table 21 below.

TABLE 21

value* | value*-formalref+ | objectstruct
{object} | {phrase} | {objectstruct*}

object =
objectstruct =

The object in the example {SCARRYOUT?} contains
a resultref which will be resolved to a primitive object
data name 466 delivered via the association with the
resultlink in the FULLADD invocation 462.

4.1.6 Invocation Resolution

Since the invocname and the actualist of the example
FULLADD invocation 462, shown in Table 22, are
fully formed the invocation 462 itself is fully formed and
the definition 456 with the corresponding name can be
searched for in the definition string 456 and invoked to
resolve the input data name 464 of the invocation 462.
The corresponding definition 456 is the one with the
defname FULLADD, also shown in Table 22.

TABLE 22

Invocation:
FULLADD(, 1, 0 <CARRYOUT>) {SCARRYOUT}
Definition:
FULLADDI(X,Y,C <CARRY>)
CARRY <OR(SCARRY1,SCARRY2)>
HALFADD(*C,HALFADD(*X,*Y <CARRYI>)
<CARRY2>)]

4.1.7 The Definition

A definition 456, as shown in Table 23, is a bracket
enclosure preceded by a defname and enclosing an asso-
ciation list followed by a definition body. The associa-
tion list consists of a formallist followed by a result list.

TABLE 23
defname[(formalist-resultlist)body]

definition

The invocation 462 and the definition 456 are compli-
mentary syntax structures. An invocation 462 must
always associate with a definition 456 by name corre-
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spondence between the invocname and the defname.
The association lists of the two structures must corre-
spond exactly. Both association lists are enclosed by the
parenthesis.

The resultlists of the definition 456 and invocation
462 are identical. The formalist, as shown in Table 24, of
the definition 456 is just a list of formalnames and one
special matching syntax character ! separated by comas.
The matching syntax character ! will be explained later.

TABLE 24
formalist = namelist | namelist,! | ,namelist
namelist = formalname | namelist,formalname

The elements of the two association lists are associ-
ated by corresponding position in the list. In the exam-
ple, shown in Table 25, 0 of the invocation 462 is associ-
ated with X of the definition 456, 1 with Y, O with C and
<CARRYOUT> with <CARRY>.

TABLE 25

FULLADD(0, 1, 0 <CARRYOUT>)
FULLADDI[(X,Y,C <CARRY>).. ]

Invocation:
Definition:

The invocation 462 association list and definition 456
association list manage data name formation, validation
and presentation to the resolving agent which is the
phrase inside the definition 456. This association proce-
dure was managed in the generally configurable process
presented in section 3 by the boundary element. The
boundary element watched the input data name 464
determined when it was fully formed then received it
and presented the input data name 464 to the resolution
element (DAP) that would resolve it.

The invocation 462 association list and the definition
456 association list can be viewed as two halves of a
split boundary element. The invocation 462 actualist
forms the input data name 464 and establishes when the
input data name 464 is fully formed. When the input
data name 464 is fully formed the associated definition
456 is invoked whose formalist presents the input data
name 464 formed by the invocation 462 actualist to the
phrase inside the definition 456 which will resolve the
input data name 464. The correspondence between the
elements of the association lists of an invocation 462 and
a definition 456 is internal and local to the boundary
association mechanism and can conveniently be repre-
sented syntactically by position correspondence.

4.1.8 The Body

The body of the definition 456 contains a phrase and
possibly more definitions 456, as shown in Table 26.

TABLE 26
phrase | phrase;definitiont

body =

The FULLADD definition 456 contains a phrase and
the definition 456 of HALFADD.

4.1.9 The Phrase

A phrase is a clause or a sequence of clauses. A semi-
colon forces strictly sequential resolution of clauses. If
two clause are separated by a semicolon the clause on
the left of the semicolon must be fully resolved before
the resolution of the clause to the right of the semicolon
can begin. The ? indicates a conditional sequence. The
clause to the left of the ? is resolved first. If it produces
a result value then the clauses to the right of the ? are
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ignored. If it produces a NULL result then the next
clause is evaluated. This continues until one clause pro-
duces a nonNULL result .

A clause is a structure of local data name 464 forma-
tion association relationships among resultants, invoca-
tions 462 and objects. Each of these elements is $hown
in Table 27 below.

TABLE 27

phrase = clause | phrase;clause | phrase?clause
clause = redefinition*-resultant*-invocation*+-object*

A clause can consist of zero or more resultants, zero
or one invocations 462 and zero or more objects. A
clause may have none of these and be an empty (NULL)
string. Limiting a clause to a single invocation 462 may
sound restricting but a single invocation 462 can consist
of an enormously complex compound structure of many
associated invocations 462.

When a definition 456 is invoked the association list
and phrase of the definition 456 is copied from the possi-
bility expression 458 into the active string 454 and the
formalrefs in the phrase are replaced with the associated
actuals from the invocation 462.

The clause of FULLADD consists of one resultant
and one invocation 462 and will return two results. The
first result is the carry value of the addition which will
be returned via the resultant through the association
path of resultant-resultlist-resultlist-resultref to replace
the resultref SCARRYOUT. The second result is the
place value of the addition which is the result of the
invocation 462 in the phrase and which will be returned
to replace the invocation 462 of FULLADD itself.

4.1.10 The Resultant

The first element of the phrase of FULLADD is a
resultant. A resultant is a phrase enclosed by less than
and greater than signs and preceded by a linkname, as
shown below in Table 28.

TABLE 28

linkname < phrase >

resultant

The CARRY result will replace the resultref SCAR-
RYOUT in the invoking phrase. This replacement is
managed through several association links. The resul-
tref SCARRYOUT is associated with its identically
named syntactic complement the resultlink < CARRY-
OUT > in the invocation 462 association list. <CAR-
RYOUT> is associated to the resultlink <CARRY >
by position correspondence between the association
lists of the invocation 462 and the definition 456. The
resultant CARRY <OR(SCARRY1SCARRY2)> is
associated by name correspondence with its syntactic
complement the resultlink <CARRY > in the defini-
tion 456 association list. When the phrase enclosed by
the resultant is resolved the result object will be re-
turned via the association links to replace the resultref
$CARRYOUT.

4.1.11 The Formalref

A formalref is a formalname preceded by an * or a *!,
as shown in Table 29.

TABLE 29

*formalname | *!

formalref
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The formalref *! will be explained later. The formal-
refs are associated by name correspondence to their
syntactic complements the formalnames of the formalist
of the enclosing definition 456 which in turn are associ-
ated to the actuals of the invoking invocation 462 by
position correspondence between the association lists of
the invocation 462 and the definition 456.

: 80

invocation 462 must be resolved first. The actuallist of
the nested invocation 462 is fully formed and the invoc-
name is formed so the invocation 462 itself is fully
formed and ready to be resolved. The definition 456 of
HALFADD can be invoked and its phrase copied into
the active string 454. Each of these elements is shown in
Table 31 below.

TABLE 31
Invocation:
FULLADD(G, 1, 0 <CARRYOUT>) {SCARRYOUT}
Active String;

FULLADDI[(X,Y,C <CARRY>)

CARRY <OR(SCARRY1,SCARRY2)>
HALFADD(OHALFADD(0,1 <CARRY1>) <CARRY2>)]
HALFADD[(S,T <COUT>)

COUT <AND(*S*T)>
OR(AND(NOT(*S),*T),AND(*S,NOT(*T))) ]

After copying the phrase of the definition 456 to the
active string 454 the next order of business is to present
the input data name 464 formed by the actualist of the

The formalrefs of the HALFADD phrase are re-
solved, as shown in Table 32. For this invocation 462 *S
resolves to 0 and *T resolves to 1.

TABLE 32
Invocation: 7
FULLADD(O, 1, 0 <CARRYOUT>) {SCARRYOUT}
Active String:

FULLADD[(X,Y,C <CARRY>)

CARRY <OR(SCARRY1,$CARRY2)>
HALFADD(O,HALFADD(0,1 <CARRY1>) <CARRY2>)]
HALFADD[(S,T <COUT>)

COUT <AND(@O,1)>
OR(ANDNOT(0),1), AND(0O,NOT(1))) ]

invoking invocation 462 to the phrase that will resolve
it. This is accomplished by resolving all of the formal-
refs in the phrase. A formalref is resolved by replacing
it with its associated actual from the actualist of the
invoking invocation 462. An invocation 462 can be
resolved only when all of its actualist is fully formed so
all of the actuals replacing the formalrefs are objects.

The invocation 462 in the phrase consists of an invo-
cation 462 of HALFADD with another invocation 462
of HALFADD nested as its second actual. The nested
invocation 462 of HALFADD must be resolved first
but its actuals are not resolved either. The actuals in the
nested HALFADD are formalrefs.

The formalref *X resolves to 0, *Y resolves to 1 and
*C resolves to 0. Each of these elements is shown in
Table 30 below.

TABLE 30

35

40

45

After the resolution of the formalrefs there are three
invocations 462 in the phrase with fully formed names.
The two nested invocations 462 of NOT and the invo-
cation 462 of AND in the resultant. The fact that all
three input data names 464 are fully formed means that
there are no dependency relationships among the invo-
cations 462. The three invocations 462 can be resolved
simultaneously or in any order. If three interpreters 452
are available each invocation 462 can be resolved by a
different interpreter 452. The result of each invocation
462 is associated with a unique place in the string so the
simultaneous delivery of results will not conflict. It
must only be assured that two interpreters 452 do not
attempt to resolve the same invocation 462. Definitions
456 are arbitrarily replicable so that if two simultaneous
interpreters 452 require the same definition 456 each can

Invocation:
FULLADD(0, 1, 0 <CARRYOUT>) {SCARRYOUT}
Active String:
FULLADD[(X,Y,C <CARRY>)
CARRY<OR(SCARRY1,SCARRY2)>

HALFADD(O,HALFADD(0,1 <CARRY1>) <CARRY2>)]

After the resolution of the formalrefs the phrase can
be scanned for resolvable invocations 462 or resultants.
The CARRY resultant contains two resultrefs that asso-
ciate to resultlinks in each of the HALFADD invoca-
tions 462 so it cannot be resolved until both HAL-
FADD invocations 462 are resolved. One HALFADD
invocation 462 is nested inside the other so the nested

60

make its own copy of the definition 456 in the active
string 454 and each can proceed with the resolution of
its invocation 462 quite independently of the other,

The invocation 462 of AND will be resolved first by
copying the definition 456 into the active string 454.
The whole definition 456 is actually shown for conve-
nience of discussion below in Table 33.

TABLE 33

Invocation:
FULLADD(0, 1, 0 <CARRYOUT>) {SCARRYOUT}
Active String:
FULLADDI(X,Y,C <CARRY>)
CARRY <OR(SCARRY1,SCARRY2)>
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TABLE 33-continued
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HALFADD(O,HALFADD(0,1 <CARRY1>) <CARRY2>) ]

HALFADD[(S,T <COUT>)
COUT <AND(0,1)>
OR(AND(NOT(0),1), AND(O,NOT(1))) ]
ANDI(A,B) *A*B() ;00{0] 01[0] 10[0] 11[1] ]

The invocation 462 in the phrase of the AND defini-
tion 456 is an instance of an invocname being formed

A definition 456 with a phrase with no further associ-
ation references is a terminal definition 456 and is the

during resolution. It is also an example of data names 10 most primitive expressional element. It corresponds
becoming place names during the resolution of the ex- directly to a transform rule. A set of such definitions 456
pression. The invocname is formed when the formalrefs as are inside the definition 456 of AND forms a trans-
are resolved. It cannot be predetermined which termi- form rule set for AND. The AND definition 456 works
nal definition 456 inside the AND definition 456 will be exactly like a pure value expression. A name is formed.
invoked. The formation of the invocname corresponds 15 The correspondingly named transform rule is invoked
to the formation of an input data name 464 at the input  and the name is transformed according to the rule.
of an AND logic gate. The definitions 456 enclosed by Every expression 454 must resolve ultimately to a
the AND definition 456 correspond to the set of trans- progression of invocations 462 of terminal definitions
form rules associated with the AND logic gate. The 456 with no further reference appeals. Everything else
formation of the invocname determines which defini- 20 is just bookkeeping to form the correct ultimate pro-
tion 456 (transform rule) will be invoked to carry out gression of invocations 462 of terminal definitions 456,
the name transformation. as shown in Table 35 below.
TABLE 35
Invocation:
FULLADD(, 1,0 <CARRYOUT>) {SCARRYOUT}
Active String:

FULLADDI[(X,Y,C <CARRY>)

CARRY <OR(SCARRY1,SCARRY2)>
HALFADD(O,HALFADD(0,1 <CARRY1>) <CARRY2>)]
HALFADD[(S,T <COUT>)
COUT <AND(0,1)>
OR(ANDNOT(0),1),AND(O,NOT(1))) 1

ANDI[(A,B) 0 ;00[0] 01[0] 10[0] 11{1] ]

The formalrefs *A and *B are resolved. For this
invocation 462 *A resolves to 0 and *B resolves to 1 as
shown below in Table 34.

TABLE 34

There are no further unresolved references in the
3 phrase of AND so the phrase is fully resolved and the
result object is returned to resolve the invocation 462 of

Invocation:
FULLADD(O, 1,0 <CARRYOUT>) {SCARRYOUT}
Active String:
FULLADD[(X,Y,C <CARRY>)
CARRY<OR(SCARRYLSCARRY2)>

HALFADD(O,HALFADD(0,1 <CARRY1>) <CARRY2>)]

HALFADD[(S,T <COUT>)
COUT <AND(0,1)>
OR(AND(NOT(0),1),AND(O,NOT(1))) 1
ANDI(A,B) 010 ;00[0] 01[0] 10[0} 11[1] ]

The resolution of the formalrefs in this instance re-
sulted in an invocname being formed. The association
list of the invocation 462 is empty. 01( ) will invoke the
definition 456 01[0]. The phrase of this definition 456
has no further association references and is a primitive

AND. The two invocations 462 of NOT are similarly

o Tesolved in terms of the definition 456 of NOT. The
definitions 456 of AND and NOT having performed
their duty are deleted from the active string 454, as
shown below in Table 36.

TABLE 36
Invocation:
FULLADD(, 1,0 <CARRYOUT>) {SCARRYOUT}
Active String:

FULLADD[(X,Y,C <CARRY>)

CARRY <OR($CARRY1,$CARRY2)>
HALFADD(0,HALFADD(0,1 <CARRY1>) <CARRY2>)]
HALFADD[(S,T <COUT>)

COUT <0>

OR(AND(1,1), AND(0,0)) ]

object so the phrase is directly the result of the invoca-
tion 462. The result object is returned to replace the
entire invocation 462. So the invocation 462 01( ) is
resolved to 0.

Now the actualists of the two ANDS are fully formed

65 and the COUT resultant is an object. The two ANDs
can be resolved simultaneously or in any order. The
COUT resultant can also deliver its result value through

its association links to any associated resultrefs which in
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this case is the $CARRY1. COUT <0> associates by
name correspondence to <COUT> in the definition
456 association list which associates by position corre-
spondence to <CARRY1> in the invocation 462 asso-
ciation list which by name correspondence associates to
$CARRY1 elsewhere in the invocation’s 462 phrase.
The $CARRY1 reference is resolved to 0 and the resul-
tant, having performed its duty is deleted from the ac-
tive string 454.

The two AND invocations 462 are resolved by in-
voking the definition 456 of AND just like before, as
shown below in Table 37.

TABLE 37

84
TABLE 41

Invocation:
FULLADD(0, 1, 0 <CARRYOUT>) {SCARRYOUT}
Active String:
5 FULLADDI[(X,Y,C <CARRY>)
CARRY <0>
1]

There are no further unresolved references in the

10 CARRY resultant so it can be resolved by delivering
the result object to the associated resultrefs which in
this case is the SCARRYOUT reference. The CARRY

Invocation:
FULLADD(0, 1,0 <CARRYOUT>) {$SCARRYOUT}
Active String:
FULLADDI(X,Y,C <CARRY>)
CARRY <OR(0,5CARRY2)>

HALFADD(Q,HALFADD(0,1 <CARRY1>) <CARRY2>)]

HALFADD[(S,T <COUT>)
OR(l, 0)]

The OR invocation 462 now has a fully resolved
actualist making a fully formed invocation 462 that can
be resolved. It is resolved by invoking the definition 456
of OR just like the AND invocations 462 were resolved
as shown in Table 38.

TABLE 38

resultant can then deleted from the active string 454, as
shown in Table 42.

25 TABLE 42

FULLADD(0, 1, 0 <CARRYOUT>) {0}
FULLADD[(X,Y,C <CARRY>)

Invocation:
FULLADD(0, 1,0 <CARRYOUT>) {SCARRYOUT}
Active String:
FULLADDI[(X,Y,C <CARRY>)
CARRY <OR(0,5CARRY2)>

-HALFADD(O,HALFADD(@,1 <CARRY1>) <CARRY2>)]

HALFADDI(S,T <COUT>)
1]

There are no further unresolved references in the
HALFADD phrase so the result object can be returned
by replacing the entire HALFADD invocation 462
with the result object. So the nested HALFADD invo-
cation 462 resolves to 1 and the HALFADD definition
456 is deleted from the active string 454, as shown in
Table 39.

TABLE 39

Invocation:
FULLADD(0, 1,0 <CARRYOUT>) {$SCARRYOUT}
Active String:
FULLADD[(X,Y,C <CARRY>)
CARRY <OR(0,5CARRY2)>
HALFADD(0,1 <CARRY2>)]

The other HALFADD invocation 462 now has a
fully formed actualist and can be resolved by invoking
the definition 456 of HALFADD just like before. This
will resolve the result reference SCARRY?2 to 0 and the
invocation 462 itself to 1, as shown in Table 40.

TABLE 40

Invocation:
FULLADD(0, 1,0 <CARRYOUT>) {$SCARRYOUT}
Active String:
FULLADD[X,Y,C <CARRY>)
CARRY <OR(0,0)>
1]

The OR invocation 462 in the CARRY resultant now
has a validly formed actualist and can be resolved, as
shown in Table 41.

1]

40 There are no further references in the phrase for the

FULLADD definition 456 so the result object can be
returned to resolve the FULLADD invocation 462 and
the FULLADD definition 456 can be deleted from the
active string 454, as shown in Table 43.

» TABLE 43
Invocation:
1 {0}
50 The FULLADD invocation 462 is now fully re-

solved and the result object structure is left in the active
string 454. The place value is 1 and the carry value is 0.

4.1.12 Summary Of the Example

The character string expression 454 and the circuit
diagram both express the same process. They both ex-
press the same progression of data name 464 formation
dependency and resolution relationships. The associa-
tion relationships in the character string expression 454
form transmission pathways for data objects that corre-
spond identically to the interconmection transmission
paths of the logic circuit.

The first step of resolution of the string expression
454 is to transmit the input data name 464 formed by the
actual list of the FULLADD invocation 462 along
association pathways into the phrase of the FULLADD
definition 456 by replacing each formalref in the phrase
with its associated actual object. The input data name

55

65
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464 objects then become actual list objects in another
invocation 462 and are similarly transmitted along asso-
ciation pathways to the phrase in the HALFADD defi-
nition 456 and find themselves in the actual lists of yet
other invocations 462. The AND invocation 462 in-
vokes the AND definition 456 and the input data ob-
Jects are once again transmitted along association path-
ways to the phrase in the AND definition 456 but this
time they are not associated to the actual list but are
associated to the invocname of the invocation 462. The
characters previously forming a data name 464 are now
forming a place name within the expression 454. The
association list of the invocation 462 is empty because
this is an invocation of a terminal definition 456 with a
constant phrase. The constant phrase of the terminal
definition 456 is returned to replace the invocation 462
and results wind their way backwards through result
return association pathways. These result return associ-
ation pathways are the definition-to-invocation 462
association and the resultant-to-resultlink-to-resultref
associations.

The data objects flow through the character string
expression just like voltage levels flow through the
wires of a logic circuit. They eventually reach a termi-
nal definition 456 where they are combined to form an
invocation 462 name, just like an input name 464 form-
ing at the input to a logic gate. The set of definitions 456
inside a terminal definition 456 such as the AND defini-
tion 456 is the set of value transform rules that form the
truth table for the AND function just like the transistor
circuit that effectively forms the truth table of an AND
logic gate.

Most of the expression 454 consists of managing the
flow of data name objects to get the right objects to-
gether at the right time and in the right place to form
the right input data names 464 to be properly trans-
formed by terminal definitions 456. These association
relationships in the string expression 454 are delivery
pathways for deferred specifications that were not spec-
ified in the definitions 456 of the possibility expression
458 because their exact form was uncertain and could
not be predeterminable.

4.2 Object Structures, Actualists and Iteration

A resolved object is a bounded syntax structure of
values with no association relationship with any place
else in the expression. Compositional object structures
are represented by nested brace relationships. The most
primitive object is a single character. The first stage of
composition is just the direct association of characters
as a contiguous string. Each character is inherently
delimited in the contiguous string so the first stage of
composition does not need to be explicitly delimited. A
number for instance can be expressed as 4359 instead of
as {4H3}H5}{9}. Further stages of compositional rela-
tionships must be explicitly delimited by balanced
braces. An array of three numbers is represented as
{{2343{123}{567}}. Further stages of composition are
expressed by more nesting. A 3X3 matrix of numbers
for instance would be expressed as shown in Table 44.

TABLE 44

{ {{234}{123H{567}}
{{987H654}{321}}
{{3753{295}{158}} }

An object structure is decomposed as it passes
through an actualist because its next lower level of
composition can appear as multiple actuals. The essen-
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tial question when an invocation 462 associates with a
definition 456 is what are the boundaries of the actuals
in the actualist? What are the sequence of actuals to be
matched by the sequence of formalnames in the formal-
ist? The general rule for determining actuals in an actu-
alist of an invocation 462 is that if unencapsulated com-
mas are present, then the commas determine the bound-
aries of the actuals. If commas are encapsulated inside
an object, they do not bound actuals. If commas are not
present, the elements boundaries are determined by the
outermost object boundaries within the invocation 462
parenthesis. The string actually matched as an actual to
be transmitted to a definition 456 does not include its
delimiting syntax. With the delimiting syntax left behind
one layer of bounding syntax is stripped from the object
structure. A few examples, as shown in Table 45, will
best convey the general idea.

TABLE 45

INV({{234}{123}{567}}) has 1 actual {234}{123}{567}.
INV({234}{123}{567}) has 3 actuals 234 and 123 and 567.
INV({234}{123},{567}) has 2 actuals {234}{123} and {567}.
INV({567}) has 1 actual 567.

INV({{234}{123}}{567}) has 2 actuals {234}{123} and 567.
INV(567) has 3 actuals 5 and 6 and 7.

INV(7) has 1 actual 7. ,

INV({2343{123}567) has 5 actuals 234 and 123 and 5 and 6 and 7.
INV({234}{1,2,3},567) has 2 actuals {234}{1,2,3} and 567.

Object structures are decomposed during resolution
by the syntax stripping rule. A single object
{{234}{123}{567}} will turn into its component objects
{234}{123}{567} with one passage through an invoca-
tion 462 actualist. Decomposition can be suppressed by
commas in the association list. If commas delimit the
actuals then the commas get stripped rather than a layer
of braces.

4.2.1 Iteration

The resolution of an object structure which can have
composition stages of unpredeterminable size must in-
volve iteration through each element of each composi-
tion stage to decompose each stage to its component
elements. Each iteration must break off one component

" of the composition level. The primary facility for this is

the formalref syntax element *! that matches the remain-
ing actuals of an arbitrarily long actualist that are not
matched by explicit formalrefs in the formalist of a
definition 456. It can match the left or the right of a list
depending on its position in the formalist. The following
in Table 46 are some examples.

TABLE 46
Matchleft ~ DEF[(,A)...] DEF[(,A,B)...]
Match right DEF[(A,")...]  DEF[A,B,)...]

The ! does not strip bounding syntax of the actuals
that it matches . The whole point is to retain the object
structure through iterations of decomposition. For in-
stance with the formal list INV[(!, A) the formalrefs *!
and *A will match the indicated strings for the follow-
ing examples (shown in Table 47) .

TABLE 47

INV(6789) *! will match 678. *A will match 9.
INV{67}{89}{34}) *! will match {67}{89}. *A will match 34.
INV(6,7,8,9) *! will match 6,7,8. *A will match 9.

INV(67,89) *! will match 67. *A will match 89.
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Termination is determined by recognizing an empty
actualist. The empty actualist is recognized with the
resolution rule that an invocation 462 that fails to form
an input name 464 is always replaced by the NULL
string. If the association list of an invocation 462 is 5
NULL there is no input name 464 to resolve so it has no
significance in the expression 454. The invocation 462 in
fact never happens.

The significance of this for iteration is that iteration
terminates when there are no more object elements to
resolve. If there are no more object elements the associ-
ation lists of the invocations 462 doing the resolution
will become NULL.

The following two examples will illustrate in detail
the resolution of an object structure via iteration 15
through the structure.

10

88

process. The tradeoffs involved are the same tradeoffs
discussed in section 2. The long terminal definition
names work perfectly well in the string expression but
may not map directly to other forms of expressions that
cannot support long named transform rules with posi-
tion significance. DIDITADD can be directly ex-
pressed as set transform rules because there is no uncer-
tainty about the size of the input data names 464 formed
for digit addition.

DIGITADD is expressed this way for this example
to make the preceding point and to keep the resolution
discussion to a reasonable length. The resolution of an
invocation 462 of INTEGERADD will be presented in
detail. Details of resolution presented in the previous
example will not be detailed again but will simply be
indicated (See Table 49).

TABLE 49

Invocation:

INTEGERADD(110,10)

Definition:

INTEGERADD[(A,B)
ITERATE(BODY(*A), TAIL(*A), BODY(*B), TAIL(*B), 0)

]

4.3 Arbitrary Length Integer Addition 2

The following possibility expression 458, shown in
Table 48 will add two integers of any length.

TABLE 48

The active string 454 is begun with the invocation
462 of the input data name 464 of INTEGERADD
presenting two numbers of different lengths in its actu-
alist as the actuality expression 460 to be resolved (see

Definition:
INTEGERADD{(A,B)
ITERATE(BODY(*A), TAIL(*A), BODY(*B), TAIL(*B), 0)
ITERATE[(V, W, X, Y, 2)
ITERATE(BODY(*V), TAIL(*V), BODY(*X), TAIL(*X),
-$CARRY)
DIGITADD( *W, *Y, *Z, <CARRY> );
DIGITADDI[(R, S, T <COUT>)
COUT<3C>
*R*S*T(<C>);
O[(<CARRY>) CARRY
1[(<CARRY>) CARRY
00[(<CARRY>) CARRY
01[(<CARRY>) CARRY
10[(<CARRY>) CARRY
11[(<CARRY>) CARRY
000[(<CARRY >) CARRY
001[(<CARRY>) CARRY
010[(<CARRY>) CARRY
011[(<CARRY>) CARRY
100[(<CARRY >) CARRY
101{(<CARRY>) CARRY
110[(<CARRY>) CARRY

<
<
<
<
<
<
<
<
<
<
<
<
<
111[(<CARRY>) CARRY <

VVVVVVVVVVVVVYV
OO O e i OO O -

0
0
0
1
0
0
0
1
0
1
1
1

]

1
BODY[(, A) %]
TAIL[(, A) *A ]

It will be noticed that DIGITADD is expressed in
terms of terminal definitions 456 with long definition
names. This is quite different from the previous example
of DIGITADD. The two examples express the same

Table 50). The invocation 462 list is fully formed so the
definition 456 of INTEGERADD can be immediately
invoked.

TABLE 50

Invocation:

INTEGERADD(110,10)
Active String:
INTEGERADD[(A,B)
ITERATE(BODY(110), TAIL(110),BODY(10), TAIL(10),0)

BODY[(, A) *]
TAIL[(, A) *A ]
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After the substitution of actuals for formalrefs the
four invocations 462 of BODY and TAIL are fully
formed and their definitions 456 can be invoked. It will
be noticed that the rightmost actual of ITERATE is a
resolved object beginning the add with a carryin of 0. 5

The formalists of both of these definitions 456 match
one rightmost actual and the ! matches the rest of the
actuals to the left of the rightmost actual. BODY re-
turns the leftmost portion of the actualist. TAIL returns
only the rightmost element of the actualist, as shown in
Table 51.

TABLE 51

Invocation:
INTEGERADD(110,10)
Active String:
INTEGERADDI(A,B)
ITERATE(BODY(110), TAIL(110),BODY(10), TAIL(10), 0)
BODY[(, A) 11]
TAIL[(, A)O1]

15

20

Only the first BODY and the first TAIL with the
actualist 110 will be detailed. After formalref substitu-
tion BODY and TAIL are comipletely resolved and can
return their results, as shown in Table 52. 25

90

TABLE 54-continued
000[(<CARRY>) CARRY< 0> 0]

The BODY and TAIL invocations 462 have returned
their results. It will be noticed that BODY(1) returned
a null result because there wasn’t any actuals left of the
rightmost element. After formalref substitution for
DIGITADD the invocation 462 in the phrase inside
DIGITADD is fully formed.

The definition 456 named 000 can now be invoked.
000 is a terminal definition 456 with an empty formalist
and a phrase that is already fully resolved. There are
two results to return. One result returns by direct substi-
tution of the invocation 462. The other result returns via
the resultant to $C, as shown in Table 55.

TABLE 55

Invocation:

INTEGERADD(110,10)

Active String:

INTEGERADD((A,B)
ITERATE(11,0,1,0,0)]
ITERATE[(V, W, X, Y, Z2)

ITERATE(L, 1,, 1, SCARRY )
DIGITADD( 0, 0,0, <CARRY> )]
DIGITADD[(R, S, T <COUT>)

COUT<0>
TABLE 52 0]
Invocation:
INTEGERADD(110,10) The phrase of DIGITADD is now fully resolved and
A"“‘I';g‘é'ééRADD AB 30 both results can be returned. The one by direct substitu-
ITERATE( 1[1(0 1) 0,0)] tion of the invocation 462 and the other via the result
ITERATE[(V, W, X, Y, Z) reference association path to SCARRY, as shown in
ITERATE( BODY(*V), TAIL(*V), BODY(*X), Table 56.
TAIL(*X), SCARRY )
DIGITADD( *W, *Y, *Z, <CARRY> )] 35 TABLE 56
Invocation:
After the results of the BODY and TAIL invocations Acﬁf,gf,if:RADDmo’m)
462 are returned the ITERATE invocation 462 is fully INTEGERADDI(A,B)

formed and the definition 456 of ITERATE can be

invoked, as shown in Table 53. 40
TABLE 53
Invocation:
INTEGERADD(110,10)
Active String:
INTEGERADD[(A,B) 45

ITERATE(11,0,1,0,0)]
ITERATE[V, W, X, Y, Z)

ITERATE( BODY(11), TAIL(11), BODY(1), TAIL(1),
$CARRY )

DIGITADD( 0, 0, 0, <CARRY> )]

DIGITADDI(R, S, T <COUT>)
COUT<$C>
*R*S*T(<C>) ]

50

After formalref substitution the BODY and TAIL
and DIGITADD invocations 462 are fully formed and 55
their definitions 456 can be invoked, as shown in Table
54.

TABLE 54

Invocation:

INTEGERADD(110,10)

Active String:

INTEGERADDI(A,B)
ITERATE(11,0,1,0,0)]
ITERATE[V, W, X, Y, 2)

ITERATE( ], 1,, 1, SCARRY )
DIGITADD( 0, 0, 0, <CARRY> )]
DIGITADDI(R, S, T <COUT>)
COUT<SC>
000(<C>) 1]

60
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ITERATE( 11,0, 1,0,0)]
ITERATE[(V, W, X, Y, Z)
ITERATE(L, 1,,1,0)
0]
ITERATE[(V, W, X, Y, Z)
ITERATE(BODY(*V), TAIL(*V), BODY(*X),
TAIL(*X), SCARRY)
DIGITADD( *W, *Y, *Z, <CARRY> ) ]

The second invocation 462 of ITERATE is now fully
formed and its definition 456 can be invoked again, as
shown in Table 57.

TABLE 57

Invocation:

INTEGERADD(110,10)

Active String:

INTEGERADD{(A,B)
ITERATE(11,0,1,0,0)]
ITERATE(V, W, X, Y, Z2)

ITERATE(1,1,,1,0)
0]
ITERATE[(V, W, X, Y, Z)
ITERATE( BODY(1), TAIL(1), BODY(),
TAIL(), $CARRY )
DIGITADD( 1, 1, 0, <CARRY> )]
DIGITADDI(R, S, T <COUT>)
COUT<SC>
*RAS*T(<C>) ]

Formalref substitution results in several fully formed
invocations 462. One BODY and one TAIL invocation
462 failed to form a valid input name 464 in their actual-
ist and since the definition 456 has a formalist they will
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resolve to a NULL string. The DIGITADD invocation
462 is fully formed so its definition 456 can be invoked
again, as shown in Table 58.

TABLE 58

Invocation:
INTEGERADD(110,10)
Active String:
INTEGERADDI(A,B)
ITERATE( 11,0, 1,0,0) ]
ITERATE(V, W, X, Y, Z)

ITERATE( 1, 1,,1,0)

0]

ITERATE[(V, W, X, Y, Z)
ITERATEC(, 1,,, $CARRY)
DIGITADD( 1, 1,0, <CARRY> )]
DIGITADDI[(R, S, T <COUT>)

COUT <$C>
110(<C>) ]
110[(<CARRY>) CARRY< 1 > 0]

The formalref substitution in DIGITADD this time
results in an invocation 462 of the definition 456 named
110. Definition 456 110 returns O by substitution and
returns 1 via the resultant, as shown in Table 59.

TABLE 59

Invocation:
INTEGERADD(110,10)
Active String:
INTEGERADDI(A,B)
ITERATE(11,0,1,0,0)]
ITERATE[(V, W, X, Y, Z)
ITERATE(1,1,,1,0)
0]
ITERATE[(V, W, X, Y, Z)
ITERATEC(, 1,,, SCARRY)
DIGITADD( 1, 1, 0, <CARRY> )]
DIGITADD[(R, S, T <COUT>)
COUT<1>
0]

The phrase of DIGITADD is fully resolved and both
results can be returned, as shown in Table 60.

TABLE 60
Invocation:
INTEGERADD(110,10)
Active String:

INTEGERADD[(A,B)
ITERATE(11,0,1,0,0)]
ITERATE[(V, W, X, Y, Z)
ITERATE(1, 1,,1,0)
0]
ITERATE[(V, W, X, Y, Z)
ITERATE(, 1,,,1)
0]
ITERATE[V, W, X, Y, Z)
ITERATE( BODY(*V), TAIL(*V),
BODY(*X), TAIL(*X), SCARRY )
DIGITADD( *W, *Y, *Z, <CARRY> )]

The ITERATE invocation 462 is now fully formed
and its definition 456 can be invoked, as shown in Table
61.
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TABLE 61-continued

ITERATE[(V, W, X, Y, Z)
ITERATE( BODY(), TAIL( ), BODY(),
TAIL(), SCARRY )
DIGITADD( 1,, 1, <CARRY> )]
DIGITADDI(R, S, T <COUT>)
COUT<$C>
*R*SIT(<C>) ]

Formalref substitution gave all of the BODY and
TAIL invocations 462 NULL actualists so they will
resolve to NULL strings. The DIGITADD invocation
462 is fully formed so its definition 456 can be invoked
again, as shown in Table 62.

TABLE 62

Invocation:
INTEGERADD(110,10)
Active String:
INTEGERADD[(A,B)
ITERATE(11,0,1,0,0)]
ITERATE[(V, W, X, Y, 2)
ITERATE(1,1,,1,0)
0]
ITERATE[(V, W, X, Y, Z)

ITERATE(, 1,,,1)

0]

ITERATE[(V, W, X, Y, Z)
ITERATE(,,,, $CARRY )
DIGITADD( 1,, 1, <CARRY> )]
DIGITADDI[(R, S, T <COUT>)

COUT<$C>
11(<C>) ]
11[(<CARRY>) CARRY< 1 > 0]

This time since one of the list elements of the DIGI-
TADD invocation 462 was NULL the formalref substi-
tution forms a two character invocname 11. The defini-
tion 456 named specifies a 0 direct substitution return
and a 1 result reference return. All of the BODY and
TAIL invocations 462 in the ITERATE invocation 462
have returned NULL strings, as shown in Table 63.

TABLE 63

Invocation:

INTERGERADD(110,10)

Active String:

INTERGERADD[(A,B)
ITERATE(11,0,1,0,0)]
ITERATE[(V, W, X, Y, 2)

ITERATE(1,1,,1,0)
0]
ITERATE[(V, W, X, Y, 2)

ITERATE(, 1,,,1)

0]

ITERATE[(V, W, X, Y, Z)
ITERATEC(,,,, SCARRY)
DIGITADD( 1,, 1, <CARRY> )]
DIGITADDI[R, S, T <COUT>)

COoUT<1>
0]

The results of the invocation of 11 are returned to the
DIGITADD phrase, as shown in Table 64.

TABLE 61 TABLE 64
Invocation: 60 Invocation:
INTEGERADIX110,10) INTEGERADD(110,10)
Active String: Active String:
INTEGERADDJ(A,B) INTEGERADD[(A,B)
ITERATE(11,0,1,0,0)] ITERATE(11,0,1,0,0)]
ITERATE[(V, W, X, Y, Z) ITERATE[(V, W, X, Y, Z)
ITERATE(L, 1,,1,0) 65 ITERATE[(1,1,,1,0)

0]

ITERATE[(V, W, X, Y, Z)
ITERATE(, 1,,, 1)
0]

0]

ITERATE[(V, W, X, Y, Z)
ITERATE(, 1,,, 1)
0]
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TABLE 64-continued

ITERATE[(V, W, X, Y, Z)

ITERATE(, ,,,1)

(13

ITERATE[(V, W, X, Y, Z)
ITERATEC , ,, 1)
0;

ITERATE(BODY(*V),TAIL(*V),
BODY(*X), TAIL(*X),
$CARRY)

DIGITADD(*W,*Y,*Z, <CARRY >) ]

Returning the DIGITADD results to the ITERATE
invocation 462 still forms a valid input name 464 so
ITERATE must be invoked again, as shown in Table
65.

TABLE 65

Invocation:

INTEGERADD(110,10)

Active String:

INTEGERADD[(A,B)
ITERATE(11,0,1,0,0)]
ITERATE[(V, W, X, Y, Z)

ITERATE(L, 1,,1,0)
0]
ITERATE[(V, W, X, Y, Z2)
ITERATE(: 1:11 1)
0]
ITERATE[(V, W, X, Y, Z)
ITERATE(,,,, 1)
0}
ITERATE[(V, W, X, Y, Z)
ITERATE(BODY( ), TAIL(),
BODY( ), TAIL(), SCARRY)
DIGITADD(,, 1,<CARRY>) ]
DIGITADDI[(R, S, T <COUT>)
COUT<$C>
*RES*T(<C>) ]

Formalref substitution results in DIGITADD form-
ing an input name 464 so DIGITADD must be invoked
again. All the BODY and TAIL invocations 462 have
NULL actualists so will return NULL strings, as shown
in Table 66.

TABLE 66

Invocation:
INTEGERADD(110,10)
Active String:
INTEGERADDJ(A,B)
ITERATE(11,0,1,0,0)]
ITERATE[(V, W, X, Y, Z2)
ITERATE( 1, 1,,1,0)
0]
ITERATE[(V, W, X, Y, Z)
ITERATE(, 1,,,1)
0]
ITERATE[V, W, X, Y, 2)

ITERATE(,,,, 1)

0]

ITERATE[(V, W, X, Y, Z)
ITERATE(, ,, ,5CARRY)
DIGITADD(, , 1, <CARRY>)]
DIGITADDI[(R, S, T <COUT>)

COUT<$C>
K<C>)]
1[(<CARRY>)CARRY < >1]

After formalref substitution the invocname of 1 is
formed. The definitions 456 of 1 and 0 inside DIGI-
TADD are special cases. The only way a single digit
name can form is if the primary numbers are depleted
and the single digit is the last carry value and the addi-
tion is completed. The termination is managed by re-
turning a NULL carry value. Therefore, the definition
456 named 1 returns a 1 by direct substitution and re-
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turns a NULL via the resultant. The definition 456 of 0
returns NULL for both results, as shown in Table 67.

TABLE 67

Invocation:

INTEGERADD(110,10)

Active String:

INTEGERADD[(A,B)
ITERATE(11,0,1,0,0)]
ITERATE[(V, W, X, Y, Z)

ITERATE(L, 1,,1,0)

0]

ITERATE[(V, W, X, Y, Z)
ITERATE(, 1,,,1)
0]
ITERATE[(V, W, X, Y, Z)

ITERATE(,,,,1)

0]

ITERATE[(V, W, X, Y, Z)
ITERATE(, ,, ,SCARRY)
DIGITADD(,, 1,<CARRY>)]
DIGITADD|(R, S, T <COUT>)

COUT< >
1]

Both of the DIGITADD results can now be re-
turned, as shown in Table 68.

TABLE 68

Invocation:
INTEGERADD(110,10)
Active String:
INTEGERADDI[(A,B)
ITERATE(11,0,1,0,0)]
ITERATE[(V, W, X, Y, Z)
ITERATE(1, 1,,1,0)
0]
ITERATE[(V, W, X, Y, Z)
ITERATE(, 1,,,1)
0]
ITERATE[(V, W, X, Y, Z)
ITERATE(,,,,1)
0]
ITERATE[(V, W, X, Y, Z)
ITERATE(,,,,)
1]

Because the result returned to SCARRY was NULL
the ITERATE invocation 462 failed to form an input
name 464 and will be replaced with NULL, as shown in
Table 69.

TABLE 69

Invocation:
INTEGERADD(110,10)
Active String:
INTEGERADD{(A,B)
ITERATE(11,0,1,0,0)]
ITERATE[(V, W, X, Y, Z)
ITERATE(1, 1,,1,0)
0]
ITERATE[(V, W, X, Y, Z)
ITERATE(, 1,,,1)
0]
ITERATE[(V, W, X, Y, Z)
ITERATE(,,,,1)
0]
ITERATE[(V, W, X, Y, Z)
1]

The phrase of the last invocation 462 of ITERATE is
now fully resolved and the result object can be returned
to replace its invocation 462, as shown in Table 70.

TABLE 70

Invocation:
INTEGERADD(110,10)
Active String:
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TABLE 70-continued

INTEGERADDI(A,B)
ITERATE(11,0,1,0,0)]
ITERATE[(V, W, X, Y, Z)

ITERATE(], 1,, 1, 0)

0]

ITERATE[(V, W, X, Y, Z)
ITERATE(, 1,,, 1)

0}

ITERATE[(V, W, X, Y, Z)
1
0]

The next to last invocation 462 is now resolved and
its result can be returned, as shown in Table 71.

TABLE 71

Invocation:
INTEGERADD(110,10)
Active String:
INTEGERADDI[(A,B)
ITERATE(11,0,1,0,0)]
ITERATE[(V, W, X, Y, Z)
ITERATE(1,1,,1,0)
0]
ITERATE[(V, W, X, Y, Z)
1

0
0]

The next one is now fully resolved and its result can
be returned, as shown in Table 72.

TABLE 72

Invocation:
INTEGERADD(110,10)
Active String:
INTEGERADDI(A,B)
ITERATE(11,0,1,0,0)]
ITERATE[(V, W, X, Y, Z)
1

0
0
0]
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The first invocation 462 of ITERATE is fully re- 40

solved and its result can be returned, as shown in Table
73.

TABLE 73

Invocation:
INTEGERADD(110,10)
Active String:
INTEGERADD[(A,B)
1

0
0
0]

The phrase of INTEGERADD is now fully resolved
and its result 466 can be returned, as shown in Table 74.

TABLE 74

Invocation:
1000

Consolidating the values on a single line and substi-
tuting them for the invocation 462 of INTEGERADD
provides the correct answer in the active string 454 to
the invocation 462 of INTEGERADD.
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4.4 Resolution of Multiple Level Composite Structure 6

The next example of VECTORADD, shown in
Table 75, illustrates the iterative decomposition and

96
resolution of a higher level composite object structure.
The expression 454 must not only account for the de-
composition of the input data 464 object structure but
must also account for the composition of the result 466
object structure.

TABLE 75

VECTROADDI[(A,B)
{ITERATE(BODY(*A), TAIL(*A), BODY(*B), TAIL(*B))};
ITERATE[(V, W, X, Y, Z)

ITERATE#(BODY(*V), TAIL(*V), BODY(*X), TAIL(*X))
{INTEFERADD#(*W, *Y)}

BODY[(A) DECOMPOSE(*A); DECOMPOSE](,, B) {*}]]
TAIL{(A) DECOMPOSE(*A); DECOMPOSE[(, B) *B]]
]

It will be noticed that the same names are used for
definitions 456 inside VECTORADD as were used
inside INTEGERADD. Since these are encapsulated
inside each definition 456 they are local to each and
cannot be referred to from outside the definition 456.
The BODY and TAIL definitions 456 are performing
essentially the same service but are quite different from
their counterparts inside DIGITADD. How BODY
and TAIL work in decomposing an object structure
depends on how the object structure is composed in
terms of the deferred specification associations and on
how it is presented in an actualist. There are many pos-
sibilities but once the possibility expression 458 is ren-
dered the composition structure and actualist presenta-
tion format of the actuality expression 460 is deter-
mined. An input invocation 462 could for instance pres-
ent two three element vectors solely in terms of the
object structure syntax or as separated by commas, as
shown in Table 76.

TABLE 76

VECTROADD{{110}{10}{11}} {{111}{1011H10}})
VECTROADD{{110}{10}{11}}, {{111}{1011}{10}})

Either actualist will work but the details of how the
definition 456 phrase strips the syntax will be different
for each. The example possibility expression 458 as-
sumes the comma in the actuality expression 460. A
detailed presentation of the resolution of the example
expression 458 follows, as shown in Table 77.

TABLE 77

Invocation:
VECTORADD({{110}{10}{11}}, {{111}{1011}{10}})
Definition:
VECTORADDI(A,B)
{ITERATE(BODY(*A), TAIL(*A), BODY(*B), TAIL(*B))}]

The active string 454 begins with the input invocation
462 which presents the actuality expression 460 in its
actualist as two object structures expressing two three
element vectors of integers. The invocation 462 is fully
formed so the definition 456 of VECTORADD can be
invoked. The phrase in VECTORADD is an object
structure enclosing an invocation 462. The braces of the
object structure will enclose the result of the invocation
so that the result of VECTORADD will be an object
structure, as shown in Table 78.

TABLE 78

VECTORADD{{110}{10}{11}}, {{111}{1011}{10}})

Active String:
VECTORADD{(A,B)
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TABLE 78-continued

{ITERATEBODY{{110}{10}{11}}), TAIL({{110}{10}{11}}),
BODY({{111}{1011}{10}}), TAIL{{111}{1011}{10}}))}
BODY[(A) DECOMPOSE(*A) ;DECOMPOSE[(, B) {*}]]
TAIL[(A) DECOMPOSE(*A) ;DECOMPOSE[(!, B) *B]]

]

The actuals are distributed to the formalrefs of the
phrase. The delimiting syntax for the actuals of the
"VECTORADD invocation 462 actualist is the comma 1
so the comma is dropped but all of the braces remain as
part of each actual.

All of the BODY and TAIL invocations 462 are fully
formed so they can be invoked and resolved simulta-
neously or in any order, as shown in Table 79. 1

TABLE 79

o

3
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they are stripped from the actual during formalref sub-
stitution.
So the BODY and TAIL definitions 456 extract inte-
gers one at a time from the vector object structure

5 through successive invocations of ITERATE, as shown

in Table 81.
TABLE 81

VECTORADD{{110}{10}:{11}}, {{1113{1011}{10}})

Active String:

VECTORADDI(A,B)
{ITERATEBODY({{110}{10}{11}}), TAIL{{110}{10}{11}}),
BODY({{111}{1011}{10}}), TAIL{{111}H{1011}{10}})}
BODY[(A) {{110}{10}};]
TAIL[(A) 11;]

Invocation:
VECTORADD{{110}{10}{11}}, {{111}{1011}{10}})
Active String:
VECTORADDI(A,B)
{ITERATEBODY{{110}{10}{11}}), TAIL{{110}{10}:{11}}),
BODY({{111}{1011}{10}}), TAIL{{111}{1011}{10}}))}

BODY[(A) DECOMPOSE({110}{10}{11}); DECOMPOSE[(, B) {*!}]}

TAIL[(A) DECOMPOSE({110}{10}{11});DECOMPOSEI(, B) *B]]

The invocations 462 of the first BODY and first
TAIL will be followed. The invocation 462 BO-
DY({{110}{10}{11}}) has one actual because the de-
limiting syntax is the outermost braces of the object
structure. The actual is {110}{10}{11}. Because the
outermost braces are the delimiting syntax they are
stripped when formalref substitution is carried out. So
the string {110}{10}{11} is substituted for the formal
reference *A in the DECOMPOSE invocation 462.
This opens up the object structure so that the compo-
nent objects can be accessed. The DECOMPOSE invo-
cation 462 receives three actuals from the substitution of
one formalref, as shown in Table 80.

TABLE 80

Invocation:
VECTORADD({{110}{10}{11}}, {{111}{1011}{10}})
Active String:

VECTORADDI(A,B)
{ITERATEBODY({{110}{10}{11}}), TAIL{{110}{10}{11}}),
BODY({{111}{1011}{10}}), TAIL{{111}{1011}{10}})}
BODY[(A) DECOMPOSE({110}{10}11});

DECOMPOSEI(, B) {{110}{10}}]]
TAIL[(A) DECOMPOSE({110}{10}{11});

DECOMPOSE((, B) 11]]

1

5

The definitions 456 of DECOMPOSE can now be
invoked. They are isolated within the definitions 456 of
BODY and TAIL so there is no ambiguity about which
definition of DECOMPOSE goes with which invoca-
tion 462 of DECOMPOSE.

The DECOMPOSE definition 456 inside TAIL
matches the rightmost actual. The DECOMPOSE in-

5

0

5

side BODY matches the rest of the actuals to the left of 60

the rightmost actual. The DECOMPOSE inside BODY
reencapsulates the matched actuals with braces to re-
store the original object structure. The ! does not strip
delimiting syntax from matched actuals. The whole

point of ! is to maintain syntactic structure for later 65

decomposition. The DECOMPOSE for TAIL simply
matches the rightmost actual to extract it from the list.
Since the enclosing braces are the delimiting syntax

The BODY phrase resolves to {{110}{10}} which is
a two element vector structure. The TAIL phrase re-
solves to 11 which was the rightmost element of the
vector structure. The other vector is decomposed simi-
larly by invocations 462 of BODY and TAIL, as shown
in Table 82.

TABLE 82

Invocation:

VECTORADD({{110}{10}{11}}, {{111}{1011}{10}})

Active String:

VECTORADD[(A,B)
{ITERATE({{uo}{lo}} 11, {{111}{1011}}. 10)};
ITERATE[(V, W, X, Y, Z)
ITERATE#(BODY(*V), TAIL(*V), BODY(*X), TAIL(*X))
{INTEGERADD#(*W, *Y)}

After substituting the results of the BODY and TAIL
invocations 462 the ITERATE invocation 462 is fully
formed and the definition 456 of ITERATE can be
invoked. The phrase of this definition 456 will add the
extracted integers and invoke ITERATE again to ex-
tract another pair of integers from the vectors. The
workings of INTEGERADD were detailed in the last
example and will not be detailed in this example. It will
be noticed that the invocation 462 of INTEGERADD
is inside an object structure so that its result will become
part of a result object structure, as shown in Table 83.

TABLE 83

Invocation:
VECTORADD{{110H{10}{11}}, {{111}{1011}{10}})
Active String:
VECTORADDI(A,B)
{ITERATE({{110}{10}}, 11, {{111}{1011}}, 10)};
ITERATE[(V, W, X, Y)
ITERATE#BODY({{110}{10}}), TAIL{{110}{10}}),
BODY({{111}{1011}}), TAIL({{111}{1011}}))
INTEGERADD#(11, 10)}]
1




5,355,496

99
Formalref substitution results in the BODY and
TAIL invocations 462 being fully formed. These can all
proceed simultaneously or in any order. The IN-
TEGERADD invocation 462 is also fully formed but
its resolution is delayed because it is a delayedinvoc.

4.4.1 The Delayedinvoc

The delayedinvoc is an invocation 462 that is sup-
pressed from being invoked in the phrase it is specified
in, as shown in Table 84. All the references of the invo-
cation 462 will be resolved within the phrase so that the
invocname, and actualist are fully resolved. Only the
resolution of the invocation 462 itself is delayed.

TABLE 84

delayedinvoc = invocname# (actualist-resultlist)

The delayedinvoc will be returned as a result with the
other resolved objects of the phrase. When it is returned
the # is stripped and it is transformed into a regular
invocation 462 that can be resolved, as shown in Table
85.

TABLE 85

Invocation:
VECTORADD{{110}{10}{113}, {{111}{1011}{10}})
Active String:
VECTORADD[(A,B)
{ITERATE{{110}{10}}, 11, {{111}{1011}}, 10)};
ITERATE[(V, W, X, Y)
ITERATE#({{110}}, 10, {{111}}, 1011)
{INTEGERADD#(11, 10)}]
1

Since the ITERATE and INTERGERADD invoca-
tions 462 in the phrase are delayedinvocs these invoca-
tions 462 are not resolved in the phrase but are returned
as result objects to the invoking invocation 462. When
they are returned they are transformed into regular
invocations 462. So the phrase in ITERATE is fully
resolved and can be returned to replace the ITERATE
invocation 462, as shown in Table 86.

TABLE 86
Invocation:
VECTORADD{{110}{10}{11}}, {{111}{1011}{10}})
Active String:
VECTORADDI(A,B)

{ITERATE({{110}}, 10, {{111}}, 1011)
{INTEGERADD(11, 10)}}
ITERATE[(V, W, X, Y, Z)
ITERATE#(BODY(*V), TAIL(*V), BODY(*X), TAIL(*X))
{INTEGERADD#(*W, *Y)}]

]

The return operation turns the delayedinvocs into
regular invocations 462 which are then resolvable. As-
suming that the ITERATE invocations 462 are re-
solved much faster than the INTEGERADD invoca-
tions 462 the effect will be of spawning multiple concur-
rent INTEGERADD:. It will be assumed for this ex-
ample that the INTEGERADD invocations 462 take
arbitrarily different times to resolve.

The definitions 456 of ITERATE and IN-
TEGERADD can now be invoked, as shown in Table
87. The invoking and resolution of INTEGERADD
will not be detailed.

TABLE 87

Invocation:
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TABLE 87-continued

VECTORADD({{110}{103{11}}, {{111:{1011}{10}})
Active String:

VECTORADDJ(A,B)
{ITERATE{{110}}, 10, {{111}}, 1011)
{INTEGERADD(11, 10)}}]
ITERATE[(V, W, X, Y)

ITERATE#BODY({{110}}), TAIL({{110}}),
BODY({{111}}), TAIL({{111}}))

{INTEGERADD#(10, 1011)}
BODY[(A) DECOMPOSE(*A); DECOMPOSEI(, B) {*}]]
TAIL[(A) DECOMPOSE(*A); DECOMPOSE[(, B) *B]]

Formalref substitutions again leave the BODY,
TAIL and INTEGERADD invocations 462 fully
formed so their definitions 456 can be invoked, as
shown in Table 88.

Because this is the last stage of decomposition of the
vectors the invocations 462 of BODY and TAIL will be
detailed again.

TABLE 88

Invocation:
VECTORADD{{110H{10}{11}}, {{111}{1011}{10}})
Active String:
VECTORADD{(A,B)
{ITERATE{{110}}, 10, {{1113}, 1011)
{INTEGERADD(11, 10)}}
ITERATE[(V, W, X, Y)
ITERATE#BODY{{110}}), TAIL{{110}}),
BODY({{111}}), TAIL{{111}}))
{INTEGERADD#(10, 1011)}]
BODY[(A) DECOMPOSE({110}); DECOMPOSE[(, B) {*}]]
TAIL[(A) DECOMPOSE({110}); DECOMPOSE[(, B) *B]]

The formalist substitution leaves one actual in the
invocation 462 of each DECOMPOSE invocation 462,
as shown in Table 89.

TABLE 89

VECTORADD{{110}{10}{113}, {{111}{1011}{10}})
Active String:
VECTORADDI(A,B)
{ITERATE({{110}}, 10, {{111}}, 1011)
{INTEGERADD(11, 10)}}
ITERATE[(V, W, X, Y)
ITERATE#BODY({{110}}), TAIL({{110}}),
BODY({{111}}), TAIL{{1113}}))
{INTEGERADD#(10, 1011)}]
BODY[(A) DECOMPOSE({110}); DECOMPOSE[(, B) { }]]
TAIL[(A) DECOMPOSE({110}); DECOMPOSE[(, B) 110 ]

This single actual of the DECOMPOSE invocation
462 is the rightmost actual and there are no actuals to
the left of it so *B of the TAIL definition 456 of DE-
COMPOSE matches the actual and *! of the BODY
definition 456 of DECOMPOSE matches the NULL
string, as shown in Table 90.

TABLE 90

Invocation:
VECTORADD{{110}{10}{11}}, {{111{1011}{10}})
Active String:
VECTORADD [(A,B)
{ITERATE( {{110}}, 10, {{111}}, 1011 )
{ INTEGERADD(11,10) }}
ITERATE[(V, W, X, Y)
ITERATE#( BODY({{110}}), TAIL({{110}}),
BODY{{111}}), TAIL{{111}}))
{ INTEGERADD#( 10, 1011 ) } ]
BODY[(A){ };]
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TABLE 90-continued

102
TABLE 94-continued

TAIL[(A) 1105 ]

Co 5
So the phrase of BODY becomes an empty object
structure and the phrase of TAIL becomes the last
vector element, as shown in Table 91.

TABLE 91

10

Invocation:
VECTORADD({{110}{10H{11}}, {{111}{1011}{10}})
Active String:
VECTORADDI(A, B)
{ITERATE( {{110}}, 10, {{111}}, 1011)
{ INTEGERADD( 11, 10) } }
ITERATE[(V, W, X, Y)
ITERATE#( {}, 110, {},111)
{ INTEGERADD#( 10, 1011) } ]

15

]

Substituting the result objects 466 from body and 20
TAIL leave the phrase of ITERATE fully resolved.
Again since the invocations 462 in the phrase are
delayedinvocs they are not resolved but are returned as
result objects 466, as shown in Table 92.

TABLE 92

25

Invocation:
VECTORADD{{110}103{113}}, {{111}{1011}{10}})
Active String:
VECTORADD{(A,B)
{ITERATE({}, 110, {}, 111)
{ INTEGERADD( 10, 1011) }
{INTEGERADD(11,10) } }
ITERATE[V, W, X, Y, Z)
ITERATE#( BODY(*V), TAIL(*V), BOD(*X),
TAIL(*X))
{ INTEGERADD#( *W, *Y ) } ]

30

35
]

After substituting the results for the invocation 462 of
ITERATE the new invocations 462 of ITERATE and
INTEGERADD become resolvable and their defini-
tions 456 can be invoked. This sets the stage for the last
invocation 462 of ITERATE, as shown in Table 93.

TABLE 93

Invocation: 45
VECTORADD{{110}{10}{11}}, {{111}{1011}{10}})
Active String:
VECTORADDI(A,B)
{ITERATE({ }, 110, {}, 111)
{ INTEGERADDX 10, 1011) } .

{ INTEGERADIDX 11, 10) } }
ITERATE[(V, W, X, Y, Z)
I’{I;ERATE#(BODY({}), TAIL ({}), BODY ({}), TAIL
(%))
{ INTEGERADD#( 110, 111) } ]
]

55

Formalref substitution leaves an empty object struc-
ture in the actualists of the BODY and TAIL invoca-
tions 462. The last invocation 462 of INTEGERADD is
also fully formed, as shown in Table 94.

TABLE 94

Invocation:
VECTORADD({{110H{10}{11}}, {{111}{1011}{10}})
Active String:
VECTORADD{(A,B)
{ITERATE({ }, 110,{ }, 111)
{ INTEGERADD( 10, 1011) }
{ INTEGERADD( 11,10) } }
ITERATE[(V, W, X, Y, Z)

ITERATE#(BODY({}), TAIL{}), BODY({}),
TAIL{})
{ INTEGERADD#( 110, 111 ) } ]
BODY[(A) DECOMPOSE( ) ;DECOMPOSE[(, B) { * }]]
TAIL[(A) DECOMPOSE( ) ;DECOMPOSE((, B) *B ] ]
]

Formalref substitution striping off the braces leaves
the actualist of the DECOMPOSE invocations 462
empty or NULL, as shown in Table 95.

TABLE 95

Invocation:
VECTORADD{{110}{10}{113}, {{111{1011}{10}})
Active String:
VECTORADD[(A,B)
{ITERATE({ }, 110, { }, 111)
{ INTEGERADD( 10, 1011 ) }
{ INTEGERADD( 11,10) } }
ITERATE[(V, W, X, Y, Z)
ITERATE#BODY({}), TAIL{}), BODY({}),
TAIL{})
{ INTEGERADD#( 110, 111) } ]
BODY[(A) ;]
TAIL[(A) ;]
1

Since they failed to form an input name the invoca-
tions 462 automatically become NULL without appeal
to their definitions 456, as shown in Table 96.

TABLE 96

Invocation:
VECTORADD({{110}{10}{11}}, {{111}{1011}{10}})
Active String:
VECTORADDI[(A,B)
{ITERATE({ }, 110, {}, 111)
{ INTEGERADIX 10, 1011 ) }
{INTEGERADD(11,10) } }
ITERATE[(V, W, X, Y, Z)
ITERATE#(,,)
{ INTEGERADD#( 110, 111) } ]
]

After the NULL strings from BODY and TAIL are
returned the last ITERATE invocation 462 fails to form
an input data name 464. The phrase is fully resolved and
can be returned to replace the invocation 462, as shown
in Table 97.

TABLE 97

Invocation:
VECTORADD({{110}{10}{11}}, {{111}{1011}{10}})
Active String:
VECTORADDI[(A, B)
{ITERATE(, ,)
{ INTEGERADD( 110, 111) }
{ INTEGERADD( 10, 1011 ) }
{ INTEGERADD( 11,10) } } ]

The ITERATE invocation 462 is now resolvable but
it failed to form an input data name 464 so it resolves to
NULL, as shown in Table 98.

TABLE 98

Invocation:
VECTORADD({{110{10}{11}}, {{111}{1011}{10}}
Active String:
VECTORADDI(A,B)
{{ INTEGERADD( 110, 111) }
{ INTEGERADD( 10, 1011 ) }
{ INTEGERADD( 11,10) } } ]
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This leaves three INTEGERADD invocations 462
to be resolved. Their definitions 456 have been concur-
rently invoked and are churning away and their results
may be returned at any time. Assume that the middle
invocation 462 wins the race and returns its value first, 5
as shown in Table 99.

TABLE 99

Invocation:
VECTORADD{{110}{10}{1133, {{111}-{1011}{10}})

Active String: 10
VECTORADD[(A,B)
{{ INTEGERADD( 110, 111 ) }
{1101}
{ INTEGERADD( 11, 10) } } ]
15

The middle invocation 462 of INTEGERADD is
resolved and replaced with its result value, as shown in
Table 100.

TABLE 100

2l
Invocation: 0
VECTORADD{{110}{10}{11}}, {{111}{10113{10}})
Active String:
VECTORADD{(A,B)
{{ INTEGERADD( 110, 111 ) }
{1101}

{101}}] %

The first invocation 462 of ITERATE is now com-
pleted so the result object can be returned to its associ-
ated invocation 462, as shown in Table 101.

TABLE 101

30

Invocation:
VECTORADD({{110}{10}{11}}, {{111}{1011}{10}})
Active String:
VECTORADDI(A,B)
{1101}
{1101}
{10131

35

The last invocation 462 of INTEGRERADD is fi-
nally resolved and the entire phrase of VECTORADD
becomes fully resolved. The VECTORADD result
object can now be returned to replace the VEC-
TORADD invocation 462, as shown in Table 102.

TABLE 102 4
Invocation:
{{1101{1101}{1013}
Rearranging the result onto a single line and return- 50

ing it to replace the invocation 462 leaves the result
object structure in the active string 454 representing the
result vector.

4.5 Strict Sequence and Nonreplicable Definitions 55

There are other structures of the string expression
458 not yet covered by the examples. It may occasion-
ally be necessary or convenient to express strict sequen-
tiality. The semicolon specifies that all of the clauses to
the left of the semicolon must be resolved before any 60
clauses to the right of the semicolon can be resolved, as
shown in Table 103.

TABLE 103
phrase = clause | phrase;clause | phrase?clause
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This can be used to express initialization activity to be
carried out before any other activity or to faithfully

104

express the characteristics of another phrase which is
strictly sequential.

4.5.1 Nonreplicable Definitions

A nonreplicable definition 456 is just what the name
implies. It cannot be copied for purposes of concurrent
activity. All of the definitions 456 shown so far are
arbitrarily replicable. If several invocations 462 simuita-
neously refer to the same definition 456 all the invoca-
tions 462 can proceed simultaneously each with its own
private copy of the definition 456. There are no depen-
dency relationships among separate invocations 462 of
the same definition 456.

There are expressional circumstances where a defini-
tion 456 cannot be replicated or copied. One circum-
stance is where dependency relationships do exist. An
example of this might be to stably maintain globally
referencable objects that are occasionally updated and
the update must be indivisible. Most objects in an ex-
pression are maintained dynamically in the active string
454 as they flow through phrases which appear and
disappear. A nonreplicable definition 456 is constant
element of expression in the string. Another circum-
stance is where a definition 456 simply cannot be repli-
cated. The definition 456 for instance may be expressed
in hardware and cannot physically be copied by the
available resolution procedures.

The essence of these circumstances is that the defini-
tion 456 cannot be replicated to support concurrent
resolution activity. Invocations 462 of the definition 456
must be serialized so that only one invocation 462 at a
time is being resolved by the definition 456. There may
be several invocations 462 simultaneously referring to a
nonreplicable definition 456 but their access must be
managed so that only one at a time is actually resolved
by the definition 456.

A nonreplicable definition 456 is identified by the
syntactic modifier @, as shown in Table 104.

TABLE 104
nonreplicable = defname@ [(formalist-resultlist)body]

Any definition 456 can be a nonreplicable but the
content of a nonreplicable is usually just an object. This
object can be replaced with a redefinition. A redefini-
tion is an invocation 462 with the same syntactic modi-
fier @, as shown in Table 105.

TABLE 105

redefinition = invocname@ (phrase)

A redefinition will replace the content of the nonre-
plicable definition 456 with the resolved object of the
phrase. Since the redefinition, like an invocation 462,
must be fully resolved there is no possibility of replac-
ing the body of a nonreplicable definition 456 with a
phrase. The body can only be replaced with an object
structure. Since there can only be one copy of the defi-
nition 456 and since only one reference at a time can
access the definition 456 there is no ambiguity of update
or of subsequent reference.

A nonreplicable definition 456 is a place in the string
expression to maintain objects apart from the dynamic
volatility of expression resolution in the active string
454. A nonreplicable can be used to represent memory
aspects of expressions wherever explicit memory stor-
age is required. It can also be used to explicitly repre-
sent the memory storage aspects of existing expressions.
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Sets of nonreplicable definitions 456 with unique names
can be treated as a general memory stores just like the
various memory aspects of traditional architectures and
languages.

106
TABLE 107

narrative = \ any character string /

The following example, shown in Table 106, illus- S . .
trates part of an expression 458 of a simple CPU archi- 4.6 Indefinite Iteration Loops
tecture. INTEGERADD is a high level command to The indefinitely active resolution loop necessary for
add two integers together. The objects in its association process resolution can be expressed with the delayedin-
list however, are not the objects but the names of the  voc. The example, as shown in Table 108, will execute
nonreplicable definitions 456 that the objects are stored 10 a sequence of instructions stored in nonreplicable defini-
in. They are the addresses of the memory locations. tions 456 representing memory.
TABLE 106 TABLE 108
\\ High level command / Definition:
INTEGERADD(623 ,456, 295) 15 EXECUTE[(ADDRESS)
\. Machine intruction level / EXECUTE#(SNEXT)
INTEGERADDI[(A, B, S) SETUP(READMEM(*ADDRESS) <NEXT>)
LOAD( ACCUM, *A); ADD/ACCUM, *B); SETUP[(OP, A, B, R, NEXADDR <NEXT>)
STORE(ACCUM, *S) ] *OP(*A, *B, *R) NEXT<*NEXADDR >
\ Micro instruction level / 1
LOADI[(REGISTER, ADDRESS) 1
ADDRBUS( *ADDRESS, MAR); 20 Invocation:
READMEM(); EXECUTE(6983)
DATABUSMDR, *REGISTER) ] Active String:
ADD[(REGISTER, ADDRESS) EXECUTE[(ADDRESS)
ADDRBUS( *ADDRESS, MAR); EXECUTE#(SNEXT)
READMEM(); SETUP(READMEM(6983) <NEXT>)
ADDFUN() ] 25 SETUP[(OP, A, B, R, NEXADDR <NEXT>)
STORE [(REGISTER, ADDRESS) *OP(*A, *B, *R) NEXT <*NEXADDR >
ADDRBUS( *ADDRESS, MAR) 1
DATABUS( *REGISTER, MDR); ]
WRITEMEMQ) ]
WRITEMEME [ MARO@(MDR() )] . ) .
READMEM@[MDR@( MAR() () )] 30 The EXECUTE invocation 462 is fully formed. The
ADDFUN[ACCUM (ADDCIRCUIT( ACCUM( ), actual of the EXECUTE invocation 462 is the name of
Mgk(&)gsicﬁon level » the nonreplicable with the next instruction. The defini-
ADDRBUS@IFROM, T0) tion 456 of EXECUTE is invoked and formalref substi-
*TO@( *FROM() ) } tution is performed, as shown in Table 109.
DATABUS OM, TO
o (Lronoy 35 TABLE 109
\\ general memory storage elements Invocation:
: EXECUTE(6983)
295@|[5] Active String:
: EXECUTE[{ADDRESS)
456@[3] 40 EXECUTE#(SNEXT)
: SETUP({ADD}543}{798}{453}{6984} <NEXT>)
623@[0] SETUP[(OP, A, B, R, NEXADDR <NEXT>)
: *OP(*A, *B, *R) NEXT <*NEXADDR >
\ Control registers / ]
ACCUM@I0] \ accumulator / ]
MDR@I0] \ Memory data register / 45
MAR@[0] \ Memory address register /
Thf:{ nonreplicable definition 456 named 6983 con-
. tains {ADD}{543}{798}{453}{6984}. SETUP is fully
All of the noncopyable parts of the expression458are o o and its definition 456 can be invoked, as shown
expressed as nonreplicable definitions 456. The memory in Table 110
elements, the control registers and data registers are all sg )
nonreplicable memory elements. The busses are nonre- TABLE 110
plicable but are not memory elements but are just not Invocation:
copyable. Resolution of invocations 462 is strictly seri- A ,EXSE(_:UTE(6983)
alized during resolution as with real busses in real archi- °“‘§XE%"€.i.E[( ADDRESS)
tectures. 55 EXECUTE#(SNEXT)
The invocations 462 inside the INTEGERADD defi- SETUPE{ADD}{543}{798}{453}{6984} <NEXT>)
nition 456 are sequentialized by the semicolon delimiter. SETUPI(OP, A, B, R, NEXADDR <NEXT>)
Each invocation 462 express one machine level instruc- ] ADD(543, 798, 453) NEXT <6984 >
tion. Each machine level instruction is defined as a ]
sequence of micro level or register transfer level in- 60
fgﬁ:;;sné;:hgl ]itesritsrar;sfers a:le;: ar::lelfl):;;t }:Za:‘;: SETUP sets up the instruction to be resolved. After
definition 45‘ 6 us 15 expressed by P formalref substitution there is an invocation 462 of
The narrati've syntax structure is also introduced in ADD that can proceed and the resultant NEXT can
this example, as shown in Table 197, Anything between 65 return its object to the resultref SNEXT, as shown in

opening and closing slashes is treated as comment and
ignored during resolution. In addition, the narrative
comments can be nested.

Table 111.
TABLE 111

Invocation:
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TABLE 111-continued

EXECUTE(6983)
Active String:
EXECUTE [(ADDRESS)

EXECUTE#(6984)

SETUP ({ADD}543}{798}{453}{6984} <NEXT>)

SETUP [(OP, A, B, R, NEXADDR <NEXT>)

ADD(543, 798, 453)
]

]

The resultant is deleted. Eventually the invocation
462 of ADD completes and because it operating indi-
rectly through memory locations a NULL string is
returned. The result for SETUP is then NULL and the
NULL string is returned to the invocation 462 in EXE-
CUTE. This leaves only the delayedinvoc as the result
of the EXECUTE phrase to be returned, as shown in
Table 112,

TABLE 112

Invocation:
EXECUTE(6983)
Active String:
EXECUTE[(ADDRESS)
EXECUTE#(6984)
]

When the delayedinvoc is returned the # is removed
and the invocation 462 becomes resolvable. So the invo-
cation 462 of EXECUTE turns into another invocation
462 of EXECUTE with a different actual data name, as
shown in Table 113.

TABLE 113

Invocation:
EXECUTE(6984)

This cycle can continue indefinitely until the value of
NEXADDR is a NULL string and the delayedinvoc of
EXECUTE is returned with a NULL actualist where-
upon the invocation 462 itself is replaced with the
NULL string and nothing further occurs until another
invocation 462 of EXECUTE is seeded.

4.7 The Failure Alternative

An invocation 462 can fail on two ways, as shown in
Table 114. It might fail to form an input data name 464
or it might fail to associate with a corresponding defini-
tion 456 because a correspondingly named definition
456 does not exist in the string 454. In either case the
failed invocation 462 is replaced with the NULL or
empty string. In many cases of failure it might be de-
sired to specify alternative clauses to proceed in case of
failure. The failure alternative provides this facility.

The failure alternative is specified by a ? that delimits
clauses of a phrase.

TABLE 114

phrase = clause | phrase;clause | phraselclause

The clauses are resolved in order from left to right. If
the leftmost clause generates a nonNULL result object
then that object is the result object for the entire phrase
and all clauses to the right of the ? are ignored and
discarded. If the first clause fails to generate a result
object and resolves to a NULL string then the next
clause to the right of the first ? is resolved. If this clause
fails then the next is tried and so on. If all the clauses are
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resolved to the NULL string then the NULL string is
returned as the result object of the phrase
The alternative clause might be an exception report-
ing function or an alternative specification for resolving
the input name 464. The following example illustrates
the failure alternative structure, as shown in Table 115.

TABLE 115

Definition:
FATHER[(A)
FATHERLIST(*A) ? SPOUSE#(ALTERNATEMOTHER #
(*A))
ALTERNATEFATHER[(A)
FATHERLIST[(A)
*AQ; ]
JOHN [TOD]
BIL [BOB]

FATHERLIST(*A)]

]

SPOUSE[(A)
*AQ;
TOD [ALICE]
JOHN [MARTHA]
ALICE [TOD]

]

MOTHER[(A)
MOTHERLIST(*A) ? SPOUSE#
(ALTERNATEFATHER#(*A))]

ALTERNATEMOTHER([(A) MOTHERLIST(*A)]

MOTHERLIST[(A)

*AQ;

MARY [JANE]
TOM [BETTY)]

]

The invocation 462 MOTHER(JOHN) will not re-
solve directly. There is no definition 456 for JOHN( )
inside MOTHER so the invocation 462 will fail and the
next alternative will be tried which tries to find the
spouse of the father of JOHN. These are delayedinvocs
and will be returned to replace the invocation 462 MO-
THER(JOHN). If either the FATHER invocation 462
or the SPOUSE invocation 462 fails then the result will
be NULL.

4.8. Process Expression as Uncertainty and Deferred
Specification

Uncertainty is the essence of process expression. At
every place of resolution in a process there is an uncer-
tain specification to be resolved that could not be pre-
specified in the possibility expression 458. The question
is which of several possible process activities will pro-
ceed. The possible activities can be prespecified and the
question can be preformulated but the answer to the
question cannot be prespecified. Which possible activity
will actually proceed must be deferred until the time of
resolution when the deferred specification is provided
by the actuality expression 460. The actuality expres-
sion 460 determines which possible activity will pro-
ceed and with the uncertainty resolved the selected
process activity can proceed.

The form of expression of the possibilities 458, the
question and the answer must all correspond. The speci-
fication provided by the actuality expression 460 must
effectively answer the question as posed by the possibil-
ity expression 458. If the question is posed in terms of
molecular shape the answer must be delivered as a mo-
lecular shape. Answers in terms of voltage patterns
must resolve questions posed in terms of voltage pat-
terns. No matter what actual form of expression these
elements assume the answer can be characterized in
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general as a formed name that selects a named possibil-
ity. The possibility expression 458 establishes the names
of the possibilities and poses the question in terms of
those names. The actuality expression 460 forms and
delivers a name 466 that will answer the question posed
by the possibility expression 458.

4.8.1 Uncertainty of Name Formation

Uncertainty of name formation is the first and most
primitive uncertainty of process expression. The pri-
mary concern of a pure value expression is which value
transform names will be formed by the asserted values
of the freely associating variables. When variables are
directly associated the question is still which value
transform rule names will be formed by their asserted
values.

While the name 464 that will form cannot be prespec-
ified the place within the process expression where the
name 464 is to come from can be prespecified. For pure
value expressions 454 this is the particular value domain
that the asserts result values that can form the name 464
in question. For variable association expressions 454 the
name 464 is formed by the variables directly associated
with the place of resolution. For directionalized vari-
able association expressions 454 expressed in terms of
interaction loci each interaction locus is a place of name
formation and resolution within the expression 454. The
input data name 464 of each interaction locus is formed
by the result variables directly associated with its input
variables.

These direct name 464 formation association relation-
ships specifying where a formed name will come from
can be prespecified and can be an integral part of the
possibility expression 458. The expression of a name 464
formation association relationship might be a wire, a
memory address, a gravity well, physical proximity, a
name correspondence, value correspondence and so
forth. Such name 464 formation association relation-
ships can form large directly associated networks of
places of name resolution.

In a string expression 454 an invocation 462 repre-
sents a place of input data name 464 formation. The
input data name 464 is formed by the actualist of the
invocation 462. Each part of the input data name 464 is
represented by an actual in the actualist of the invoca-
tion 462. For an invocation 462 whose name 464 forma-
tion is deferred each actual of the actualist will be an
association reference to some other place in the expres-
sion where its part of the deferred data name will come
from. The association reference may be a nested syntax
structure or a name correspondence relationship, as
shown in Table 116.

TABLE 116

CARRY<OR(SCARRY1,3CARRY2)>
HALFADD(*CHALFADD(*X,*Y <CARRY1>)
<CARRY2>)

In the above example phrase, shown in Table 116, the
two actuals of the nested inner HALFADD invocation
462 and the first actual of the outer HALFADD invo-
cation 462 are formalrefs associated by name correspon-
dence to formalnames in the formalist of the enclosing
definition 456. The second actual of the outer HAL-
FADD invocation 462 is associated by nested syntax
structure to the replacement result of the invocation 462
of the nested HALFADD invocation 462. The two
actuals in the OR invocation 462 in the first line are
resultrefs associated by name correspondence to result-
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links in each of the HALFADD invocations 462. Every
element of the phrase is a deferred specification and is
an association reference to some other place in the ex-
pression 458.

As long as input data name 464 formation depen-
dency relationships can be fully predetermined they can
be expressed as association relationships in a single
phrase.

4.8.2 Uncertainty of Where a Name Will Come From

At some point in the specification of a phrase a new
kind of uncertainty arises. For a particular group of
input data name 464 parts (actuals) it is not only not
possible to predetermine what name will be formed but
it is also not possible to predetermine where these input
data name 464 parts will come from.

This uncertainty arises from several circumstances.
An inherent source of uncertainty of association arises
when the size of a formed data name 464 cannot be
predetermined. An integer for instance is composed of
an arbitrary number of digits. A vector is composed of
an arbitrary number of integers. And so on. It cannot in
general be predetermined how many of the smaller
input data names 464 (digits) the larger input data names
464 (integers) are composed of. It cannot therefore be
predetermined how many smaller names 464 must be
resolved to resolve the larger name 464. For instance, in
resolving an integer addition, the number of digit addi-
tion input data names 464 formed to be resolved by digit
addition cannot be predetermined. All the places of
digit addition input data name 464 formation in the
process expression cannot be predetermined.

Another source of uncertainty can arise because a
generally useful phrase has been expressed that is appli-
cable in many contexts and must be globally and arbi-
trarily available. A generally formed input data name
464 might, for instance, form in the context of another
uncertainly formed input data name 464. So it cannot in
general be predetermined where commonly formed
input data names 464 will be formed during resolution
of a process.

Another source of uncertainty in a process expression
is explicit conditionality (see Table 117).

If it cannot be predetermined where data name 464
parts of a particular phrase will come from, then the
specification of the association relationships themselves
must be deferred.

TABLI1 117

COUT<AND(*S,*T)>
OR(AND(NOT(*S),*T),AND(*S NOT(*T))),

In the above phrase, shown in Table 117, from the full
adder example all the direct association relationships
within this phrase are syntactic nesting relationships.
The NOT invocations 462 are nested in the AND invo-
cations 462 and the AND invocations 462 are nested in
the OR invocation 462. *X, *Y, *C, *S and *T in the
above-phrase represent input data name 464 parts that
cannot be directly associated within the phrase and
whose source within the process expression cannot be
predetermined. These will be called orphan name parts.

These orphan data name parts of a single phrase have
one property in common. All of the data name 464 parts
must be present simultaneously to form the input data
name 464 for the invocation 462 to resolve. If one or-
phan data name part is not present the input data name
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464 is not fully formed and the invocation 462 is not
fully formed. So it must be insured that all the orphan
name parts are present before resolution proceeds.
Since all of the data name 464 parts must be available
simultaneously they can all be treated as a single input
data name 464 to be formed. The orphan data name
parts of the various input data names 464 inside the
phrase can be gathered together and deferred as a single
composite input data name 464 for the phrase as a whole
which must be completely formed before being pres-
ented to the phrase and resolved. A composite input
data name 464 can be formed anywhere in the process
expression. There must be a means of associating a2 name
464 formed anywhere in the process expression with the
phrase that will receive and resolve the name 464.

The phrase itself must be encapsulated as a single
place in the process expression. At each place of name
464 formation the name 464 must be assembled and it
must be determined when the name 464 is completed
and can be resolved. The formed name 464 is associated
with the phrase by associating the place of name 464
formation with the place of the phrase in the process
expression.

Since it cannot be predetermined where a name 464
will be formed in the process expression this association
relationship cannot be expressed by a syntactic relation-
ship such as nesting but can only be expressed by a place
name correspondence relationship between the two
places. The place of the phrase must be named and the
place of name 464 formation must be syntactically asso-
ciated with a place name which corresponds to the
place name of the phrase. The assembled name 464 must
then be associated with the resolving phrase such that
each part of the formed name 464 corresponds to the
correct orphan name part of the composed input data
name 464 of the phrase.

The encapsulation of a phrase and the deferred for-
mation of a composite input data name 464 will be
called a reference boundary.

4.8.3 The Reference Boundary

For the string expression 454 the reference boundary
consists of two parts; the definition 456 and the invoca-
tion 462. The definition 456 provides the encapsulation
of the phrase and consolidation of the orphan data name
parts into a single composite input data name 464 at one
place in the process expression. The invocation 462
provides the place of formation and validation of the
composite input data name 464 and associates it with the
definition 456 containing the resolving phrase.

A definition 456 collects the orphan name parts of the
phrase in the formalist of the definition 456. The formal-
ist becomes the single composite data name 464 to be
formed. The orphan name parts in the phrase are repre-
sented by formalrefs which are associated by name
correspondence to the formalnames of the formalist.
The formalrefs representing the orphan name parts in
the phrase of the following example definition 456 are
*X, *Y, and *C. They correspond to the names (X, Y,
C) in the formal list of the definition 456. The defname
is the name of the place of the definition 456 that encap-
sulates the phrase, as shown in Table 118.

TABLE 118

FULLADDIX,Y,C <CARRY>)
CARRY <OR(SCARRY1,$CARRY2)>
HALFADD(*C,HALFADD(*X,*Y <CARRY1>)
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TABLE 118-continued
<CARRY2>)

The deferred composite input data name 464 com-
posed of the orphan name parts of the phrase becomes
a single input data name 464 to the definition 456. Just
like any other input data name 464 in the process expres-
sion it must be fully formed before being resolved by the
definition 456.

Composite input data name 464 formation is repre-
sented by invocations 462. The actualist of the invoca-
tion 462 is the composite input data name 464 to be
formed and the invocname of the invocation 462 is the
association to the place of the correspondingly named
definition 456 that encapsulates the phrase that will
resolve the formed composite input data name 464.

The association relationship between the invocation
462 and the definition 456 can be deferred when the
formation of the invocname is deferred or when the
formation of the entire invocation 462 is deferred. The
invocname of the invocation 462 is deferred just like
any other deferred specification in the expression 454 by
association relationships with the place in the expres-
sion 454 where the name 464 will come from. When the
deferred invocname is delivered, the invocation 462 can
be associated with the correspondingly named defini-
tion 456. Until the deferred invocname is delivered it
cannot be determined which definition 456 the invoca-
tion 462 will associate with. -

An example of a deferred invocation 462 name forma-
tion is the OR definition 456 from the example, as
shown in Table 119.

TABLE 119
OR[(A,B) *A*B() 00[0] 01[1] 10[1] 11[1]]

The formalrefs *A*B will form the invocname of the
invocation 462 which can then be associated to one of
the terminal definitions 456 inside the OR definition
456.

The formation of the entire invocation 462 is deferred
in the cases of indefinite generative iteration as in the
INTEGERADD and VECTORADD examples. To
add two integers of unknown length for instance it is
known that FULLADD must invoked but it is not -
known how many times FULLADD must be invoked.
Complete invocations 462 must be formed and associ-
ated as they are needed during resolution.

4.8.4 The Hierarchical Structure of Compound
Uncertainty

This reference boundary created by the definition 456
establishes a hierarchical relationship between the place
of reference of the definition 456 and the places of refer-
ence of the orphan data names in the phrase. The or-
phan data names’ places of reference are isolated within
and nested within the definition’s 456 place of reference
within the process expression.

The encapsulation by the definition 456 is an ex-
tended deference of name formation specification. The
definition 456 boundary means that the deferred orphan
names have to travel a longer association pathway to
get to their place of effective specification. They have
to associate through the invocation 462 actualist,
through the definition 456 formalist to the formalrefs in
the expression. As definitions 456 encapsulate defini-
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tions 456 building hierarchical levels of reference these
association pathways get longer and longer.

The places of the most primitive deferred input data
name 464 formations leave specification holes in the
expression 458. Extended association relationships
through levels of name composition by definition en-
capsulation grows each deferred specification into a
long pathway of deference. Each primitive deferred
specification in the ultimately presented actuality ex-
pression 460 which is just a structure of deferred specifi-
cations must travel along its proper pathway of defer-
ence and complete its assigned specification. The possi-
bility expression 458 of a process is uncertainties on top
of uncertainties expressed by a compound structure of
deferred specifications.

The deferred specifications get composed through
stages of definition encapsulation until all the deferred
specification of the entire process expression are com-
posed into one single monstrously complicated compos-
ite input data name 464 constituting the form of the
actuality expression 460 for the process. The structure
of the actuality expression 460 must correspond to the
structure of the association pathways of deferred speci-
fications in the possibility expression 458. Each individ-
ual deferred specification of the actuality expression 460
must get on its proper path and proceed through all the
pathway branchings to its proper place in the possibility
expression 458 so that all of the possible activity of the
process is specified and occurs.

The fitting of the specifications of the actuality ex-
pression 460 into the proper places of deferred specifi-
cation in the possibility expression 458 is a matter of
decomposing the actuality expression 460 in the reverse
order of its composition as deferred specifications.

Almost all of the effort of resolution is directed to
decomposing the actuality expression 460 to its individ-
ual specifications and delivering each specification to its
place of original deferment in the possibility expression
458. When each specification arrives at its place of de-
ferment a small piece of process activity is fully speci-
fied and can be carried out. Quantitatively these small
processes are a small part of the overall resolution effort
and qualitatively they are quite trivial. Complexity and
its costs resides in decomposing the compound structure
of the input data name 464 determined by the structure
of the deferred specifications. An example in 2 more
familiar form may illustrate the universality of this point
more clearly. The example is an integer matrix addition
routine in a typical sequential language expression form
on a typical sequential computer (see Table 120). MA-
TRIX1 is added to MATRIX2 to produce MATRIX3
all of which are N by M.

TABLE 120

PROCEDURE MATRIXADD (MATRIX1, MATRIX2,
MATRIX3, N, M)
BEGIN
FORI=1TON
FORJ=1TOM
MATRIX3(, J) = MATRIXI(, J) + MATRIX2(,7)
ENFOR
ENDFOR
END

The actuality expression 460 corresponding to this
process expression is three identically sized matrices
and the scalar values N and M. The uncertain deferred
specifications in this process are the sizes of the matrices
and the actual values of the matrices. In this example,
the data is initially guided along its pathways indirectly
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by manipulating addresses representing the data but the
effect is the same as if the data were actually moving.

The outer loop of the process decomposes each ma-
trix to its component vectors, associates the correspond-
ing vectors of each matrix and presents them to the
inner loop. The inner loop decomposes each vector to
integers, associates the corresponding integers of each
vector and presents them to the integer add function.

The integer add function is expressed by a sequence
of instructions. At this point, data elements move di-
rectly through the expression 454 instead of indirectly
by manipulating addresses. The sequence of instructions
first moves the corresponding integers from memory to
associate them directly to the ALU. The expression for
integer addition itself resides in the hardware in the
form of a logic circuit in the ALU. This logic circuit
first decomposes each integer to digits, associates the
corresponding digits together by direct electrical con-
nection and presents them to the definition 456 for digit
addition.

Assuming a binary representation of the integers the
associated digits are presented to a full adder circuit.
The full adder circuit is a combinational logic circuit
that implements the eight transform rules of the truth
table for binary digit addition. The full adder circuit is
expressed in terms of associated logic gates. Each logic
gate is a terminal definition 456 that transforms its input
data name 464 directly with no further decomposition.
The association structure of logic gates combine their
result bits to compose the result integer of the integer
addition definition.

The further instructions of the integer add function
then move the result from the ALU to its correct mem-
ory location to compose the result vector for vector
addition. This continues bit by bit, integer by integer
and vector by vector until both matrices are added.

The characterization of the process resolution was
uniform and consistent even though three totally differ-
ent expression environments were involved. The soft-
ware procedure, the instructions that collect the inte-
gers and present them to the ALU and the logic circuits
of the ALU. Each very different expression 454 was
doing exactly the same thing. Each was managing the
decomposition of its input data 464 structure and guid-
ing the decomposed data elements through the process
expression 458 to the point where the unpredetermina-
ble deferred input names 464 were presented to terminal
definitions 456 in the correct progression. It is all just

. bookkeeping and traffic management to get the correct
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progression of names formed for terminal definitions
456 that will realize the process as a progression of
primitive process activities.

The whole point is to get the right bits to the right
logic gates in the right progression. Each bit of MA-
TRIX1 and MATRIX2 are properly associated with
the correct progression of logic gates and bit by bit
MATRIXS is created with all bits in theijr correct rela-
tionships. It is this progression of invocations 462 of
terminal definitions 456 that performs the transforma-
tion activity of the process. The rest is just bookkeep-
ing.

The invocations 462 of terminal definitions 456 form
the leaves of a resolution tree built of trunks, branches
and twigs forming association pathways from the input
data 464 structure to the terminal definitions 456.
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4.8.5 Arbitrary Reference Boundaries

Reference boundaries are necessary in an expression
458 to accommodate uncertainties such as the unpre-
specifiable number of vectors in a matrix or the unpre-
specifiable number of integers in a vector but a refer-
ence boundary can also arise from arbitrary choice. For
instance, in the FULLADD example the definition 456
of HALFADD is arbitrary and unnecessary. The pro-
cess can be expressed without that particular reference
boundary, as shown in Table 121.

TABLE 121

FULLADD definition with nested HALFADD definition
FULLADD[(X,Y,C <CARRY>)
CARRY<OR(SCARRY1,$CARRY2)>
HALFADD(*CHALFADD(*X,*Y <CARRY1>)
<CARRY2>)

1
FULLADD definition without nested definition
FULADD[(X,Y,C, <CARRY>)
FIRSTSUM <OR(AND(NOT(*X),*Y),AND(*X,NOT(*Y)))>
CARRY <OR(AND(*X,*Y),AND(*C,SFIRSTSUM)>
OR(AND(NOT(*C),$FIRSTSUM),AND(*C,NOT
(SFIRSTSUM)))
]

In the first example, the HALFADD definition 456
provided distribution of the intermediate firstsum result
through its association list and created a hierarchical
level of definition 456. The single expression example
above uses the result reference to distribute the interme-
diate sum within a single expression. Whichever expres-
sion is used is purely a matter of choice. The definition
456 HALFADD is not necessary because there is noth-
ing uncertain about S and T in terms of X and Y and C
inside the definition 456 of FULLADD. HALFADD
can only be referenced from inside FULLADD. S and
T can be expressed in terms of X, Y and C. The place of
all the possible invocations 462 of HALFADD in rela-
tion to the definition 456 of HALFADD are predeter-
mined. There is no uncertainty in terms of the definition
456 about where HALFADD will be invoked from or
how many times it will be invoked. The HALFADD
definition 456 is therefore not necessary but is an arbi-
trary embellishment of the expression 458. An arbitrary
definition 456 might be defined simply to make the
expression 458 more readable or to make it conform to
some other form of expression 458.

The next level of definition 456 FULLADD is not
arbitrary but represents a genuinely uncertain aspect of
the expression 458. How the name for each invocation
462 of FULLADD will be formed cannot be predeter-
mined because it is uncertain how many times FUL-
LADD will be invoked. Large numbers are expressed
as compositions of digits and the number of digits in-
volved cannot in general be prespecified. The size of
nun%hers can be fixed but that is not a general solution.
The only general solution is to be able to invoke FUL-
LADD an arbitrary number of times from arbitrary
places in the expression 458. This uncertainty of refer-
ence requires that FULLADD be a reference bound-
ary.

4.9 Referential Expression

A string expression 458 is different from other expres-
sion forms in that it only has to specify its expression. It
458 does not have to autonomously perform the expres-
sion. It 458 is thereby a purely referential form of pro-
cess expression. It 458 does not provide its own resolu-
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tion resources. It 458 must rely on the resources of an
external agent of activity such as a generally configura-
ble process or a direct interpreter 452.

Because a string expression 458 only has to specify
and not autonomously perform it can indulge in a cer-
tain economy of expression. The string expression itself
need not provide a distinct instantiation of a definition
456 for every invocation 462 that forms an input data
name 464 for it 458. It need only express one instance of
the definition 456 which the activity agent can use over
and over sequentially or can replicate and use concur-
rently. This is in contrast to a DAP expression that must
provide an instantiation of an interaction locus for each
formed name 464 in the expression 458.

The string expression 458 is only a partial specifica-
tion of the process. The ultimate structure of each pro-
cess is constructed during resolution as definitions 456
are used or replicated to resolve formed names 464. The
ultimate structure of a resolved process grows out of
the relationship between the possibility expression 458
and the actuality expression 460. Because definitions
456 from a possibility expression 458 can be copied and
used as required a particular possibility expression 458
can accommodate the resolution of actuality expres-
sions 460 possessing a great deal of uncertainty of struc-
ture. The resolving process grows piece by piece in the
active string 454 as definitions 456 are used or copied
from the possibility expression 458 in accordance with
the resolution needs of the actuality expression 460.

For instance, a single expression 458 of matrix addi-
tion can accommodate matrices of any size. Perhaps it
can also accommodate integer numbers, real numbers
or complex numbers. Within limits the possibility ex-
pression 458 will adjust to fit the uncertainties of the
input data 464 structure by growing a matching struc-
ture to engulf and transform the input data 464 struc-
ture. A particular process expression can resolve to
very different progressions of terminal invocations 462
depending on the deferred specifications supplied by
the actuality expression 460.

4.10 Summary

It was established in section 3 that the relationships of
process expression could be expressed as relationships
among names in the same form of expression as deferred
specifications. It was also established that any arbitrary
set of names and arbitrary relationships among those
names could be mapped into the generally configurable
process. So any convenient external form of expression
could be used to specify a process in terms of associa-
tion relationships among names and that expression
could be resolved by mapping it into a generally con-
figurable process. The convenient external expression
that was chosen to explore is a favorite of humans, i.e.,
the character string. One of many possible character
string forms of process expression was defined and pres-
ented.

A string expression is just one form of process expres-
sion capable of expressing deferred specifications
through hierarchical stages of compound uncertainty so
that complex questions can be posed about complex
relationships. The question at the bottom of every string
expression is which variables are going to be associated
bearing which values that form input data names 464 to
invoke which value transform rules. It is all still just
variables, values, value transform rules and variable
association rules.
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The input data structure (actuality expression 460,
deferred specifications through multiple levels of uncer-
tainty) is just a complex, compound structure of vari-
able associations. This structure has to be sorted out to
the point where value interactions can occur and then
composed again to the result structure.

A process may be performing a profound mathemati-
cal computation or a profound nonmathematical proce-
dure such as cell metabolism but from the point of view
of expression it is just sorting out input data structures
to the point where primitive data elements interact to
produce primitive result data elements and reorganizing
these into the final result data structure. The central
question of computer science must be what is the essen-
tial nature of process expression itself regardless of what
kind of process any expression might be performing.

Although the present invention has been described
and illustrated with a certain degree of particularity, it
is understood that the present disclosure of embodi-
ments has been made by way of example only and that
numerous changes in the arrangement and combination
of parts as well as steps may be resorted to by those
skilled in the art without departing from the spirit and
scope of the present invention as claimed.

What is claimed is:

1. A method of process expression and resolution,
comprising the steps of:

(2) providing a first language structure comprising a
possibility expression having at least one definition
which is inherently and generally concurrent;

(b) providing a second language structure comprising
an actuality expression including a fully formed
input data name to be resolved;

(c) providing a third language structure comprising
an active expression initially having at least one
invocation, the invocation comprising an associa-
tion with a particular definition and the fully
formed input data name of the actuality expression;
and

(d) resolving invocations in the active expression
with fully formed input data names in relation to
their associated definition to produce at least one or
both of the following: (1) an invocation with a fully
formed input data name and (2) a result data name.

2. The method of claim 1 wherein the first, the second
and the third language structures are derived from a set
of production rules selected from the group consisting
essentially of: a set of metasymbols, a set of terminals
and a set of nonterminals. ’

3. The method of claim 2 wherein the set of metasym-
bols comprise metasymbols selected from the group
consisting essentially of:

(2) = term to structure equivalence;

(®) | OR; -

(c) * zero or more (post superscript);

(d) + one or more (post superscript);

(e) *+ zero or one (post superscript); and

(f) — followed by.

4. The method of claim 2 wherein the set of terminals
comprise a set of syntax symbols and a set of at least two
value symbols disjoint from the set of syntax symbols.

5. The method of claim 4 wherein the set of syntax
symbols comprise syntax symbols selected from the
group consisting essentially of: ‘C, <, ‘I, T, ‘C, ¥, ‘<,
. 7, "” 6;)’ ‘*!’ ‘@’, ‘!,, ‘¢ \” 6/’, ‘?,’ and ‘#"

6. The method of claim 2 wherein the set of nontermi-
nals comprise nonterminals selected from the group
consisting essentially of:
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phrase, clause, redefinition, resultant, invocation,
delayedinvoc, invocname, resultlist, resultlink, ac-
tualist, actual, resultref, definition, nonreplicable,
body, formalist, namelist, object, objectstruct, for-
malref, defname, formalname, linkname, and narra-
tive.

7. The method of claim 2 wherein each production
rule comprises either (1) a nonterminal followed by a
term to structure equivalence (=) followed by a termi-
nal or a nonterminal, (2) a nonterminal followed by a
term to structure equivalence (=) followed by a plural-
ity of terminals delimited by metasymbols, (3) 2 nonter-
minal followed by a term to structure equivalence (=)
followed by a plurality of nonterminals delimited by
metasymbols, or (4) a nonterminal followed by a term to
structure equivalence (=) followed by at least one ter-
minal and at least one nonterminal delimited by meta-
symbols.

8. The method of claim 7 wherein:

(@) the set of metasymbols comprise metasymbols
selected from the group consisting essentially of:
()= term to structure equivalence;

(ii) | OR;

(iif) * zero or more (post superscript);

(iv) + one or more (post superscript);

(v) *+ zero or one (post superscript); and

(vi) — followed by;

(b) the set of terminals comprise:

(i) a set of syntax symbols comprising syntax sym-
bols selected from the group consisting essen-
tlally Of: :(” c)a, :[9, ‘],, 5{9, c}” t<7’ c>9, 5’5’ s;,’ &*9,
‘@, T, N\, Y, P, and ‘#; and

(i) a set of at least two value symbols disjoint from
the set of syntax symbols; and

(c) the set of nonterminals comprise nonterminals
selected from the group consisting essentially of:
value, phrase, clause, redefinition, resultant, invo-

cation, delayedinvoc, invocname, resultlist, re-
sultlink, actualist, actual, resultref, definition,
nonreplicable, body, formalist, namelist, object,
objectstruct, formalref, defname, formalname,
linkname, and narrative.

9. The method claim 8 wherein the first, the second
‘and the third language structures are derived from a set
of production rules selected from the group consisting
essentially of:

(2) value=at least two value symbols

(b) phrase=clause | phrase; clause | phrase?clause

(¢) clause=redefinition*-resultant *-invocation* 4 -
object*

(d) redefinition=invocname@(phrase)

(e) resultant =linkname < phrase>

(f) invocation=invocname (actualist-resultlist)

(g) delayedinvoc=invocname#(actualist-resultlist)

h) invocname =invocation | defname-formalref*
| defname* +-formalref 4

(i) resultlist=resultlink*

(j) resultlink= < linkname >

(k) actualist=actual | actualist,actual

(1) actual=invocation* +-object*-resultref* +

(m) resultref=S$linkname

(n) definition=defname [(formalist-resultlist)body]

(0) nonreplicable=defname@[(formalist-resultlist)-
body]

(p) body =phrase | phrase;definition +

(@) formalist =namelist | namelist,! |!, namelist

(r) namelist =formalname | namelist, formalname

(s) object=value* |value*-formalref+ |objectstruct
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(t) objectstruct={object} | {phrase} | {objectstruct*}

(w) formalref="*formalname|*!

(v) defname=value 4

(w) formalname=value +

(x) linkname =value +

(v) narrative= \ any character string /.

10. The method of claim 1 wherein the step of resolv-
ing comprises simultaneously resolving multiple invo-
cations in the active expression until all of the invoca-
tions have been resolved and a fully formed result data
name is left in the active expression.

11. A process expression and resolution system, com-
prising;: :

(2) first language structure comprising a possibility
expression having at least one definition which is
inherently and generally concurrent;

(b) second language structure comprising an actuality
expression including a fully formed input data
name to be resolved;

(c) third language structure comprising an active
expression initially having at least one invocation,
the invocation comprising an association with a
particular definition and the fully formed input
data name of the actuality expression; and

(d) resolution means for resolving invocations in the
active expression with fully formed input data
names in relation to their associated definition to
produce at least one or both of the following: (1) an
invocation with a fully formed input data name and
(2) a result data name.

12. The process expression and resolution system of
claim 11 wherein the first, the second and the third
language structures are derived from a set of production
rules selected from the group consisting essentially of: a
set of metasymbols, a set of terminals and a set of non-
terminals.

13. The process expression and resolution system of
claim 12 wherein the set of metasymbols comprise
metasymbols selected from the group consisting essen-
tially of:

(a)= term to structure equivalence;

(b) | OR;

(c) * zero or more (post superscript);

(d) + one or more (post superscript);

(e) *+ zero or one (post superscript); and

(f) — followed by.

14. The process expression and resolution system of
claim 12 wherein the set of terminals comprise a set of
syntax symbols and a set of at least two value symbols
disjoint from the set of syntax symbols.

15. The process expression and resolution system of
claim 14 wherein the set of syntax symbols comprise
syntax symbols selected from the group consisting es-
sentially Of: ¢(a, 5)” ¢[a, 5]5, ‘{’, s},’ 5<,’ ¢>,’ 6,,’ ‘;,’ t*” 3 a,
6!;’ 6\ ’, c/), ‘?’, and 4#7.

16. The process expression and resolution system of
claim 12 wherein the set of nonterminals comprise non-
terminals selected from the group consisting essentially
of:

phrase, clause, redefinition, resultant, invocation,
delayedinvoc, invocname, resultlist, resultlink, ac-
tualist, actual, resultref, definition, nonreplicable,
body, formalist, namelist, object, objectstruct, for-
malref, defname, formalname, linkname, and narra-
tive. :

17. The process expression and resolution system of
claim 12 wherein each production rule comprises either
(1) a nonterminal followed by a term to structure equiv-
alence (=) followed by a terminal or a nonterminal, 2
a nonterminal followed by a term to structure equiva-
lence (=) followed by a plurality of terminals delimited

10

15

20

25

30

35

45

60

120
by metasymbols, (3) a nonterminal followed by a term
to structure equivalence (=) followed by a plurality of
nonterminals delimited by metasymbols, or (4) a nonter-
minal followed by a term to structure equivalence (=)
followed by at least one terminal and at least one non-
terminal delimited by metasymbols.

18. The process expression and resolution system of
claim 17 wherein:

(2) the set of metasymbols comprise metasymbols
selected from the group consisting essentially of:
(i)= term to structure equivalence;

(i) | OR;

(iii) * zero or more (post superscript);

(iv) + one or more (post superscript);

(v) *+ zero or one (post superscript); and
(vi) — followed by;

(b) the set of terminals comprise:

(i) a set of syntax symbols comprising syntax sym-
bols selected from the group consisting essen-
tlally Of: c(,’ &),, 6[5, t]” ‘{,, 6}’, ¢<’, ‘> 7, c”’ ‘;1’ c*a,
c@,’ 1!9’ (AN ,, c/;, (?), and 6#7; and

(i) a set of at least two value symbols disjoint from
the set of syntax symbols; and

(c) the set of nonterminals comprise nonterminals
selected from the group consisting essentially of:
value, phrase, clause, redefinition, resultant, invo-

cation, delayedinvoc, invocname, resultlist, re-
sultlink, actualist, actual, resultref, definition,
nonreplicable, body, formalist, namelist, object,
objectstruct, formalref, defname, formalname,
linkname, and narrative.

19. The process expression and resolution system of
claim 18 wherein the first, the second and the third
language structures are derived from a set of production
rules selected from the group consisting essentially of:

(a) value=at least two value symbols

(b) phrase=clause | phrase;clause | phrase?clause

(©) clause=redefinition*-resultant*-invocation* ---
object*

(d) redefinition=invocname@(phrase)

(e) resultant=1linkname < phrase >

() invocation=invocname(actualist-resultlist)

(g) delayedinvoc=invocname#(actualist-resultlist)

(3] invocname =invocation | defname-formalref*
|defname* +-formalref 4+

(i) resultlist=result link*

(j) resultlink = < linkname >

(k) actualist =actual | actualist,actual

() actual=invocation* +-object *-resultref* -+

(m) resultref=S$linkname

(n) definition =defname[(formalist-resultlist)body]

(0) nonreplicable=defname@[(formalist-resultlist)-
body]

(p) body =phrase | phrase;definition -+

(q) formalist=namelist | namelist,! ||,namelist

(r) namelist =formalname | namelist,formalname

(s) object=value* | value*-formalref 4 | objectstruct

(t) objectstruct={object} | {phrase}| {objectstruct*}

() formalref=*formalname | *!

(v) defname=value+

(w) formalname = value+

(%) linkname = value+

(y) narrative= \ any character string /.

20. The process expression and resolution system of
claim 11 wherein the resolution means comprises means
for simultaneously resolving multiple invocations in the
active expression until all of the invocations have been
resolved and a fully formed result data name is left in

the active expression.
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