From 1997 IEEE Workshop on Middleware for Distributed Real-Time Systems and Services 1

The DQM Architecture: Middleware for Application-centered QoS
Resource Management

Marty Humphrey

Computer Science and Engineering Dept.

University of Colorado at Denver
Denver, Colorado 80217

Gary Nutt*
Computer Science Dept., CB 430
University of Colorado at Boulder
Boulder, Colorado 80309

Abstract

Multimedia applications often fail to perform as de-
signed, when resources must be timeshared between
multiple applications at run-time. To address this
problem, a software architecture is investigated in
which a centralized Dynamic Quality of Service Man-
ager (DQM) mediates resource usage between the op-
erating system and the applications. Applications are
written to be able to execute at a range of operating
levels—a level is defined by a certain amount of re-
source usage and the corresponding application qual-
ity. The DQM lowers the operating level of one or
more applications when applications are performing
poorly. This action immediately reduces overall re-
source consumption, which subsequently increases the
resource availability to those applications performing
poorly. Similarly, the DQM raises operating levels
in conditions of underload, thus mazimizing resource
utilization and collective quality.

1 Introduction

End-to-end, real-time Quality-of-Service (QoS) as-
surance in dynamic, heterogeneous distributed sys-
tems requires the ability of applications to dynami-
cally negotiate access to resources as workloads and
priorities change. The current state of operating sys-
tems support for distributed QoS is that multime-
dia applications (and other time-dependent compu-
tations) do not play a large enough role in resource
management [2, 8, 13, 14]. Rather, the operating sys-
tem decides how much CPU time, physical memory,
network bandwidth, etc., each application receives.

*The research of this author has been supported by the
National Science Foundation under grant IRI-9307619.

Scott Brandt
Computer Science Dept., CB 430
University of Colorado at Boulder

Boulder, Colorado 80309

Toby Berk
School of Computer Science
Florida International University
Miami, Florida 33199

Typically, a multimedia application is written assum-
ing that it will receive a fixed, large portion of re-
sources. If, at the time at which access is granted
to a resource, the amount of resource the applica-
tion receives is less than expected, the performance
of the multimedia application may range from a gen-
eral slowness to the failure of internal time-dependent
operations to execute by their deadlines. The prob-
lems are both that the resource management system
of the underlying operating system does not account
for the precise requirements of applications (in terms
of performance as a function of resource allocation),
and that the applications cannot adequately execute
under a range of resource availability.

These problems are particularly evident in complex
real-time and multimedia applications such as the
Virtual Planning Room (VPR) [11], which is a mul-
tiperson, distributed virtual environment that sup-
ports collaboration among human users in a free-form
communication environment. The VPR is unique in
that it is designed to have its domain-independent
tools be extended with “domain-specific” tools that
provide additional application support for the spe-
cific problem being addressed by a VPR session. For
example, a formal workflow /process modeling system
can be embedded in the VPR to focus on group co-
ordination [12].

The system hardware provides a limited set of ca-
pabilities to the operating system, which are deliv-
ered to the VPR. The VPR supports applications by
providing real-time audio and video support, which
includes the rendering of objects, and assists in appli-
cations’ use of system resources. The rendering and
behavior of objects places a great strain on the under-

From 1997 IEEE Workshop on Middleware for Distributed Real-Time Systems and Services 2

lying system hardware, which has led us to explore
more flexible resource management approaches based
on Quality of Service. However, unlike strict QoS ap-
proaches where each application must receive a QoS
guarantee of its worst-case resource needs before it is
allowed to enter the system, we are interested in a
solution in which applications cooperate with a QoS
Manager to mediate their resource usage in accor-
dance with the currently available system resources.
Three fundamental questions arise when considering
this approach:

Question 1. How difficult is it to write multimedia
(and other real-time) applications using operat-
ing levels, where an operating level is defined as
a mapping between resource usage and quality?

Question 2. What are the challenges of writing an
adaptive QoS Manager that, in order to maxi-
mize overall performance of a collection of appli-
cations, adjusts application operating levels up
and down in response to resource availability?

Question 3. Are the features of general-purpose op-
erating systems sufficient for a robust QoS Man-
ager, or are additional features needed (e.g.,
beyond the real-time scheduling features of
POSIX)?

The contribution of this paper is an initial evalu-
ation that addresses these three questions. Specif-
ically, a compute-intensive multimedia application
(the “Spinning Dinosaur”) is written to execute at
varying operating levels. A centralized Dynamic
Quality of Service Manager (DQM) executes as a
user process; multiple instances of the Spinning Di-
nosaur provide information to the DQM to dynam-
ically determine the appropriate operating level for
each. Uniprocessor results show that this software
architecture executing as user processes yields signif-
icant control over the performance of the multimedia
applications. These results generalize to support the
use of the DQM Architecture for distributed real-time
applications.

The organization of this paper is as follows. Sec-
tion 2 discusses the issues in creating applications to
work in such an environment. Section 3 further de-
scribes the DQM. Section 4 discusses an experiment
to verify the basic assumptions of the DQM architec-
ture and investigates its behavior with a sample mul-
timedia application. Section 5 contains a discussion
of the results of our experimentation and discusses
some future directions for this project. Section 6 dis-
cusses projects related to this work. Section 7 con-
tains the conclusions of this paper.

2 Operating Levels

Previous flexible QoS-based systems have assumed
that applications can operate adequately given any
degree of resource allocation (possibly within a pre-
specified range) [3, 9], and/or depend on real-time
QoS facilities within the kernel [5, 9]. The assump-
tion that an application can run adequately given any
degree of resource allocation is overly broad and does
not generally seem feasible. However, we believe that
it is possible to write multimedia applications in such
a way as to have graduated operating levels with re-
duced resource requirements, with lower levels pro-
viding correspondingly reduced quality. Operating
levels are designed to provide a mechanism for the
management of those resource classes that are divis-
ible. Resources such as the microphone are not di-
visible, and thus are not directly manageable by the
notion of an operating level (presumably, the resource
is required for all operating levels of the application).

An example of an application that can be written
such that it both defines and adheres to a collection
of operating levels is a video display application that
displays video frames received over a network link.
Such an application can be expected to display video
frames at a rate of 30 frames/second. However, if it
is not possible to achieve this frame rate, the applica-
tion could back off to 15 frames/second by skipping
every other frame and still achieve reasonable qual-
ity. Additional discrete configurations, such as 10
frames/second or 7.5 frames/second, are possible.

Objects in the VPR can either individually or col-
lectively use operating levels. Table 1 illustrates how
a simple moving object changes its required pro-
cessing time over a 4:1 range in 12 operating lev-
els by varying only 3 parameters: rendering mode
(wireframe, flat shading or smooth shading), num-
ber of light sources (0 or 1), and number of polygons
(those marked 2X used twice as many polygons as
those marked 1X). The table shows frames per sec-
ond (FPS) generated and time used as a percentage
of the highest level. Quality as perceived by the user
has not been determined for these operating levels.
This information is not within the scope of this paper;
we merely argue that such quality can be determined
and thus used for resource allocation decisions.

These examples demonstrate that by varying rela-
tively few parameters, it is possible to modify a multi-
media application such that its resource requirements
(CPU, in this case) can vary significantly while still
maintaining a satisfactory, although reduced, quality.
We believe that these examples are representative of
a large class of multimedia and other real-time ap-
plications that can, with relatively little effort, be
modified to exhibit similar operating levels.

From 1997 IEEE Workshop on Middleware for Distributed Real-Time Systems and Services 3

Rendering Lights Poly. FPS % of Max
wireframe 0 1X 12.74 25.0%
wireframe 1 1X 894 35.7%
flat 0 1X 8.63 37.0%
smooth 0 1X 7.97 40.0%
wireframe 0 2X 7.7 41.4%
flat 1 1X 6.09 52.4%
smooth 1 1X 5.87 54.3%
flat 1 2X 5.15 61.9%
smooth 0 2X 4.76 67.0%
wireframe 1 2X 4.45 71.7%
flat 1 2X 3.34 95.5%
smooth 1 2X 3.19 100.0%

Table 1: Varying Resource Usage in the VPR

3 DQM

Applications that are capable of executing at more
than one operating level provide the possibility of
adaptively modifying application resource usage in
order to maximize overall performance. The pur-
pose of the DQM is to dynamically mediate between
the applications and the operating system in order to
keep application resource demands within the limits
of the available resources while maximizing quality. It
does so by monitoring system load and dynamically
adjusting the operating level of each application up
or down as necessary.

The decision regarding whether to modify current
operating levels of applications is ultimately depen-
dent on the ability of applications to collectively per-
form as intended. Performance can be defined as
the ability of applications to meet internal deadlines.
These deadlines can be a function of the operating
level. For example, when an application reduces the
frequency by which updates are drawn to the screen,
the deadline is directly related to the operating level.
Deadlines can also be independent of the operating
level, such as the removal of network packets from
system buffers. Data must be removed from system
buffers irrespective of the amount of subsequent pro-
cessing done on the data once removed from system
buffers (which can be a function of operating level).

An important issue is whether or not the DQM
must exist as part of the operating system kernel. Be-
cause we are concerned about applications in general
operating system environments such as Linux (which
is the current development platform of the VPR), we
would prefer not to depend on the availability of any
real-time or other QoS-based facilities in the kernel.
The Linux scheduler does not know about application
deadlines, nor does it provide any direct mechanism
for limiting the amount of CPU used by any partic-

ular application to a predetermined operating level.
Consequently, in such an environment, the DQM de-
termines system overload or underload on the basis of
the measured performance of the applications. The
measured performance of each application is based on
the queries of the DQM to the underlying operating
system (such as CPU usage, frequency of page faults,
number of dropped frames, etc.) on a per-application
or systemwide basis in combination with direct mon-
itoring of the applications. The direct monitoring of
an application is facilitated by the iterative nature
of many applications—for example, a moving image
must continually be updated on the window. For
each iteration, there is a deadline that must be met.
The DQM can use the frequency of meeting dead-
lines both as a justification for increasing resource
availability to an application, and a justification for
decreasing resource availability to an application.

As mentioned above, the deadline can be a func-
tion of the operating level at which an application
is operating. Similarly, the operating level may im-
pact the decision concerning whether or not the num-
ber/percentage of missed deadlines justifies a change.
For example, a high operating level might also require
a relatively few number of missed deadlines. Simi-
larly, if an application is executing at a low operating
level, it might be allowed to incur a large number
of missed deadlines. In many applications, however,
the threshold by which to decide to change operating
levels is independent of the level. This is the case for
the experiment of Section 4.

The design of the DQM does not preclude the use
of QoS contracts in which applications are not admit-
ted unless the DQM and the operating system guar-
antee access to specific resources. Contracts of this
kind generally require finer control over resource us-
age than is possible if the DQM operates as a user
process. Other researchers [2, 14] indicate that real-
time scheduling assistance such as Earliest Deadline
First or Rate Monotonic is needed in order to support
QoS contracts from the operating system.

4 Experiment

To begin to evaluate the proposed software archi-
tecture, we performed a series of experiments with
a simple DQM and a simple graphics application.
The application (a Spinning Dinosaur) is derived
from a sample application that comes with GLUT,
the OpenGL Utility Toolkit [6]. This application
was chosen because executing multiple copies concur-
rently results in each copy degrading to an unaccept-
able quality as perceived by the user. To be able to
describe this performance quantitatively, a clock was
superimposed on the dinosaur. An internal deadline

From 1997 IEEE Workshop on Middleware for Distributed Real-Time Systems and Services 4

was created—performance is defined as the ability of
the application to update the clock every tenth of a
second. Thus, the deadline is independent of operat-
ing level in this experiment. A screen dump of the
dinosaur and the clock is shown in Figure 1.

Figure 1: The Spinning Dinosaur Application

In order to perform experimental studies, the ap-
plication has to be able to simulate the ability to use
different amounts of resources based on the operating
level. We added additional computation to the ren-
dering of the application so that the amount of time
used was monotonically increasing with the operat-
ing level. This made the application easy to mod-
ify for the purposes of this experiment. This addi-
tional computation represents the increasing require-
ment for CPU cycles in order to render the object
with increasing quality.

A simple DQM was written to start and manage
the dinosaur applications. The dinosaur applications
and the DQM communicate through shared memory.
The information that flows from the DQM to each
dinosaur application is the operating level at which
each application should execute; the information that
flows from the dinosaur application to the DQM is the
deadline, enter time, and exit time of each rendering
iteration. The DQM determines if the application
has met its deadline.

The DQM is responsible for controlling the execu-
tion of the dinosaur applications by monitoring their
performance, which is defined as the ability of the
dinosaur applications to meet their deadlines. The
DQM based its decisions regarding modification to
application operating levels solely on performance
within a time window of either one or five seconds
(i.e., cumulative performance was not used as a basis

for modifying operating levels).

The DQM bases its decisions regarding increasing
or decreasing a dinosaur application’s operating level
on CPU usage, the ability of each dinosaur to meet
its deadlines, and the current operating level of each
dinosaur. For these experiments, the minimum suf-
ficient percentage of deadlines met to be considered
executing well was arbitrarily defined as 70%. That
is, it was decided that quality as perceived by the user
was based on the ability to provide a timely update
to the real-time clock every 7 out of 10 tenths of a
second. Any application whose deadline hit rate falls
below 70% is considered to be operating poorly. In
this case, the DQM will make adjustments to applica-
tion operating levels until the performance of all ap-
plications are within a desired range. The frequency
of DQM decisions regarding the operating levels of
each application was varied in these experiments. At
each decision point, the DQM could either raise or
lower a single dinosaur application’s operating level
(or do nothing). Two policies were investigated for
lowering operating levels:

Self The dinosaur application that is performing
worst has its operating level decreased by one,
reducing its resource requirements and thereby
decreasing its deadline miss rate.

Others The dinosaur application that is performing
the best has its operating level decreased by one,
making more resources available to other appli-
cations and thereby reducing their deadline miss
rates.

A single policy was investigated for raising operating
levels, which was to increment the operating level of
the lowest level application. In order to reduce the
instability of the system, a threshold was added: an
application’s operating level was only increased if all
applications were making 75% or more of their dead-
lines.

The experiments were conducted on a Dell Dimen-
sion XPS Pro 200n, with a 200 Mhz Pentium Pro and
32M RAM. The operating environment was Linux
2.0.0 with Xfree86. Each experiment consisted of ex-
ecuting four dinosaur applications and a DQM. The
initial operating level of all dinosaur applications was
10 (the range was defined as 1-10). The duration of
each experiment was six minutes, which was observed
to be sufficient to stabilize the system. There were
two parameters varied: the duration between subse-
quent decision points by the DQM (either 1 second or
5 seconds), and the policy for the action to take when
a dinosaur application was not meeting the minimum
acceptable performance (either self or others).

From 1997 IEEE Workshop on Middleware for Distributed Real-Time Systems and Services 5

100.0

80.0 115 7
i

Percentage of Deadlines Met

{1 I ([hikr N
) v
I RN { o
| by o1 | ! [
N |
60.0 r 1
— Application 1
,' ——- Application 2
i ---- Application 3
| —-— Application 4
40.0 . . .
0.0 100.0 200.0 300.0 400.0
Time (seconds)
(a) Performance (period = 1 sec)
100.0
5]
=
3 800 .
£
=]
©
Q
a)
ks
[
j=2]
8
§ 60.0 { b
5] —— Application 1
o ——- Application 2
---- Application 3
—-— Application 4
40.0 . . .
0.0 100.0 200.0 300.0 400.0

Time (seconds)

(c) Performance (period = 5 sec)

400.0

10.0 |
"
:'l! —— Application 1
8.0 ll‘ — —- Application 2 i
' ‘II ---- Application 3
' —-— Application 4
m EP
° '
& 6.0 Ui 1
= ||.
s I
= |
g t
S 40 - T 1
< i ! l_ﬂ b
| |
AR AT T
1 | ' | [
20 F] — __ 4
0.0 \ \ \
0.0 100.0 200.0 300.0
Time (seconds)
(b) Operating Levels (period = 1 sec)
10.0
il
W
1) — Application 1
80 I \‘I\ ——- Application 2
' i\ ---- Application 3
III\ . —-— Application 4
|
o Ll
& 60+ ! 1
a it
S il
= o
S m
& 4.0 r \))
< \ [i
1) L
20 + b
0.0 \ \ \
0.0 100.0 200.0 300.0

Time (seconds)

(d) Operating Levels (period = 5 sec)

Figure 2: Dynamic Performance of Applications; DQM using “Self” policy

Figure 2(a) shows the performance of each of the
four dinosaur applications as a function of time, when
the DQM used the self policy and the period for de-
cisions by the DQM was 1 second. The performance
measured is the percentage of deadlines missed dur-
ing the five-second window immediately prior to the
time. Figure 2(b) shows the operating level of each
dinosaur application as a function of time. These
plots indicate that, while the operating levels of each
application stabilize to generally around 3 for all ap-
plications, a high rate of DQM decisions leads to a
large variation in performance, as a function of time.

Figure 2(c) shows the performance when the pe-
riod of the DQM is increased to five seconds. Fig-
ure 2(d) shows the operating level of each applica-
tion as a function of time. When the DQM makes its
decisions less frequently, the applications are given
time to react to the modifications of the last deci-
sion. This results in greater stability in performance
as shown in Figure 2(c). Notice however that the re-
sponsiveness of the system (as shown by the amount
of time required to achieve minimum performance by
all applications) is much slower than when the DQM
makes a allocation decision every second.

400.0

From 1997 IEEE Workshop on Middleware for Distributed Real-Time Systems and Services

100.0 7
g
‘,‘:*,:f
!
B o
s ol
% soof Il 1
£ o
) tl
I
) A
o e
5 i
g i
g i
@ 6001, ,
s g : | —— Application 1
o 1l ——~- Application 2
‘| | ---- Application 3
l"! —-— Application 4
40.0 ‘ ‘ ‘
0.0 100.0 200.0 300.0 400.0
Time (seconds)
a) Performance (period = 1 sec
Perf iod =1
100.0 ‘ o A
PO A [ERUNVATRRY
N AN T MV
WO TR
I\/‘ DY V | | A \ | <
\ v R R AR
~ A | \/ tl |
- Y] | R \
© | | v " (
= | ,' I \ II’ o
| N \ B
ag"} 80.0 /l i i \ Y#V‘/
S | , [!
8 I ! i
[a] | | |
N 1
<] M /)
S [: |
g ! , A'
aU) 60.0 | " | i
S I' h /| —— Application 1
o / ——~- Application 2
---- Application 3
—-— Application 4
40.0 : . .
0.0 100.0 200.0 300.0 400.0

Time (seconds)

(c) Performance (period = 5 sec)

10.0

lll'l"~I —— Application 1
I — —- Application 2
! ---- Application 3
—-— Application 4

8.0

Application Level

400.0
Time (seconds)

(b) Operating Levels (period = 1 sec)

— Application 1
— —~ Application 2
---- Application 3
—-— Application 4

Application Level

400.0
Time (seconds)

(d) Operating Levels (period = 5 sec)

Figure 3: Dynamic Performance of Applications; DQM using “Others” policy

Figure 3(a) shows the performance of the dinosaur
applications when the DQM makes a decision ev-
ery second, and the DQM uses the others policy.
Figure 3(b) illustrates the operating levels of each
dinosaur application. The performance of each di-
nosaur application varies greatly under this policy.
The explanation for this can be seen in the plot of
the operating levels (Figure 3(b)). When one appli-
cation performs poorly, one of the others is selected
as the victim. The benefits of reducing the operating
level of the victim are then shared by each of the other
applications. The result is that, if one application is

performing poorly, each of the other applications will
have its operating level reduced in turn.

This effect is clearer when the period of the DQM is
increased to five seconds: Figure 3(c) shows the per-
formance, and Figure 3(d) illustrates the change in
operating levels over time. As was the case when the
period of the DQM was five seconds and the policy
was self, the DQM is slow to react to poor perfor-
mance. In fact, because the consequences of a de-
cision by the DQM do not directly address the poor
performance by a particular dinosaur application, the
system is even less responsive.

From 1997 IEEE Workshop on Middleware for Distributed Real-Time Systems and Services 7

5 Discussion and Future Work

These experimental results suggest some answers
to the remaining two questions posed in Section 1.
Specifically, we have demonstrated that it is possi-
ble to dynamically adjust application operating levels
to maximize collective performance of a set of appli-
cations. Furthermore, this was done in a general-
purpose operating system without a real-time QoS-
based scheduler. We recognize, of course, the pre-
liminary nature of this experiment and its results.
These experiments considered only identical applica-
tions with uniformly distributed operating levels, no
dynamic initiation and termination of applications,
and no effects from time-varying loads not under
DQM control. Nevertheless, we believe that these
experiments show the value of the DQM approach.

The results of the experiments of Section 4 also
provide insight into a fourth question:

Question 4. If an application is performing poorly,
should the QoS Manager reduce the operating
level of the application performing poorly, or
should the QoS Manager reduce the operating
level of applications performing well?

Figure 3(c) and Figure 3(d) shows the effect of reduc-
ing the operating level of one application to increase
the performance of another application. The problem
with this policy is that all executing applications at-
tempt to utilize the newly-freed resource capacity—
the result from creating additional resource availabil-
ity has not been tied directly to the reason for doing
so. This is largely a consequence of a DQM that
does not have the capability of directly granting and
revoking resource allocation for individual applica-
tions. Including the DQM as part of the kernel of an
operating system with real-time features or otherwise
utilizing real-time features are reasonable approaches
if this type of allocation policy is to be used.

In the immediate future, we plan to continue our
investigations to consider more realistic applications
(including the VPR) with non-linear relationships be-
tween resource usage and operating level and varying
levels of application importance; to develop appropri-
ate protocols for distributed DQM-to-DQM resource
reservations and control policies; to deal with re-
sources other than just the CPU; and to examine the
information flow between applications and the DQM.

6 Related Work

The goals of the VuSystem project [7] project are
similar to the goals of this project. Instead of main-
taining a fixed quality of service to applications (de-
termined at call admission), both projects propose

to allow users to concurrently execute as many pro-
grams as desired, even if an overload condition de-
velops. However, in the VuSystem, under conditions
of overload, the user interactively decides which ap-
plications should be given more resources (and which
applications should be given less).

Fan investigates a software architecture in which
applications request a continuous range of QoS com-
mitment [3]. In that system, it is assumed that any
application can be written in such a way as to work
reasonably with any resource allocation within a par-
ticular range. Nieh and Lam also take this approach
in their SMART scheduler [9]. Tan and Hsu are also
investigating this approach for scheduling multime-
dia applications, utilizing a tighter coupling between
the scheduler and the multimedia user applications
than our approach [15]. We believe this assumption
is impractical for the majority of real-time applica-
tions and that the constraint that an application must
specify a set of operating levels to be more feasible.

The major difference between the Rialto real-time
operating system [5] and this work regards system
overload. Rialto uses a QoS-based scheduler to
dynamically allocate system resources (in particu-
lar, the CPU) based on negotiated QoS guarantees.
These guarantees are explicitly enforced by the sched-
uler. In this sense, Rialto is similar to the work on
Processor Capacity Reserves, in which an application
can explicitly reserve a portion of the CPU [8]. Our
work differs from this in two ways. First, the sched-
uler used for our studies is a general-purpose UNIX
scheduler that does not support any notion of dead-
lines or QoS guarantees, so our DQM relies solely on
application-determined missed deadlines to inform it
whether or not the system is overloaded. Second, our
applications provide an explicit set of operating levels
to the DQM, allowing the DQM to make resource de-
cisions that more closely reflect the actual operation
and associated resource needs of the applications.

The Odyssey project proposes an initial API as a
set of extensions to UNIX for application-aware adap-
tation [10]. In Odyssey, there is no centralized man-
ager of resources similar to the DQM; rather, an ap-
plication registers a user-level procedure to invoke if
a condition—such as network bandwidth falling be-
low 10 Mb/s—occurs. We believe that without a cen-
tralized manager, applications will thrash with each
other for resource usage.

Gopalakrishnan uses a real-time upcall facility to
implement periodic activity [4]. The real-time upcall
is similar to the mechanism in the DQM Architecture
in which the DQM communicates with the individual
applications. The DQM Architecture is a user-level
software system for application adaptation and effi-

From 1997 IEEE Workshop on Middleware for Distributed Real-Time Systems and Services 8

cient resource management, whereas real-time upcalls
requires modifications to the operating system kernel.
The developers of the RTPOOL real-time middle-
ware service are also investigating the use of QoS lev-
els for applications for Automated Flight Control [1].
Their research indicates that levels can be used to ex-
press application-level semantics to control how per-
formance is to be degraded under overload or failure
conditions. Both projects agree that it is particularly
challenging to quantify the perceived utility of users,
which is necessary in the use of operating levels.

7 Conclusions

A software architecture has been investigated in
which multimedia and other real-time applications
are capable of executing at multiple operating levels.
A centralized quality of service manager dynamically
regulates the operating levels at which applications
execute. Experimental results show that this archi-
tecture is valuable for regulating the overall quality
of applications’ execution.

There are two major conclusions that can be made.
First, it is not necessary to modify the operating sys-
tem, or even utilize real-time features of the operat-
ing system, in order to regulate applications’ collec-
tive performance under conditions of overload. The
DQM is a user process that monitored the perfor-
mance of applications and instructed them to change
their behavior to reflect resource availability. The
simple notion of operating level was sufficient to regu-
late performance of these applications. Second, while
these results are promising, more sophisticated re-
source management on the part of the DQM may
require closer interaction with the operating system.
Extending the DQM to also enforce resource usage—
as might be the case if the DQM were to allow QoS
contracts—may require specialized operating system
support.

Acknowledgment
The authors would like to thank Jim Mankovich
for the generation of the data shown in Table 1.

References
[1] Tarek F. Abdelzaher, Ella M. Atkins, and Kang G.
Shin. QoS negotiation in real-time systems and its
application to automated flight control. In Proceed-
ings of the Third IEEE Real-Time Technology and
Applications Symposium, June 1997.

[2] Cristina Aurrecoechea, Andrew Campbell, and
Linda Hauw. A survey of QoS architectures. In Pro-
ceedings of the Jth IFIP International Workshop on
Quality of Service, March 1996.

[3] Changpeng Fan. Realizing a soft real-time frame-
work for supporting distributed multimedia applica-
tions. In Proceedings of the 5th IEEE Workshop on

[10]

[11]

[13]

[14]

[15]

the Future Trends of Distributed Computing Systems,
pages 128-134, Korea, August 1995.

R. Gopalakrishnan and Guru M. Parulkar. Real-time
upcalls: A mechanism to provide real-time process-
ing guarantees. Department of Computer Science
Technical Report WUCS-95-06, Washington Univer-
sity, 1995.

Michael B. Jones, Joseph Barbera III, and Al-
lessandro Forin. An overview of the Rialto real-
time architecture. In Proceedings of the Seventh
ACM SIGOPS European Workshop, pages 249-256,
September 1996.

Mark J. Kilgard. Programming OpenGL for the X
Window System. Addison Wesley, New York, 1996.

Christopher J. Lindblad and David L. Tennenhouse.
The VuSystem: A programming system for compute-
intensive multimedia. IEEFE Journal on Selected Ar-
eas in Communications, 14(7):1298-1313, September
1996.

CIliff Mercer, Stephan Savage, and Hideyuki Tokuda.
Processor capacity reserves: Operating system sup-
port for multimedia applications. In Proceedings of
the International Conference on Multimedia Com-
puting and Systems, pages 90-99, May 1994.

Jason Nieh and Monica S. Lam. Integrated proces-
sor scheduling for multimedia. In Proceedings of the
Fifth International Workshop on Network and Oper-
ating System Support for Digital Audio and Video,
Durham, New Hampshire, April 1995.

Brian D. Noble, M. Satyanarayanan, Dushyanth
Narayanan, J. Eric Tilton, Jason Flinn, and Kevin R.
Walker. Agile application-aware adaptation for mo-
bility. In Proceedings of the Sizteenth ACM Sympo-
stum on Operating Systems Principles, Saint-Malo,
France, October 1997.

Gary Nutt, Toby Berk, Scott Brandt, Marty
Humphrey, and Sam Siewert. Resource management
for a virtual planning room. In Proceedings of the 3rd
International Workshop on Multimedia Information
Systems, September 1997.

Gary J. Nutt. Model-based virtual environments for
collaboration. Technical Report CU-CS-799-95, De-
partment of Computer Science, University of Col-
orado, Boulder, December 1995.

Shuichi Oikawa and Ragunathan Rajkumar. A re-
source centric approach to multimedia operating sys-
tems. In Proceedings of IEEE Real-Time Systems
Symposium Workshop on Resource Allocation Prob-
lems in Multimedia Systems. IEEE, December 1996.

Ralf Steinmetz. Analyzing the multimedia operating
system. IEEE Multimedia, Spring 1995.

Teik Guan Tan and Wynne Hsu. Scheduling multi-
media applications under overload and indetermin-
stic conditions. In Proceedings of the Third IEEE
Real-Time Technology and Applications Symposium,
June 1997.

