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Abstract

A flash crowd is a surge in traffic to a particular
Web site that causes the site to be virtually unreach-
able. We present a theoretical model of flash crowd
events and evaluate the performance of various multi-
level caching techniques suitable for managing these
events. Our results show that orders of magnitude
savings can be achieved in client response times and
server and network load during flash crowds using
basic caching techniques, and even more savings can
be realized with a bit more intelligence in replace-
ment algorithms and placement of proxies.

Keywords: Flash crowds, Web server, hierarchi-
cal cache, Web proxy, adaptive caching, trace-driven
simulation.

1 Introduction

A flash crowd [29] is a large spike or surge in traf-
fic to a particular Web site1. Many times it is the
major news-Webcast sites, such as MSNBC [7, 30]
and CNN [4, 24], that experience this problem during
major world events. Other times it is a previously un-
popular Web site becoming extremely popular after
being mentioned in a popular news feed. The latter
case is called the Slashdot effect [31]. The end results
of flash crowds are usually very poor performance at
the server side and a significant number of unsatisfied
clients.

Denial of Service (DoS) and Distributed DoS
(DDoS) attacks [22], which are malicious requests to
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1The term “flash-crowd” was first used by Larry Niven in his

1973 science-fiction story, where huge crowds would materialize
in places of interesting events with the availability of cheap tele-
portation.

disrupt the normal operation of a Web service, have
similar characteristics to flash crowds. Fortunately,
there are ways to distinguish them from legitimate
flash crowds [24] and ways to fight back via router-
based “pushbacks” [22].

The cost of outsourcing the distribution of the Web
site content towards the clients via Content Distribu-
tion Networks (CDNs) like Akamai [1, 5] is only jus-
tifiable for sites that experience high loads on aver-
age and expect flash crowds eventually. Our focus
is on unexpected flash crowds or on flash crowds di-
rected to “poor” Web sites that cannot afford the re-
quired hardware and software infrastructure even if
they expect it to happen. These sites need a publicly
available and Internet-wide infrastructure support to
survive flash crowds. This infrastructure could either
be a much more widely distributed form of Squid-
like [17, 36] hierarchical Web proxies, or support
from the network infrastructure as seen in caching
routers [3, 11], or peer caching via peer-to-peer over-
lays [30, 31, 25].

We evaluate the multi-level caching solutions to
flash crowds in this paper. Our findings show that
a distributed caching infrastructure is much more ef-
fective in dealing with flash crowds than using a more
powerful server. We find that one has to increase
the CPU power of a Web server at least 4-5 times to
deal with even moderate flash crowds, and doing this
neither resolves the network bottlenecks close to the
server nor reduces the client response times. Further-
more, most of the added capacities would be idle (�
82%) during normal loads.

Since the unique flash content is not very large, a
distributed caching infrastructure that is provisioned
to provide improvement during normal loads is more
than enough to handle flash crowds. The Greedy Dual
Size with Frequency (GDSF) policy uses one fourth
of the cache size used by LRU to achieve the compa-
rable hit rates. Therefore, if cache amounts required



for a distributed infrastructure are a big concern then
using better policies helps alleviate this problem.

We also find a trade-off between the benefits of
client sharing at the upper levels and the cost of
additional trip-times to get the content from there.
We also find diminishing returns from sharing for
larger communities similar to findings in other re-
search [34]. Finally, using heterogeneous policies
and size-based partitioning results in minor improve-
ments over LRU-only or LFU-only policy caching;
however, it does not beat GDSF-only caching.

Other contributions are: a capability to regenerate
and simulate wide-scale events on the Internet, such
as flash crowds for which traces are hard to obtain;
and a complete simulation package with caching, net-
working, and a Web server model.

2 Modeling The Flash Scenario

We describe the pieces of models and tools that we
developed separately and finally brought together to
generate a wide-scale flash crowd scenario. We intro-
duce the flash traffic trace generator, the Web server
model, and the topology generator. Section 4 de-
scribes the network and cache simulator that glues all
pieces together and enables the trace-driven simula-
tions.

2.1 Flash Crowd Traffic Model

We define the shock level parameter to be equal to the
order of magnitude increase in the average request
rate seen by a Web site:

Rf lash � shock level�Rnormal � (1)

where R f lash and Rnormal are the request rates of a
server during the peak of a flash event (event that
causes flash crowd) and the “normal” or expected-
load operation, respectively. We calculate the average
request rate for the normal operation from real Web
traces. Plots of various real Web proxy traces reveal
that the request rate of a Web proxy server varies up
to 3–4 times within a normal day which makes the
average request rate assumption reasonable for shock
levels relatively larger than these variations.

A flash event has three major phases, a ramp-up
phase, a sustained traffic phase and a ramp-down
phase as shown in Figure 1(a). The shock level pa-
rameter determines the length of each of these phases.
The flash event starts at time t0. During the ramp-
up phase of a flash event, more and more people are
interested in the event, and the traffic level is raised

from its normal level (in requests/second) to a sus-
tained maximum level at time t1. The maximum
traffic level is sustained until time t2 because people
come to and leave the Web site at roughly the same
rate during this period. The traffic level of this Web
site gradually decreases and is back to its normal rate
at time t3.

We generally argue that the more shocking an
event is the less time it takes to reach the maximum
request rate of the flash event during the ramp-up
phase. There is evidence in experimental psychol-
ogy for the truth of this claim. Cicala and Corey [18]
have measured the running speed of rats as a function
of the magnitude of applied electrical shock. They
found direct correlation between the two, but unfortu-
nately did not provide information on the slow-down
behavior. Therefore, instead of focusing on the shape
of the curves we focus on the time relations between
the time periods of a flash event. We choose to take
the logarithm of the shock level to simulate the ef-
fect of “numbness” or disability to react proportion-
ally to linearly increasing shock. Currently, the ramp
up time, l1 � t1� t0, is given by:

l1 �
1

log10�1� shock level�
(2)

and the ramp-up function is linear.
We model the second phase of the flash event with

a sustained request rate, which is equal to R f lash. We
argue that the magnitude of the increase in the nor-
mal request rate (i.e. the shock level) is an indication
of more information content in the events that cause
the flash interest. The argument is based on the ob-
servation that the flash crowds are coming to the Web
site, because they are not satisfied with other news
sources informing them about the event. For exam-
ple, the news about the death of a famous person at
an old age from natural causes may be shocking ini-
tially, but if there is nothing more to learn about the
details the shock does not ramp-up to extremely high
levels and does not sustain just as long. Therefore,
we take the second phase to be related to the shock
level and take the logarithm to slow down the amount
of reaction of the crowd for the same reason as above.
The sustained time l2 � t2� t1 is given by:

l2 � log10�1� shock level� (3)

In the ramp-down phase of a flash event, the server
traffic decreases as the information in the Web site
is exploited by the clients and as the interest shifts
to other news sources or other events. A general ob-
servation is that the interest is lost slower than it is
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Figure 1: (a) Based on observations of flash traces used in previous research [30] we model a flash crowd
scenario as a three-phase event: a ramp-up phase from the normal-traffic rate, R normal , to a maximum flash-
traffic rate, R f lash; a sustained traffic phase at R f lash; and a ramp-down phase from R f lash back to Rnormal (b)
Traffic levels seen in our real Web proxy trace varies around 200-500 reqs/minute. Then, the generated flash
crowd traffic is superimposed on the normal traffic to model the overall flash crowd scenario. The request
rates reach up to 10,000 requests/minute.

gained for the flash events with certain shock effects
on the society [30]. In this model, we simply make
the ramp-down time, l3 � t3� t2:

l3 � n� log10�1� shock level�� (4)

where n is a constant. The ramp-down function is
also linear.

Figure 1(b) shows the rates (in requests/minute)
seen in a real Web proxy trace and the flash crowd
zone. The average request rate which is �480
reqs/minute (8 reqs/sec) increases to around�10,000
reqs/minute (�160 reqs/sec) during the flash crowd.

We use scripts to generate the flash traffic and then
combine it with the traffic in the real Web trace to
turn the ordinary day into a flash event. We assume
independent inter-arrivals for clients and use a Pois-
son model for the request inter-arrival times during
a flash event as done for synthetic Web proxy trace
generations in related prior work [26]. The flash doc-
uments are considered to be separate from the normal
traffic, so it takes a warm up time to cache these doc-
uments. We chose the objects to be fixed-size at 10
KBytes to make it easier to track the cacheability of
the cumulative flash content with various cache sizes.

2.1.1 Shock Waves

Our initial flash model considers an event with a sin-
gle shocking subject. It is possible that events in real
life trigger each other and multiple shocking events
occur in one epoch. In this case one has to consider
each event separately, use the model multiple times
with time shifts and overlap the generated curves to

create the combined flash effect that we call shock
waves.

Figure 2 shows shock waves with two and three
shocking subjects each created as single shocks us-
ing the model and then overlapped with time shifts
from each other. MSNBC traces on September 11,
2001 [9] are similar to the shock waves shown in Fig-
ure 2.

2.2 Web Server Model

We developed a Web server model based on the scala-
bility tests done by the SPECWeb benchmarks [8] on
real Web servers. SPECWeb [8] is designed to mea-
sure a system’s ability to act as a Web server servic-
ing static and dynamic page requests. SPECWeb99
measures the maximum number of simultaneous con-
nections, thus the simultaneous requests that a server
is able to support under a predefined workload. We
omit models within SPECWeb for directory, size and
popularity distributions of objects, since we gather
this information from real Web traces. We also do
not include the bit-rate restrictions enforced by the
SPECWeb99 clients to the server under test.

We model a multi-threaded Web server that can
scale up to simultaneously servicing a maximum
number of requests. Figure 3 illustrates the model.
The three parameters that we use in the model are,
maximum number of threads, maximum requests per
second (RPS) by each thread and the server queue
length. The bursts of requests up to the queue length
can be accepted by the server to receive service while
the server threads are busy servicing prior requests.
The more queuing capacity the server has the more
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Figure 2: Our model for a single shock event can be used multiple times to create a series of events, called
shock waves, each with a chosen shock level. Shock events with 2, 3 waves are shown here. In these figures
we assume the events are related and thus reduce the shock level of the following events by the shock level
of the first event.
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Figure 3: Model for the operation of a multi-threaded
Web server.

utilized it can be under high loads. At full utiliza-
tion the server scalability, Sserver, is therefore approx-
imately:

Sserver � threads�RPS�thread (5)

This model is analogous to a barber shop with, say,
10 seats where 10 barbers are servicing clients and
10 additional seats are reserved for incoming clients.
When a barber is available he accepts an arriving
client, otherwise the client sits in the waiting seats
until these seats are also full. The clients arriving af-
ter the waiting seats are also full will be rejected. In
Staged Event-Driven Architecture (SEDA) [32] our
model is classified under “bounded thread pools” and
is stated to be the right model for the Apache Web
server [2] and some other Web servers.

Similarly, after the server queue is full the
server rejects the incoming requests with a
“SERVER BUSY” message,2 until a thread com-
pletes its task and is ready to service another request
from the queue. Each request simply takes 1�RPS
seconds to complete. The model is written in C++

2Similar to HTTP server error message 504.

and is embedded in our distributed cache simulator,
called multicache [12].

2.3 Topology Modeling and Generation

Our network topology generator, TopoGen, was in-
spired by the Tiers network topology generator [16].
TopoGen generates wide-scale network topologies
with user directed input for (1) the number of nodes
in a Wide Area Network (WAN), (2) the number of
Metropolitan Area Network (MAN) nodes per WAN,
(3) the number of Local Area Network (LAN) nodes
per MAN (4) the number of hosts in LAN, (5) the
propagational delays of links between nodes, and (6)
the bandwidths for each link. Delays and bandwidths
are same for links of same type, e.g. all the links be-
tween the LAN and the MAN levels.

Figure 4 shows one of these topologies. We as-
sume that the WAN nodes (also called GigaPOPs) are
fully connected, as a mesh, to each other. In all other
levels nodes are connected to other nodes in the same
level via upper level nodes. We create a node adja-
cency matrix while parsing the topology files to avoid
route calculations during the simulations.

3 Analysis Of Web Trace

National Laboratory for Applied Network Research
(NLANR) operates a global cache hierarchy using
Squid proxy caches and has provided important Web
traces [20]. The base trace that we use to character-
ize normal operation for the Web server is a day long
trace collected from a busy Web proxy server, SV, in
the NLANR Squid cache hierarchy. It contains about
675,342 requests to 269,031 unique Web objects. The
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Figure 4: A sample topology generated by our topol-
ogy generator, TopoGen. It has nodes at WAN, MAN,
LAN and host levels. Only the WAN backbone has
redundant connections. The other levels access peers
at the same level via upper levels. We have not shown
the MAN, LAN nodes for the upper WAN nodes for
brevity and clarity.

Table 1: Parameters for the real Web proxy trace that
is used to simulate the normal level traffic. This trace
was then superimposed by the flash crowd traffic and
used in flash crowd simulations.

Total Requests 675,342
Unique Requests 269,031

Total Bytes 4,507,009,740
Unique Bytes 1,255,894,407

Hit Rate ∞ 60%
Byte Hit Rate ∞ 72%

Average Document size 6,674 bytes
Max Object Size 23,087,855 bytes

Zipf Slope 0.65
Average Request Rate 8 requests/sec

characteristics of the trace are given in Table 1. We
use a Web proxy trace rather than a Web server trace,
due to the high traffic volumes witnessed in this proxy
trace. We observed that Web server traces [6] and
Web proxy traces have the similar Zipf popularity dis-
tributions.

As for the flash content we simply chose 200, 10
KB objects which can be cached by a 2 MB cache.
This choice makes it easier to track how using various
cache sizes, cache replacement algorithms and cache
configurations may effect the end results. SPECWeb
based size distributions of objects based on popular-
ity is left as future work in this paper.

4 Simulation Setup

We explain the methodology used to combine the de-
veloped pieces together, the multicache simulator and
the selected model values for the simulations.

4.1 Distribution of Trace Requests to
Multiple Clients

Both the clients and the server are at the edges of the
generated network topology, attached to Local Area
Networks (LANs). The flash content is stored in a
single server. This is one aspect of a flash crowd
event, where a single server becomes subject to all
the requests. All of the clients are assumed to be
involved in the flash event. The requests are parsed
from the trace file and sent to randomly selected
hosts at the edges representing multiple clients. Then,
the requests are directed by the network towards the
server under test, which will be experiencing the flash
crowd. Caches are placed between clients and servers
at LAN, MAN, or WAN levels. Statistics are col-
lected at all modeled entities.

The random distribution of the requests to the
clients enables correlations between clients, since the
unique object space is not partitioned based on client
IDs. Also, sending requests from all the hosts makes
the event global within the topology that we are us-
ing. It is also possible to push requests through a few
clients to simulate Denial of Service (DoS) [24] or
Distributed DoS (DDoS) scenarios.

4.2 Multicache Simulator

Multicache [12] is a trace-driven cache simulator de-
veloped to make the design, analysis, and compari-
son of cache placement and replacement algorithms
in multi-level caching systems practical.

The simulator provides many building blocks such
as well-known replacement algorithms (LRU, LFU,
GDSF, etc. 3), space management routines, container
data structures, and simple topologies. Topologies
like client-server, server-storage pairs, Web proxy hi-
erarchies, and peer-to-peer overlays can be imple-
mented. Modern caching related concepts such as
using heterogeneous algorithms, filtering effects [33,
10], demotions [35] can also be evaluated. The code
is written in C++.

4.3 Summary of Model Parameters

Table 2 gives a list of values we used during simu-
lations to control the flash trace, Web server and the

3The list of algorithms implemented is around 15.



Table 2: List of values used for various parameters in
the simulations.

Model Parameter Value

Normal Load See Table 1. -
Shock level 20

Ramp-down constant, n 4
Number of hot documents 200

Hot document size 10 KbytesFlash Load
Flash period �6 hours

Number of threads 8
Service rate per thread 5 reqs/secServer
Server Busy Penalty 5 secs

Nodes per WAN 2
MAN per WAN 2
LAN per MAN 2
hosts per LAN 2

WAN-to-WAN delays 50 ms
WAN-to-MAN delays 2 ms
MAN-to-LAN delays 1 ms
LAN-to-host delays 0.1 ms
WAN-to-WAN bw 1 Gbps
WAN-to-MAN bw 100 Mbps
MAN-to-LAN bw 4.5 Mbps

Topology

LAN-to-host bw 10 Mbps

topology. The delays for network topology were cho-
sen based on our traceroute collections from our
university machines to various other universities all
over the world (USA, Europe, Asia, etc.). The two
WAN nodes were made to be approximately 10,000
kilometers away from each other (50 ms at the speed
of light in glass). The network bandwidths (BW)
were partially based on the results of a previous re-
search [30] that reported 90% of the thousands of
polled servers to have a bottleneck bandwidth less
than 4.5Mbps (T3 lines).

The topology whose parameters are listed in Ta-
ble 2 is illustrated in Figure 5. There are 58 directed
links: the uplink and downlink are considered sep-
arately, since the loads witnessed on different direc-
tions are not equal. Uplinks transfer the small and
fixed-size control packets (100 bytes) towards the
server, whereas downlinks transfer the variable-size
data objects that get transferred back to the clients.
Figure 5 highlights the hot links in this topology. The
details of network bottlenecks are discussed in Sec-
tion 5.

Server model details were explained in Section 2.
We add another parameter “server busy penalty” and
set it to 5 seconds, a value which seems to be a rea-
sonable wait time for getting the SERVER BUSY
message from the overly loaded server, i.e. the queue
is full and all threads are servicing data requests.
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Figure 5: For both the normal and flash crowd traffic
the hot links were the downlinks (from server towards
clients). The ranking in decreasing traffic order was
found to be directly related to the hop-distance from
the server. This figure also shows the detrimental ef-
fects of a server under flash crowd traffic to its sub-
domain by the increased network load. Caching solu-
tions distributed the load on networks better over the
entire topology.

4.4 Replacement Policies for Caches

Time, frequency and object size are the most com-
monly used criteria for local replacement decisions.
Least Recently Used (LRU) uses recency of access
as the sole criteria for replacement, while Least Fre-
quently Used (LFU) uses frequency or popularity of
access. SIZE replaces the largest object. Greedy Dual
Size with Frequency (GDSF) [14] replaces the object
with the smallest key Ki � �Ci�Fi��Si�L, where Ci

is the retrieval cost, Fi is the frequency of access, Si

is the size and L is a running age factor. L is set to
the key value of the objects that are replaced from the
cache.

5 Results and Discussions

We measure the effects of flash crowd on Client Re-
sponse Time (CRT), server load and network load in
three experiments. Each experiment aims to test a
different aspect of caching under the normal and the
flash workloads. In Experiment 1, we use caching
at the edges of the network at the LAN level only
and compare LRU and GDSF policies. In Experi-
ment 2, we evaluate the costs and the benefits of plac-
ing caches at various levels of the hierarchy. We re-
move caches from the LAN level and place an aggre-
gated amount of cache to the MAN level; we repeat
the procedure between the MAN and the WAN lev-
els. In Experiment 3, we place caches at both the
LAN and the MAN levels and compare three multi-
level caching strategies. The first strategy is to use
the same policy both in LAN and MAN levels. The
second strategy is to use different or heterogeneous
policies [15, 33] at different levels. The third strategy
is to partition the unique document space to multiple
levels in the hierarchy based on size as proposed by
Williamson [33]. At the end we discuss about some
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Figure 6: To discover the burstiness in the normal
trace we change the time scale to increments of 1 sec-
ond. Request rates observed in the real Web trace are
mostly lower than 30 reqs/sec. However, very few
cases between 40-60 reqs/sec are also observed.

of the recently proposed adaptive caching techniques
for multi-level caches as future prospects.

5.1 Experiment 1: No Caching vs. LAN-
Only Caching

We report results on caching only at the LAN level,
closest to the clients. We compare Least Recently
Used (LRU) and Greedy Dual Size with Frequency
(GDSF) replacement policies under normal and flash
loads. No other caches are used in the network. Also,
node 13 in Figure 5 was never allowed to cache,
since caches in our simulators can serve request com-
ing from both directions and serving clients of other
subdomains from node 13 would result in an HTTP-
accelerator capability.

5.1.1 Server Load

We initially adjust the capabilities of the server to
handle 99.9% of its load during normal operation
even without caching in the network. Therefore, for
the normal trace the percent of SERVER BUSY re-
sponses is (100-99.9)� 0.1% for all cache sizes4. We
come to this value as follows. Figure 6 shows the re-
quest rates observed in the normal trace in 1 second
buckets. We calculate that 99.9% of the request rates
(in requests/sec) are under the horizontal line at 28
reqs/sec. We leave some slack capacity and choose
the final server to be approximately 1.5 times more
powerful than the initial server, so capable of han-
dling 40 reqs/sec as shown by the upper horizontal
line.

4The exact value starts at 0.03% without caching.

Table 3: Cache amounts are given as a percentage of
the unique space seen at edge nodes, thus their infi-
nite cache size. Percent of error messages returned to
the clients drops drastically with increased amount of
cache at the edges. Caches using GDSF replacement
policy achieved more hits and reduced the load on the
server quicker than LRU.

Cache Size (%) Unsuccessful Responses (%)
flash-LRU flash-GDSF

0 51.4 51.4
0.31% 11.1 9.5
0.62% 0.2 � 0.1
1.25% � 0.1 � 0.1

Next, we use the generated flash trace on the same
topology and the same server. Table 3 reports the per-
cent of incoming requests that were responded with
a SERVER BUSY response for the flash workloads
with (� 0MB) and without (0MB) caching for dif-
ferent cache sizes. When there is no caching al-
most half (51.4%) of the requests were responded
with a busy message during flash crowd. This 51.4%
number is comparable to the dynamic page phase of
MSNBC September 11 trace analysis [30], that re-
ported a 49.4% busy message value. When we use
caches GDSF replacement policy achieved more hits
and reduced the server load more than LRU caches.
In Section 5.1.3 we show that GDSF has a slight dis-
advantage in terms if byte hit rates over LRU with
large cache sizes and therefore it cannot reduce net-
work loads as much as LRU.

Our flash trace has a shock level of 20 as listed
in Table 2. According to equation (1) the upscaled
server that aims to handle all the load during flash
crowd has to handle at least (20 � 8) 160 reqs/sec.
We increased the number of threads and the RPS for
each thread until 99.9% of the requests in the flash
crowd trace were handled. As expected, we reached
this level of service when the new server had 16-20
threads each able to handle 10 reqs/sec, respectively.
This means the initial server has to be upscaled 4-5
times before it can handle the flash load with a shock
level of 20 and the initial average inter-arrival rate of
8 reqs/sec. Unfortunately, for 99.9% of the cases with
the normal trace, more than 82% (�160�28��160) of
the capabilities of the upscaled server will be idle dur-
ing normal operation; a cost which cannot be justified
for most web sites. Therefore, caching support from
the infrastructure is crucial.
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Figure 7: Client response times for GDSF and LRU
algorithms using normal trace. Refer to Table 4
columns 1-2 for details.

5.1.2 Average Client Response Times (CRT)

Table 4 illustrates the average CRT for the normal
and the flash workloads with and without caching
at the LAN level for LRU and GDSF. The infinite
cache size for the workload seen at the clients was
found empirically 5, since the workload seen by each
client is not equal to the complete trace. Due to ran-
dom distribution of requests to the clients, the infinite
cache size for the parts of the workload seen by all
the clients were almost the same. Therefore, the per-
cents in Table 4 are truly reported based on the infi-
nite cache size for the workloads seen by each client.

Two different replacement policies, LRU and
GDSF, are used to control the caches. As expected,
the average CRT results for zero and infinite cache
sizes are the same for both policies. For the normal
load the infinite cache size can provide up to 33%
(1-230/342) reduction in CRT. For other cache sizes
GDSF is approximately 6% better in CRT than LRU.
Note that 6% difference is significant for the normal
load case, since due to diminishing returns it would
take 4 times more cache space for LRU to achieve the
same reductions as GDSF does for this workload. For
example, Table 4 shows that LRU uses 10% cache
space to achieve 261 ms CRT, while GDSF achieves
261 ms CRT with 2.5% cache space. Figure 7 plots
the first two columns of Table 4 to emphasize the suc-
cess of GDSF. The plot for the CRT results for the
flash workload were very steep and the details were
not visible, therefore we refer the readers to the re-
sults given in Table 4 for the flash trace.

For the flash trace (Table 4 columns 3–4) there are
two sharp drops in average CRT levels, first from
�2600 ms to �500 ms and the second is from �500
ms to �100 ms, that is as much as 25 times. These
are the cache sizes at which approximately one half

5Infinite cache size is 320 MB for normal workload.

of the flash objects and then all of the flash objects
can be cached, respectively. Note that after these
two phases, the average CRT for the flash workload
is much lower than the average CRT for the normal
load. The two reasons for this difference are: (1) most
requests for the flash contents are responded from the
nearby LAN caches and (2) the number of requests to
the flash contents outweigh the number of requests to
normal content during the flash crowd event.

Although response times for the flash crowd are
expected to be extremely high, there are two concerns
about how to compare the CRTs for cases including
unsuccessful responses and those resulting in com-
pletely successful ones. To enable comparison we
provided an empirical 5 second busy message penalty
for the overly-loaded servers and assumed that the
client would be “satisfied” with this response (i.e. the
client considers any response a successful response)
whether it is the data or the busy message. This is a
model for submissive clients.

We also modeled persistent clients which repeat-
edly made requests to the server until they got a data
response. However, this model had several disad-
vantages. First, it had the effect of pouring gaso-
line on fire during the flash crowd, since 50% of the
messages returned as busy created just as many new
requests back to the overly-loaded server. Second,
we noticed that by doing this we changed the initial
workloads both for the flash and the normal levels.
Third, after the server queue was full it became a mat-
ter of luck as to which request would get a chance to
receive the next available service and this increased
the variation in response times. So, we chose to stay
with the submissive client model.

The CRT values for the flash crowd trace in the net-
work without caching are expected to be even higher
in reality, since our network model does not consider
packet drops and TCP level issues. The network de-
tails are discussed next.

5.1.3 Network Bandwidth Usage

Our simulations currently run at the Web document
level, therefore we omit the transport layer details
(TCP slow start, congestion avoidance, packet drops
and retransmits, explicit congestion notifications) and
simulate the transfer of objects over the network links
by calculating the total transfer delay, D as:

D � P��size�8���BW �106� (6)

where P is the propagational delay in seconds (dis-
tance/speed of light), size is the document size in
bytes and BW is the link bandwidth in Mbits/sec.



Table 4: Client response times in ms with and without
caching for the normal and the flash traffic with LRU
and GDSF replacement policies.

Cache Size Client Response Times (ms)
Normal Flash

LRU GDSF LRU GDSF
0 342 342 2600 2600

0.31% 287 281 506 440
0.62% 284 276 108 96
1.25% 279 269 89 86
2.5% 275 261 87 84
5% 268 253 85 82
10% 261 246 84 80
20% 252 238 81 79

100% (∞� 230 230 75 75

Propagational delays and bandwidths of links be-
tween various levels in the hierarchy are given in Ta-
ble 2.

We assumed the network nodes to have enough
buffering capability to handle transmission of bursts
of requests. Our assumption is valid for all request
rates in the normal operation and during most of the
flash crowd. However, this assumption is optimistic
only for the flash workload case in the network with-
out any caching or with very little caching. The top
curve in Figure 8(b) shows this case. The only bottle-
neck links in the topology during flash crowd are the
4.5 (T3) link between the LAN and MAN and with
less intensity the 10 Mbps link between the LAN and
the server.

At 4.5 Mbps links can transfer approximately 570
KBytes/sec. With an average object size of 6-10
KBytes within the proxy trace this would mean 57-
95 reqs/sec. A quick scan of Figure 6 reveals that for
the normal trace all requests can be handled even by
the 4.5 Mbps links. Whereas during flash crowd 160
reqs/sec are seen at the sustained peak rates. With
an average size of 10KB objects 160 reqs/sec results
in 12.8 Mbps data rates, which could render both
the 4.5 Mbps MAN-LAN link and 10 Mbps LAN to
server links to be bottlenecks. Therefore, only un-
der the flash crowd load in the network with no or
very little (0.31%) caching CRTs, which are (in Ta-
ble 4 columns 3–4) already high, are expected to be
much higher due to queuing in the network routers
and finally due to packet drops when the router can-
not buffer the bursts. Finding the exact value for the
already high CRT in the flash crowd case with little
or no caching is left as future work.

Figure 8 shows the traffic reduction in highly traf-
ficed links. The links are ranked based on the amount
of traffic they witness. Note that in addition to low-

ering the total traffic (areas under the curves), caches
also provide a better load distribution over all the net-
work links seen as a flattening on the curves. This
effect is especially prominent during the flash crowds
as illustrated in Figure 8(b). The load balancing prop-
erty of distributed caching during flash crowds is just
as critical as the CRT reductions, since the LAN, the
MAN and the WAN of the server will still be reach-
able.

A comparison of GDSF and LRU with 5% cache
size reveals that LRU is better than GDSF in reduc-
ing the network load on hot links. This is due to the
lower byte hit rates of GDSF compared to LRU also
recognized by various other prior work [14, 33].

5.2 Experiment 2: Caches At MAN and
WAN Levels

In this experiment we first remove caches from the
LAN level and place the aggregated amount of cache
at the MAN level. For example, if we had 1% (of in-
finite) amount of cache at the LAN level, we place
a 2% at the MAN level using LRU policy in both
caches. We compare cache placement choices at
different levels of the hierarchy without any filter-
ing [33, 10] at lower levels. Then, we repeat the same
cache aggregation procedure between the MAN and
the WAN.

Aggregating the caches at an upper level has two
benefits both due to client sharing. First, duplica-
tions of objects at the lower levels is avoided and
some space is saved. These savings can be used to
hold more unique objects, so to avoid some of the ca-
pacity misses. Second, since the cache serves a larger
community there is a higher chance of avoiding the
first-time or compulsory misses.

Table 5 shows the CRT results with normal and
flash traces using LRU at each level. We replicate
the LAN data from Table 4 for convenience of com-
parison. During comparison we keep the total cache
size equal, ı.e. a 10% WAN cache is the aggregation
of two 5% caches from MANs, which are in turn ag-
gregation of two 2.5% caches from LAN.

In Table 5 for the normal trace we see that for all
cache sizes except 100% (infinite size) the two as-
pects of client sharing have resulted in reductions in
CRT (3-9%). The 100% cache size for the normal
load requires special attention, since there are no ca-
pacity misses and the only effects on CRT are the
compulsory misses and the network delays. For the
normal workload we see that for LAN to MAN cache
aggregation benefit of client sharing outweighed the
cost of additional 1ms trip-delay to MAN and the
CRT dropped from 230 ms to 157 ms (32% reduc-
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Figure 8: The links are ranked based on the amount of traffic that passes through. The reduction in traffic on
highly trafficed links via caching is more significant during the flash crowds. Another benefit of caching is
the better distribution of the remaining traffic load over all network links.

tion). However, due to diminishing returns of client
sharing with larger communities [34] the additional
sharing gained from MAN to WAN cache aggrega-
tion did not pay off for the additional 2 ms trip-delay
for each request. With WAN only caching there are
also more clients (from nodes 26 through 28) that
directly go to the server since the MAN cache in
server’s domain has been removed. This adds to the
higher response times due to queuing and processing
at the server.

The cumulative size of the hot data set for the flash
content is much smaller compared to the normal trace
content. Therefore, whenever the infinite cache size
for the flash content is aggregated large reductions
in CRT are found, as seen between LAN and MAN
for small cache sizes and between LANs with smaller
caches and LANs with larger caches. After all the
flash content is cached it pays off to move this content
closer to the clients. Therefore, LAN caching results
in lower CRTs than MAN caching and MAN caching
results in lower CRTs than WAN caching. One ex-
ception is again the MAN CRT results with 100%
cache size, where sharing provides a small additional
CRT saving for the proxy part of the flash trace.

In summary, we find a trade-off between benefit of
client sharing at upper levels and cost of additional
delays spent for caching away from the clients. Also,
the cacheability of flash content plays a significant
role on average CRTs.

5.3 Experiment 3: Multi-Level Caching

In this experiment we allow caching at multiple lev-
els of the hierarchy. Therefore, upper levels are sub-
ject to the filtering effects [33, 10] from the lower
level caches. We compare three major strategies: sin-
gle policy caching, heterogeneous caching and size-

based partitioning. The cache sizes are fixed to
0.62% at the LAN and 1.25% at the MAN levels,
which can hold most of the hot objects if the correct
policy is used.

For single policy caching, which means using the
same replacement policy in all cache nodes in the hi-
erarchy, we repeat the experiment for LRU, LFU and
GDSF policies. Table 6 gives the CRTs for each ap-
proach under the normal and flash loads. LRU per-
forms better than LFU under normal load, but LFU
performs better than LRU under flash loads. This is
because LFU can keep the popular flash content in
the caches, while LRU flushes out some flash objects
from the cache to place some recently retrieved non-
flash objects. GDSF is the best static policy to be
used in all cache levels, since it considers all of the
frequency, size, and aging criteria instead of a single
recency or frequency factor.

Previous research [15, 35, 13] shows the bene-
fits of using heterogeneous policies at various levels
in a hierarchy to avoid inclusive caching. Inclusive
caching may render upper level caches useless. For
heterogeneous policies we try various combinations
of LRU, LFU and GDSF in different levels. We find
that combinations of recency (LRU) and frequency
(LFU) were not good enough to perform better than
GDSF, which considers all of recency, frequency and
size under one roof.

Size-based partitioning was recently proposed by
Williamson [33], where the lower level caches only
hold objects smaller than a certain size, S, and the up-
per level caches hold objects larger than S. We eval-
uated size-based partitioning with different replace-
ment policies and two different S values, 9 KB and
12 KB.

For the SIZE replacement policy that replaces the
largest size objects the 12 KB threshold decision had



Table 5: Client response times for experiment 2.

Aggregate Cache Size Client Response Times (ms)
Normal Flash

LAN MAN WAN LAN MAN WAN
1.25% 287 278 277 506 115 180
2.5% 284 272 271 108 104 173
5% 279 265 264 89 100 169

10% 275 257 255 87 98 171
20% 268 247 244 85 96 159

100% (∞) 230 157 174 75 73 117

a detrimental effect, since the lower level cache was
cluttered with objects smaller than 10KB flash ob-
jects and that the flash objects were quickly being re-
placed. The upper cache was unfortunately not even
caching these hot objects. We dropped the threshold
to 9KB to force flash objects to be cached at the up-
per level as these objects would be the fairly small
compared to other objects in upper level, therefore
would not get replaced. The CRT dropped to 114
ms. None of the results for other replacement poli-
cies using size-based partitioning performed better
than their counterparts that did not use this technique.
Tuning the threshold around the fixed-size flash ob-
jects and not getting additional benefits from it tells
us that frequency and recency provide a more power-
ful ordering than a manually split ID space based on
size, no matter how well the threshold is tuned.

5.4 Adaptive Algorithms

Recently proposed adaptive algorithms [27, 21, 13]
can select the best of two or more algorithms at the
current level of a hierarchy and under changing work-
loads. We have preliminary results indicating that
adaptive techniques can pick the best replacement
policy with a given workload [21]. We leave the ap-
plication of these algorithms to flash crowd scenarios
as future work.

6 Related Work

Distributed caching is a well-plowed research topic
for file systems [28, 19], Web hierarchies [17] and
databases. The taxonomy of solutions for flash
crowds within Web context include Content Dis-
tribution Networks (CDNs) [24], peer-to-peer solu-
tions [30, 31], and other hierarchical and distributed
caching solutions as we partially analyze in this re-
search. This paper focused on the effects of using
different cache replacement algorithms, changing the
placement of caches, using heterogeneous multi-level

caching and partitioning the id space based on docu-
ment size on flash crowd problem.

Content Delivery Networks (CDN) [1, 5] push the
content that is expected to be popular towards the
clients. CDNs are likely to provide load distribution
and high availability [30] during both flash crowds
and normal operations. However, the on average
low traffic of the Web sites that experience a flash
event once in a lifetime and the relatively high cost of
CDNs for these sites make CDN solutions unsuitable
for this case.

Jung et al.[24] discuss that the protection some
current CDNs offer for flash crowds might be weaker
than claimed. They propose an adaptive CDN archi-
tecture using a dynamic delegation technique. Also,
choosing the correct server that leads to the fastest re-
sponse to the client requests is still a big challenge for
CDNs, especially “in the complexity of the real In-
ternet” [23]. Therefore, an infrastructure support for
widely distributed caching would help both to poor
web sites and to CDNs.

When the clients causing a flash crowd at a par-
ticular Web site are a small crowd dispersed all over
the Internet, proxies at local or organizational level
do not filter out the load. However, because of the
temporal locality of these requests, caching support
from the network devices or well-distributed caches
can enable the load to be slowly pulled away from
the server in various directions.

Cooperative networking [30] is a peer-to-peer
caching solution that complements traditional client-
server and client-Web proxy communication rather
than replace it. Similar to a preceding work called
pseudoserving [25] previously registered clients
“kick in during flash crowds to share the load and
get out of the way when the client-server communi-
cation is working fine [30]. Backslash [31] is also a
peer-to-peer caching solution, but it replaces the cur-
rent Web servers and proxies to make deployment of
distributed caching transparent to the clients.

IP multicast is another mechanism for the deliv-
ery of content with reduction in network traffic. IP



Table 6: CRT for various caching strategies are listed. In this experiment, when GDSF policy is used in all
caches the average CRT is lower, thus better, than both heterogeneous caching and the size-based partitioning
solutions.

Cache Design Policy Client Response Time (ms)
normal flash

LRU 270 90
LFU 273 88Static-All

GDSF 252 83
LAN(LRU), MAN(LFU) 272 88
LAN(LFU), MAN(LRU) 268 88Heterogeneous

LAN(GDSF), MAN(LRU) 263 87
LAN(SIZE), MAN(SIZE), 12KB 275 512
LAN(SIZE), MAN(SIZE), 9KB 275 114
LAN(LRU), MAN(LRU), 12KB 279 95
LAN(LRU), MAN(LRU), 9KB 278 104

LAN(GDSF), MAN(GDSF), 12KB 273 95
Size-Partition

LAN(GDSF), MAN(GDSF), 9KB 272 102

multicast does not have any redundancy in terms of
sending multiple copies of packets over the same link
for clients on a multicast session. However, IP mul-
ticast urges senders and receivers to be online at the
same time on the same multicast IP address. Clients
in a flash crowd have no agreement and start request-
ing the same content with various time-shifts. Dis-
tributed caching allows insertion of time-shifts be-
tween requests and is therefore superior to IP mul-
ticast during flash crowds. Adaptive Web Caching
(AWC) [36] uses IP multicast to automatically con-
figure cache groups to boost sharing among caches.

We chose to develop our own models and sim-
ulators, since other available tools were not flex-
ible enough to fully support our research needs.
Simulators such as “Wisconsin web cache sim-
ulator”, DavisSim, Proxycizer, NCS and NS
(links to all can be found at http://www.web-
cache.com/simulators.html) can be used for analy-
sis of Web workloads.

7 Concluding Remarks

We presented models for flash crowd traffic, Web
servers, network topologies and brought these to-
gether in a distributed cache simulator to analyze
flash crowd events and evaluated some caching so-
lutions that alleviate this problem. We found that a
distributed caching infrastructure provisioned to han-
dle normal loads is enough to handle flash crowds,
while it is not possible to achieve a complete recov-
ery by scaling up the capabilities of the servers under
flash loads. Two additional design steps resulting in
significant improvements to the client response times
and server and network loads are: using GDSF as the

replacement policy in caches and adding caches at the
MAN level to benefit from client sharing.

Our future work includes analysis of flash crowds
using of variable-sized documents, more detailed net-
work modeling, and cache consistency issues. We are
also planning to compare peer-to-peer caching tech-
niques with distributed caching solutions.
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