
A Resource Allocation Model for QoS Management�

Ragunathan Rajkumar, Chen Lee, John Lehoczkyy, Dan Siewiorek
Department of Computer Science

yDepartment of Statistics
Carnegie Mellon University

Pittsburgh, PA 15213
fraj+, clee, dpsg@cs.cmu.edu, yjpl@stat.cmu.edu

Abstract
Quality of service (QoS) has been receiving wide attention
in recent years in many research communities including
networking, multimedia systems, real-time systems and
distributed systems. In large distributed systems such as
those used in defense systems, on-demand service and
inter-networked systems, applications contending for sys-
tem resources must satisfy timing, reliability and security
constraints as well as application-speci�c quality require-
ments. Allocating su�cient resources to di�erent appli-
cations in order to satisfy various requirements is a fun-
damental problem in these situations. A basic yet
exi-
ble model for performance-driven resource allocations can
therefore be useful in making appropriate tradeo�s.
In this paper, we present an analytical model for QoS

management in systems which must satisfy application
needs along multiple dimensions such as timeliness, re-
liable delivery schemes, cryptographic security and data
quality. We refer to this model as Q-RAM (QoS-based
Resource Allocation Model). The model assumes a sys-
tem with multiple concurrent applications, each of which
can operate at di�erent levels of quality based on the sys-
tem resources available to it. The goal of the model is to
be able to allocate resources to the various applications
such that the overall system utility is maximized under
the constraint that each application can meet its mini-
mum needs. We identify resource pro�les of applications
which allow such decisions to be made e�ciently and in
real-time. We also identify application utility functions
along di�erent dimensions which are composable to form
unique application requirement pro�les. We use a video-
conferencing system to illustrate the model.

1 Introduction
1.1 Motivation
Many applications can provide better performance and
quality of service given a larger share of system resources.
For example, feedback control systems can provide better
control with higher rates of sampling and control actua-
tion. Multimedia systems using audio and video streams

�This work was supported in part by the Defense Advanced Research
Projects Agency under agreements E30602-97-2-0287 and N66001-97-
C-8527, and in part by the O�ce of Naval Research under agreement
N00014-92-J-1524.

can provide better audio/video quality at higher resolu-
tion and very low latencies. Tracking applications can
track objects at higher precision and accuracy if radar
tracks are generated and processed at higher frequencies
or if better, but more computationally intensive, algo-
rithms are used. Real-time decision-making systems can
receive, process and analyze larger amounts of data if
more resources are made available. Interactive systems
can provide excellent response times to users if more pro-
cessing and I/O resources are made available.
Applications can therefore seek to improve the qual-

ity of delivered services if su�cient resources are avail-
able. For example, if encoding/decoding times were not
signi�cant, all transmitted data can be encrypted for
security/privacy reasons. If spare resources were avail-
able, modules can be replicated to assure high availability
of critical functionality. Conversely, when resources are
tight, applications can still provide lower but acceptable
behavior. For instance, a 30 frames/second video rate
would be ideal for human viewing, but a smooth 12 fps
video rate su�ces under many conditions.
Given that applications can operate at high levels of

quality or acceptably lower levels of quality based on
the resources allocated to them, the following question
arises: \How does one allocate resources to those appli-
cations when they run concurrently and contend for the
same resource types?" This question of resource alloca-
tion is traditional in the sense that many papers in the
domains of networking, real-time systems and distributed
systems have attempted to answer it (e.g. [3]) in their
own context. However, we are unaware of any signi�cant
work which allows requirements such as timeliness, secu-
rity and reliable data delivery to be addressed and traded
o� against each other within the same context. Similarly,
much of the QoS work focuses on allocating a single time-
shared resource such as network bandwidth. In real-time
systems, applications may need to have simultaneous ac-
cess to multiple resources such as processing cycles, mem-
ory, network bandwidth and disk bandwidth, in order to
satisfy their needs.
In this paper, we propose the QoS-based Resource Al-

location Model (Q-RAM) as an initial step in addressing
both of these problems:

� satisfying simultaneous requirements along multiple
QoS dimensions such as timeliness, cryptography,
data quality and reliable packet delivery, and

� having access to multiple resources simultaneously.

We present resource allocation schemes to solve only the
�rst problem dealing with multiple QoS dimensions. Re-
source allocation schemes in the presence of multiple re-
sources are the subject of ongoing work and are beyond
the scope of this paper.

1.2 Related Work
A signi�cant amount of work has been carried out for
making resource allocations to satisfy speci�c application-
level requirements. Such work can be classi�ed into var-
ious categories. The problem of allocating appropriate
resource capacity to achieve a speci�c level of QoS for an
application has been studied in various contexts. For ex-
ample, [3] studies the problem of how to allocate network
packet processing capacity assuming bursty tra�c and �-
nite bu�ers. In [2], the problem of the establishment of
real-time communication channels is studied as an admis-
sion control problem. The Spring Kernel [15] uses on-line
admission control to guarantee essential tasks upon ar-
rival.
Various system-wide schemes have been studied to ar-

bitrate resource allocation among contending applica-
tions. In [16], a distributed pool of processors is used to
guarantee timeliness for real-time applications using ad-
mission control and load-sharing techniques. The Rialto
operating system [5] presents a modular OS approach,
the goal of which is to maximize the user's perceived util-
ity of the system, instead of maximizing the performance
of any particular application. No theoretical basis is pro-
vided to maximize system utility. A QoS manager is used
in the RT-Mach operating system to allocate resources to
application, each of which can operate at any resource al-
location point within minimumand maximum thresholds
[7]. Applications are ranked according to their semantic
importance, and di�erent adjustment policies are used to
obtain or negotiate a particular resource allocation.
Once a resource allocation decision has been made, var-

ious scheduling schemes are available to ensure that the
allocation decisions can be carried out. A CPU resource
reservation scheme [11] is used in RT-Mach to guaran-
tee and enforce access to an allocated resource once a re-
source allocation decision has been made. A large portion
of real-time scheduling theory deals with this problem and
uses �xed priority schemes [9, 8, 13, 6], dynamic priority
schemes [1, 4] or heuristic schemes [17]. The basic require-
ments of a QoS model in high assurance applications are
presented in [18]. It proposes that the QoS attributes of
timeliness, precision and accuracy can be used for system
speci�cation, instrumentation and evaluation.
The Q-RAM model we propose can be considered to be

a generalization of at least two models previously stud-
ied in the literature. First, the imprecise computation

model proposed by Liu et al. [10] considered the prob-
lem of optimally allocating CPU cycles to applications
which must satisfy minimumCPU requirements, but can
produce better results with additional CPU cycles. The
frequency of each application remains constant, while the
computation time per instance of an application can be
varied. The results were generally assumed to improve
linearly with additional resources. Secondly, Seto et al.
[14] have studied the problem of allocating CPU cycles
optimally to feedback control applications whose control
quality improves in concave fashion with higher frequen-
cies of operation. The computation time per instance of
an application remains constant.
Our proposed model can be viewed as a combination

and broad generalization of these models. First, we allow
either the computation time or the frequency of an appli-
cation to vary. Secondly, and more importantly, we seek
to generalize the resource allocation model to support
multiple dimensions of quality (timeliness, data quality,
reliable packet delivery, security achieved through cryp-
tography, etc.) for each application to support the si-
multaneous allocation of multiple resource types (CPU
and disk bandwidth, for example) for each application.
The model in its general form only assumes that an ap-
plication's quality will not decrease with any increase in
resource allocation. We only deal with cryptographic se-
curity in this paper and the term 'security' will be used
only in that sense.
The rest of this paper is organized as follows. In Section

2, we present our QoS-based Resource Allocation Model
(Q-RAM) and illustrate the concepts behind the model
using an actual video-conferencing system. In Section
3, we determine optimal resource allocation schemes for
single variable QoS constraints. In Section 4, we identify
the main considerations of multi-dimensional QoS prob-
lems and present optimal and greedy resource allocation
for di�erent cases. We also apply Q-RAM to the video-
conferencing system and consider schedulability issues. In
Section 5, we present our concluding remarks and discuss
problems that remain unsolved.

2 Q-RAM: The QoS-based Resource Al-
location Model

Q-RAM is based on a dynamic and adaptive application
framework with the following characteristics:

� An application may need to satisfy many require-
ments: timeliness, security, data quality, depend-
ability, etc.

� An application may require access to multiple re-
source types such as CPU, disk bandwidth, network
bandwidth, memory, etc.

� An application requires a certain minimumresource
allocation to perform acceptably. It may also im-
prove its performance with larger resource alloca-
tions. This improvement in performance is mea-
sured by a utility function.

Q-RAM is a model in which resources can be allocated
to individual applications with the goal of maximizing a
global objective. The model is intended for use with static
(o�-line) allocation schemes, dynamic (on-line) allocation
with admission control schemes, and 'timed' allocations
where each resource allocation has a duration of validity
associated with it.

2.1 Quality of Service Dimensions
Consider an application which obtains and transmits au-
dio data. The application can use a reliable encoding
scheme to tolerate and recover from bit errors during
transmission. The data can be made secure by encrypt-
ing the transmitted packets. The application may process
and transmit the audio data in smaller chunks to meet
real-time constraints. The application may also choose
to improve audio quality by increasing the size of each
audio sample or by increasing its sampling rate. The ap-
plication may also want to perform one or more these
simultaneously but each option requires the use of addi-
tional resources. We refer to these quality aspects such
as timeliness, reliability, security and data quality as QoS
dimensions.
In Q-RAM, we consider a system in which multiple

applications, each with its own set of requirements along
multiple QoS dimensions, are contending for resources.

� Each application may have a minimum and/or a
maximum need along each dimension.

� Each resource allocation adds some utility to the
application and the system, with utility monotoni-
cally increasing with resource allocation.

� System resources are limited so that the maximal
demands of all applications often cannot be satis�ed
simultaneously.

With the Q-RAM speci�cations, a resource allocation de-
cision will be made for each application such that an over-
all system-level objective (called utility) is maximized.

2.2 The De�nition of Q-RAM
Q-RAM is de�ned as follows. The system consists of n
applications f�1, �2, � � �, �ng, n � 1, and m resources
fR1, R2, � � �, Rmg, m � 1. Each resource Rjhas a �nite
capacity and can be shared, either temporally or spa-
tially. CPU and network bandwidth, for example, would
be time-shared resources, while memory would be a spa-
tially shared resource.
Let the portion of resource Rj allocated to application

�i be denoted by Ri;j. We enforce
Pn

i=1Ri;j � Rj . Two
issues need to be noted in the context of real-time systems
in particular:

� Utilization: The resource allocation to an appli-
cation will be in terms of the utilization of a re-
source. Once a certain utilization has been allo-
cated, an application may either choose its own exe-
cution time and period to achieve that utilization or
use an appropriate processor-sharing scheme such
as weighted fair-sharing.

� Schedulability: The constraint
Pn

i=1Ri;j � Rj im-
plies that a resource can be \fully" consumed. As is
well known, this is not always true for �xed-priority
scheduling algorithms [9] but is true for the earli-
est deadline scheduling algorithm under ideal con-
ditions. A di�erent maximal resource constraint be-
yond the scope of this paper must be used to sup-
port �xed-priority schemes. For example, see [14].

We now introduce the following de�nitions:

� The application utility, Ui, of an application �i is
de�ned to be the value that is accrued by the system
when �i is allocated Ri = (Ri;1; Ri;j; � � � ; Ri;m). In
other words, Ui = Ui(Ri). Ui is referred to as the
utility function of �i. This utility function de�nes
a surface along which the application can operate
based on the resources allocated to it.

� Each application �i has a relative importance spec-
i�ed by a weight wi, 1 � i � n.

� The total system utility U(R1; � � � ;Rn) is de�ned
to be the sum of the weighted application util-
ity of the applications, i.e. U(R1; � � � ;Rn) =Pn

i=1 wiUi(Ri).
� Each application �i needs to satisfy requirements
along d QoS dimensions fQ1, Q2, � � �, Qdg, d � 1.

� The dimensional resource utility Ui;k = Ui;k(R
i) of

an application �i is de�ned to be the value that is
accrued by the system when �i is allocated Ri for
use on QoS dimension Qk; 1 � k � d.

� 1An application, �i, has minimal resource re-
quirements on QoS dimension Qk. These min-
imal requirements are denoted by Rmink

i =
fRmink

i;1 ; Rmink
i;2 ; � � � ; Rmink

i;m g where Rmink
i;j � 0; 0 �

j � m.
� An application, �i, is said to be feasible if it is al-
located a minimum set of resources on every QoS
dimension. We denote the total minimum require-
ments by Rmin

i =fRmin
i;1 ; Rmin

i;2 ; � � � ; Rmin
i;m g where

Rmin
i;j =

Pd

k=1R
mink
i;j ; 1 � j � m.

In this paper, we assume that m = 1, i.e. only a single
resource is being allocated.

2.3 Assumptions
We make the following assumptions:

A1. The applications are independent of one another.

A2. The available system resources are su�cient to meet
the minimal resource requirements of each applica-
tion on all QoS dimensions, Rmin

i ; 1 � i � n:

A3. The utility functions Ui and Ui;k are nondecreasing
in each of their arguments. In some cases we will
assume that these functions are concave and have
two continuous derivatives.

1This aspect of the model is a simpli�cation to be relaxed in fu-
ture work. In general, multiple resource-tuples can yield a given QoS
operating point.

A4. Each application, �i, has a weight wi denoting its
relative importance.

We make the following observations concerning these
assumptions. First, if assumptionA1 does not hold, then
the resource allocation methods still apply; however, the
schedulability analysis needed to ensure that application
timing requirements are met is more complicated. It must
take into account phenomena such as the priority inver-
sion that can occur with synchronization protocols.
Second, if assumptionA2 does not hold, then the min-

imal resource requirements cannot be met. If these re-
quirements are not met, then some of the applications
must be dropped. One can use a variety of techniques to
determine which of the applications should be dropped,
or one could even allow some applications to have less
than their minimal resource allocations. Although this
is a very important issue, it is beyond the scope of this
paper.
Third, in view of A4, we can now de�ne a weighted

utility function for an application as wi � Ui and then
solve the resource allocation problem for those weighted
utility functions. Thus, one can remove the weights from
the allocation problem. In our subsequent analysis, we
use these weighted utilities and drop the weight function.
Note that Ui is not necessarily equal to

Pm

j=1Ui;j. In
other words, the utility obtained by an application �i from
a resource Rj may not be additive with respect to its util-
ity from another resource. This is because the application
may need two or more resources simultaneously to achieve
a certain utility. For example, an audio-conferencing ap-
plication may need the CPU resource and the networking
bandwidth resource in order to satisfy even a minimal
QoS requirement.

2.4 The Objective
The objective of Q-RAM is to make resource allocations
to each application such that the total system utility is
maximized under the constraint that every application
is feasible with respect to each QoS dimension. Stated
formally, we need to determine
fRi;j; 1 � i � n; 1 � j � mg such that Ri;j �
Pd

k=1R
mink
i;j and U is maximal among all such possible

allocations.

2.5 QoS Considerations in Video-Conferencing
We shall use a video-conferencing system named RT-

Phone [7] presented in Figure 1 as an example to illus-
trate Q-RAM. We shall focus primarily on managing re-
source allocations for the audio stream on a single node.
The end-to-end delay encountered by an audio stream
as a function of the CPU processing rate and the audio
sampling rate is plotted in Figure 2-a. The variable on
the x-axis is the periodic interval at which bu�ered au-
dio packets are obtained from the sound hardware, pro-
cessed and transmitted over the network. Each plotted
line corresponds to a di�erent sampling rate. For shorter

Audio
Server

Audio
Server

 Audio
 send

 Audio
 recv

 Video
 send

 Video
 recv

RT-Phone

Audio Device Driver Video Device Driver

RT-Mach
audio-card audio-card frame-card

To Network From NetworkFrom Network To Network

video-card

Figure 1: The Architecture of RT-Phone.

periods, the end-to-end delay is shorter and vice-versa.
This plot also illustrates that with relatively little addi-
tional resources, the sampling rate can be increased and
improved audio data quality can be obtained. The load
imposed on the processor for the data points from Figure
2-a is plotted in Figure 2-b. The y-axis is now the CPU
load; as can be seen, for shorter processing periods, the
CPU load is high due to higher network packet process-
ing costs (larger number of smaller packets) and higher
context switching costs.
The QoS dimensions in this system (as described) are

end-to-end delay representing timeliness and audio sam-
pling rate representing data quality. The processing rate
and the audio sampling rate can be changed indepen-
dently of one another, and an increase in either leads to
increases in utility of the video-conferencing system. Im-
provements in end-to-end delay from 200 ms to 50 ms
generally tend to be perceived as much higher than im-
provements from 50 ms to 12.5 ms, i.e. the return on
utility diminishes as more and more resources are added.
The same applies to the sampling rate. The shapes of the
utility functions2 corresponding to these QoS dimensions
are presented in Figure 2-c.

3 Resource Allocation in Q-RAM
In this section, we derive some basic properties of Q-RAM
de�ned in the previous section.
We start with the simple case of making allocation de-

cisions where there is only a single resource type and a
single QoS dimension. We then extend this model to sup-
port multiple QoS dimensions. In each case, we state a
property that needs to be satis�ed for maximizing the to-
tal system utility, and/or present an algorithm which can
�nd the optimal (or near-optimal) allocation.

3.1 A Single Resource and A Single QoS Dimen-
sion (m = 1 and d = 1)

Since there is a single resource and quality dimension, we
can drop the subscripts associated with them. In this

2The utility assigned to an operating point for an application can be
objective or subjective. In feedback control applications, control quality
improves with sampling rates, and utility values can often be de�ned
objectively. In multimedia applications, human perceptions saturate
beyond a point, and utility values may be subjective. Relative utility
values across applications would be based on system and application
semantics, and will be, optionally, modi�able by the end-users.

(a)

8 KHz

12 KHz

16 KHz

20 KHz

24 KHz

End-to-End Delay (ms)

Period (ms)
0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

0.00 20.00 40.00 60.00

(b)

8 KHz

12 KHz

16 KHz

20 KHz

24 KHz

CPU Load (%)

Period (ms)
0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.0

0.00 20.00 40.00 60.00

(c) R

U(Timeliness) U(Audio Quality)

R

Figure 2: (a) End-to-end audio delay curves as a func-
tion of CPU processing rates and audio sampling rates.
(b) The CPU load for audio processing as a function of
CPU processing rates and audio sampling rates. (c) Au-
dio utility functions for Timeliness and Data quality.

case, we have Ui = Ui(R); 1 � i � n, where R is the
amount of resource allocated to �i. The minimum re-
source allocation needed to satisfy �i is Rmin

i .
To illustrate our approach, we make the further as-

sumption that the utility functions Ui = U (R) are twice

continuously di�erentiable and concave, that is d2Ui

dR2 =
U 00
i � 0 for R > Rmin

i . By convention, we assume
Ui(R) = 0 for 0 � R � Rmin

i .
It is very convenient to transform the resource allo-

cation problem. Since we assume that all minimal ap-
plication resource requests can be met, we can focus on
the allocation of the excess resources available. Conse-
quently, we can, without loss of generality, assume that
Rmin
i = 0; 8i = 1 to n and reduce the quantity of available

resources by that amount. In our subsequent analysis, we
assume that this transformation has been made and re-
quire only that Ri � 0 and

Pn

i=1Ri = R, where R is the
remaining quantity of resources left to allocate.

R

U

min max

Figure 3: A linear utility function with min and max
requirements.

The goal is to determine the values of R1; R2; � � � ; Rn

such that the total system utility,
Pn

i=1 Ui(Ri), is max-
imized subject to the constraint

Pn

i=1Ri � R. The fol-
lowing theorem provides a necessary condition for an al-
location to be optimal.

Theorem 1 A necessary condition for a resource allo-
cation to be optimal is 8i; 1 � i � n;Ri = 0 or for any
fi; jg with Ri > 0 and Rj > 0, U 0

i(Ri) = U 0
j(Rj).

Proof: The result is a standard conclusion of the Kuhn
Tucker theorem (see [12], chapter 5). To understand the
intuition behind the results, suppose that for some i 6= j,
let Ri > 0, Rj > 0 and U 0

i(Ri) > U 0
j(Rj).

Since Rj > 0, an in�nitesimal amount of R can be
subtracted from application �j and added to application
�i. Since U 0

i (Ri) > U 0
j(Rj), the total system utility will

increase. This contradicts the assumption that the allo-
cation was optimal.2
Remark: It should be noted that it is possible that

all applications except one can receive zero resource
allocations3, and this one application consumes all the
available resource quantity since the slope of its utility
function is the highest.
Remark: If the utility functions were not smooth, then

this result requires some modi�cation. To see this, sup-
pose U1 consists of two line segments with slope s1 on
[0; L], then s2 on [L;1)]. Now suppose that U2 is linear
with slope s3 with s1 > s3 > s2, while all other util-
ity functions have slopes which are less than s2. If the
amount of resources available exceeds L, then the opti-
mal allocation will be to give L to the �rst application,
all the rest to the second application and none to any
others. This results in a situation of unequal slopes. If,
on the other hand, the utility functions are smooth, this
cannot happen.

3.1.1 A Special Case of Linear Utility Functions
As a special case, consider the utility curve of Figure

3. The utility curve is linear from Rmin
i to a maximum

resource requirement Rmax
i beyond which it becomes
at.

This utility curve is practical in the sense that many non-
critical systems such as desktop multimedia applications
can gain from its simplicity and resulting e�ciencies. We
refer to this special class of utility functions asmin-linear-
max functions. The following corollary provides a neces-
sary condition for a resource allocation to be optimal for

3Recall that the resource allocations are normalized and that each
application has already been allocated su�cient resources to satisfy its
minimum requirement.

min-linear-max utility functions.

Corollary 1 A necessary condition for a resource alloca-
tion to be optimal for min-linear-max utility functions is
8i; 1 � i � n;Ri = 0, or Ri = Rmax

i , or for any fi,jg with
0 < Ri < Rmax

i and 0 < Rj < Rmax
j , U 0

i(Ri) = U 0
j(Rj).

Proof: The corollary follows from the conditions of The-
orem 1, and from the fact that no utility is gained by
allocating even an in�nitesimal resource to an applica-
tion �i beyond Rmax

i .2
Remark: It is possible that there exists only one appli-

cation �i which has 0 < Ri < Rmax
i , i.e. i; j can refer to

the same application in the statement of Corollary 1.

3.1.2 An Algorithm to Determine Umax

An algorithm to determine the optimal resource alloca-
tion Ri for each application to obtain Umax is given be-
low. We assume that each application has already been
allocated its minimum resource requirement. By assump-
tion A3, su�cient resources should be available for this
allocation. Consequently, we determine the optimal ad-
ditional allocation to each application, Ri � 0; 1 � i � n,
subject to

Pn

i=1Ri � R.

1. Let the current normalized allocation of the re-
source to �i be Ri; 1 � i � n. Let the unallocated
quantity of the available resource be Rl. Compute
(U 0

1(R1); � � � ; U 0
n(Rn)).

2. Identify (a) the subcollection of applications with
largest value of U 0

i(Ri), (b) the number of appli-
cations in that subcollection (denoted by k), and
(c) the application (denoted by j) with the second
largest value of this quantity if any such applica-
tion exists. If the largest value of U 0

i(Ri) is 0, then
stop. No further allocation will increase system util-
ity and spare resources are available.

3. Increase Ri for each of the members of the sub-
collection so that their values of U 0

i (Ri) decrease
but continue to be equal until either (i) this value
becomes equal to the second largest value or (ii)
the additional resources added to this subcollection
equal Rl. In case (ii), stop as all resources have
been optimally allocated.

4. In case (i), one or more new applications should be
added to the subcollection. Return to step 1.

4 A Single Resource and Multiple QoS
Dimensions (m = 1 and d > 1)

An application can have multiple QoS dimensions (i.e.
d > 1). For example, the RT-Phone example has two QoS
dimensions, audio data quality (which increases with au-
dio sampling rate) and end-to-end delay (which decreases
with increases in processing rate). The resource alloca-
tion for systems with multiple quality dimensions depends
upon the nature of the relationship between the dimen-
sions themselves. In this section, we classify the relation-
ships between QoS dimensions, discuss their e�ects and

study the resource allocation problem under various con-
ditions. We provide optimal allocations when possible,
and provide a greedy algorithm in another case.

4.1 Relationships between QoS Dimensions
The inter-relationship between QoS dimensions directly
impacts the nature of the utility functions. We study two
kinds of relationships among QoS dimensions:
Independent dimensions: Two QoS dimensions, Qa

and Qb, are said to be independent of one another if a
quality increase along Qa (Qb) does not increase the re-
source demands to achieve the quality level previously
achieved along Qb (Qa). An example is using di�erent
compression schemes on an audio stream but each scheme
generates the exact same amount of data. As a result,
the processing resources needed to encrypt the data re-
main the same. If the encryption scheme is changed to
consume more resources, the audio compression demands
would remain the same. Therefore, security and audio
data quality can be considered to be independent QoS
dimensions in this system.
Dependent dimensions: A QoS dimension, Qa, is

said to be dependent on another dimension, Qb, if a
change along the dimension Qb will increase the resource
demands to achieve the quality level previously achieved
along Qa. In the RT-Phone system, if the audio sampling
rate is increased, the data volume increases and the CPU
time needed to process the data increases4.
Remark: Two QoS dimensions Qa and Qb can both

be dependent on a third dimension Qc. For example, if
video quality is improved by increasing the size of the
image, both processing capacity and network bandwidth
demands would increase. As a result, both timeliness and
packet loss QoS dimensions would be a�ected.

4.2 Dealing with Independent QoS Dimensions
Suppose that the d QoS dimensions are independent of
one another. In this case, each QoS dimension o�ers its
own utility to the system and can be varied indepen-
dent of the other dimensions. In this case, the dimen-
sional utilities of the applications are additive. That is,
Ui =

Pd

k=1Ui;k. The resource allocation problem then is
equivalent to the single QoS dimension problem of Sec-
tion 3.1 with n � d applications f� 01, �

0
2, � � �, �

0
n�dg, where

f� 01, �
0
2, � � �, �

0
dg correspond to the d dimensions of �1,

f� 0d+1, �
0
d+2, � � � ; �

0
2dg correspond to the d dimensions of

�2 and so on. The optimal resource allocations can now
be determined using the algorithm described in Section
3.1.2.

4.3 Dependent QoS Dimensions with Continu-
ous Values

Suppose that one or more QoS dimensions are inde-
pendent, but the quality on each dimension can be any
value within an interval. We now illustrate the general
approach using the special case d = 2, but the approach

4This increase in CPU load is not linear, however, as can be inferred
from Figure 2-b.

(a)

0

2

4
Q2

0

2

4 Q1

Resource

(b)

0

2

Q2

0

2

4 Q1

Utility

(c)

U

R

Figure 4: (a) The Resource Consumption Surface for Two
QoS dimensions. (b) The Utility Surface as a function of
two Qos Dimensions. (c) The �nal (univariate) utility
function for two QoS dimensions and a single resource.

remains the same for d > 2. The resource demand for ev-
ery point p along the QoS dimension Q1 and every point
q along the QoS dimension Q2 is plotted �rst. This de-
�nes a resource consumption surface along Q1 and Q2,
an example of which is provided in Figure 4-a. The util-
ity to the system for any pair fp; qg of points along QoS
dimensions Q1 and Q2 respectively is plotted next. This
yields a utility surface, an example of which is illustrated
in Figure 4-b. The contours of R = k from the resource
consumption surface are then projected to the utility sur-
face. The maximumutility values for each R = k contour
projection �nally yield a single (maximal) utility func-
tion as a function of R. For example, the utility function
from the surfaces of Figures 4-a and 4-b yield the shape
shown in Figure 4-c. The net result is that the multi-
dimensional resource allocation problem gets reduced to
the single-QoS dimension problem.
If the resulting univariate utility function is twice con-

tinuously di�erentiable and concave (or min-linear-max),
the algorithm of Section 3.1.2 can be applied to obtain
the optimal resource allocation.

4.4 Dependent QoS Dimensions With Discrete
Options

We now consider special cases, where one of the QoS di-
mensions is not only dependent on another (base) QoS

R R

U U

R

U
R R

U U

R

U

Figure 5: Three sets of Ur , Ue and an aggregate Ua for a
dependent binary QoS Dimension.

dimension, but is also discrete in nature. For the sake
of illustration, we shall assume that d = 2, yielding one
independent (base) QoS dimension and one QoS dimen-
sion dependent on the former. We shall �rst consider the
binary case where the quality of the dependent dimen-
sion is either available or not available. We then consider
the case where the quality along the dependent dimension
can be any one of multiple discrete values.

4.4.1 Using Dependent Binary QoS Dimensions

Consider again the application sampling microphone in-
put and transmitting an audio stream. In the following,
we use the su�xes a, r and e to represent audio, raw
audio and encrypted audio respectively. Increasing the
audio sampling rate increases the audio quality and the
amount of data to be processed. Let Rr be the CPU
resource allocated to the processing of this raw data.
We have Rr = g(SamplingRate). Assuming that g(�)
is monotonic, Ur = f(Rr) has the same shape as Figure
4-c.
Suppose that the audio data will also be encrypted.

Now, additional processing per block of audio data (and
correspondingly the CPU resource) will be needed. This
additional resource consumption scales linearly with the
sampling rate. It is reasonable to assume that a constant
utility gain � is added to the system with encryption.
However, since Rr is needed for processing the audio data
without encryption, a larger value Re would need to be
allocated for encrypting and processing the same amount
of audio data. We therefore have Re = �e �Rr, where �e
is a constant > 1:0.
The utility function Ue therefore has the form f(Re

�e
)+

�. Therefore, the origin of Ue is o�set both vertically
and horizontally from Ur . The vertical o�set is �, and
the horizontal o�set is (�e � 1) � Rmin

r . Since �e > 1,
the slope of Ue is always smaller than that of Ur . If
Ur is continuous and concave, Ue is also continuous and
concave.
The aggregate utility function for the audio application

is given by Ua = max(Ur; Ue). Three examples are pro-
vided in Figure 5; Ur is the thin line starting lower and
more to the left, Ue is the other thin line, and Ua is the
bold line. It must be noted that encryption is not possible
for resource allocations less than (Rmin

r � �e). For larger

allocations, encryption is possible but it may or may not
yield higher utility. For example, the aggregated applica-
tion utility function of Figure 5-c yields a higher utility
without encryption initially, then with encryption, and
then without encryption again. Also, in the general case,
Ua will only be piecewise continuous and concave.

4.4.2 Using Dependent 'n-ary' QoS Dimensions

R R

U U

A

B

Scheme #2

Scheme #1

Base Dimension

Figure 6: Example of using an n-ary QoS Dimension.
In Section 4.4.1, we assume that a second QoS dimen-

sion (namely encryption) is applied as a binary function:
it is either available or not available. Such a binary
scheme is applicable when only a single scheme (such
as encrypting always using a 48-bit public key) is used.
However, suppose that more than one scheme is avail-
able along this QoS dimension (such as encrypting using
a 64-bit key, a 128-bits key, etc. or using a di�erent cryp-
tographic scheme). For convenience, we introduce the
following notation.
Notation: Let the QoS dimension Qk be dependent on

another and have s + 1 discrete schemes. By conven-
tion, we adopt scheme 0 to represent the absence of the
dimension. The utility gain constant provided by sup-
porting scheme p, 0 � p � s is denoted by �k;p. The
resource scaling factor (with respect to the base dimen-
sion) for supporting scheme p, 0 � p � s is denoted by
�k;p � 1:0. The overhead factor of scheme p, 0 � p � s

is denoted by
k;p = (1:0� �k;p) � 0:0. By convention,
we have �k;0 = 0, �k;0 = 1:0,
k;0 = 0:0.
Each scheme p, 0 � p � s, provides a correspondingly

di�erent increase in utility, �k;p, while also consuming
a di�erent amount of the CPU resource with a di�erent
�k;p. The result is a family of utility curves, and the
aggregated application utility function is the maximumof
these curves. An example family of utility functions for a
3-ary dependent dimension and the resulting aggregated
utility function are illustrated in Figure 6.

4.4.3 Linear Dimensional Utility Functions in
the Dependent 'n-ary' Case

When min-linear-max dimensional utility functions are
used for the independent QoS dimensions, the aggregated
application utility function is piecewise linear when one
of the QoS dimensions is 'n'-ary in nature. A sample
set of the individual dimensional utility functions for two
QoS dimensions, one independent and another depen-
dent, and their aggregated application utility function are
illustrated in Figure 7. Let the independent (base) dimen-
sion be Q1 and the dependent dimension be Q2. We have
Rmin = 0:1, Rmax = 0:2 for Q1 (same as scheme 0 for

Dependent ’n’-ary QoS dimension

Aggregate

Scheme 0 *base*

Scheme 1

Scheme 2

Utility

-3Resource x 10
0.00

20.00
40.00
60.00
80.00

100.00
120.00
140.00
160.00
180.00
200.00
220.00

100.00 200.00 300.00

Figure 7: One 3-ary QoS dimension w/ min-linear-max.

Q2). The corresponding utilities are given as 0 and 100
respectively. For Scheme 1 of the dependent dimension
Q2, we assume �2;1 = 75, �1 = 1:5 yielding
1 = 0:5.
Correspondingly, Rmin = 0:15, Rmax = 0:3, and the util-
ities are given by (0+75=75) and (100+75=175). For
Scheme 2, assume �2;2 = 110, �2;2 = 1:7,
2;2 = 0:7.
We therefore have Rmin = 0:17, Rmax = 0:34, Umin =
0 + 110 = 110 and Umax = 100 + 110 = 210. The aggre-
gate utility function for the application is the maximum
of the previous three functions.
It is useful to note that this piecewise-linear application

utility function has 3 kinds of discontinuities: intersecting
discontinuities where dimensional utility lines intersect
(point A in Figure 6), vertical discontinuities where the
maximal dimensional utility line at a point starts above
the other lines (at R = 0.15 and 0.17 in Figure 7), and sat-
uration discontinuities where the maximumQoS point for
a dimensional utility line beyond which the utility does
not increase (at R = 0.34 in Figure 7). We now present
a greedy algorithm which determines a near-optimal re-
source allocation under these conditions.
A greedy algorithm to obtain a good resource alloca-

tion Ri for each application in a system with all linear
dimensional utility functions is as follows:

1. Assign to each application �i its minimum resource
requirement Rmin

i . By assumption A3, su�cient
resources should be available for this allocation.

2. Normalize the utility function of each application
(by left-shifting and down-shifting the utility curve
such that it starts at the origin). Let the total quan-
tity of available resource remaining be R.

3. Let the current normalized allocation of the re-
source to �i be Ri. Let the unallocated quantity
of the available resource be Rl.

4. For each application �i; 1 � i � n, compute the
slopes on the application utility curve at Ri, and
between the current allocation Ri and any and ev-
ery discontinuity5 in the region Ri < R � Rl. Let

5When there is a vertical discontinuity, pick the higher point.

this set of slopes for �i be represented by fsig. The
size of this set of slopes is at least one.

5. Let the index of the application with the highest
value of the element in fsig, 1 � i � n, be p. If
there are two or more such applications, pick one
at random. Let this largest slope element of �p
be smax

p . Let the additional resource amount that
needs to be allocated to �p to reach the discontinu-
ity point corresponding to smax

p be r.

6. If smax
p = 0, stop. The unallocated resources will

not increase system utility any further.

7. Allocate an additional (r) to �p increasing Rp by
that amount. Reduce Rl by this same amount.

8. If Rl = 0, stop. Else, go to step 4.

Utility Functions of Two Applications

App 1
App 2

Utility

Resource (%)
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00

0.00 20.00 40.00 60.00 80.00 100.00

Figure 8: A counter-example of non-optimality of the
greedy algorithm of Section 4.4.3).

Remark: We note that the above algorithm, while ex-
pected to do well in practice, does not always lead to an
optimal resource allocation6. We now provide a counter-
example illustrated in Figure 8 to show that this in indeed
the case. Suppose that there are only two applications �1
and �2. Let the total amount of resource to be allocated
be 0.5. U1(0) has a linear slope of 10, but a vertical dis-
continuity occurs at R1 = 0:4 with U1(0:4) = 10. The
slope at U1(0:4) continues to be 10. But, the slope of
U1(0) from 0 to the higher point of the vertical discon-
tinuity, which is at 10, is 25. U2(0) has a linear slope
of 30 and U2 has a saturation discontinuity at R2 = 0:2
(with U2(0:2) = 6). The above greedy algorithm will �rst
allocate 0.2 units of the resource to �2 (since its slope is
the highest at a value of 30). The remaining 0.3 units
will then be allocated to �1 yielding U1(0:3) = 3. The
total system utility achieved is therefore (6+3)=9. How-
ever, an optimal algorithm would allocate R1 = 0:4 and
R2 = 0:1 yielding a total system utility of (10+3) = 13,
which is higher than the utility achieved by the greedy
algorithm.

6We are currently developing an algorithm that will �nd an optimal
allocation and replace this greedy (sub-optimal) algorithm.

(a)

Load vs. End-to-End Delay

8KHz
12KHz
16KHz
20KHz
24KHz

Load (resource %)

1/Delay
10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

20.00 40.00 60.00 80.00

(b)

Utility As a Function of Delay

8KHz
12KHz
16KHz
20KHz
24KHz

Utility

1/Delay0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

220.00

240.00

260.00

280.00

300.00

320.00

20.00 40.00 60.00 80.00

Figure 9: (a) The resource consumption function for RT-
Phone. (b) Utility as a function of Timeliness (with a
linear model of the value of timeliness).

4.5 Using Q-RAM in the RT-Phone Example
In this section, we apply Q-RAM to the RT-Phone sys-
tem for the sake of illustration and also show how the
real-time constraints can be satis�ed. We �rst generate
the resource consumption surface for the QoS dimensions
end-to-end delay (represented as 1/delay) and audio qual-
ity (represented as sampling rate). From Figures 2-a and
2-b, we obtain the surface in Figure 9.a. We now assume
that the utility of the timeliness QoS dimension is given
by (1/delay). Let us now suppose that the audio quality
dimension o�ers a constant utility gain at each sampling
rate.
Using Ug(�) to represent the utility gain from a par-

ticular sampling rate, let us assume that Ug(8KHz) = 0,
Ug(12KHz) = 100, Ug(16KHz) = 200, Ug(20KHz) = 240,
Ug(24KHz) = 260 (yielding a tapering-o� e�ect). The to-
tal utility at a given sampling rate is given by Udelay+Ug.
The variation of total utility with end-to-end delay is plot-
ted in Figure 9.b. From the curves of Figure 9, we obtain
the (univariate) utility function of Figure 10.

4.5.1 Resource Allocation and Schedulability
Suppose the CPU resource has to be allocated among 10
applications with utility curves similar to those of Figure
10. First, all 10 applications will be allocated their min-

Utility As a Function of CPU Load (Resource)

8KHz

12KHz

16KHz

20KHz

24KHz

Utility

Load (resource %)
0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

220.00

240.00

260.00

280.00

300.00

320.00

20.00 40.00 60.00 80.00

Figure 10: The RT-Phone utility function recommends
the use of a 24KHz sampling rate for audio.

imum resource requirements. Next, additional resource
allocations will be made only to the application with the
highest utility slope. If any CPU cycles remain after that
application reaches its maximum requirement, only then
would they be allocated to the application with the next
higher slope. This is repeated until no more CPU cycles
are available. Let the �nal CPU allocation to application
i be Ri. Its corresponding CPU load and processing rate
from Figures 2-a and 2-b yield the (computation time,
period) pair. These pairs can then be scheduled using
the earliest deadline scheduling algorithm.

5 Concluding Remarks
We have presented a QoS-based Resource Allocation
Model (Q-RAM) that allows the utility derived from a
system to be maximized by making resource allocations
such that the di�erent needs of concurrently running ap-
plications are satis�ed. Each application has a minimal
resource requirement, but can adapt its behavior if given
more resources and provide additional utility. Each ap-
plication also needs to satisfy QoS metrics along mul-
tiple dimensions such as timeliness, cryptographic secu-
rity, reliable packet delivery and data quality. Finally,
each application may need to obtain access to multiple
resource types in order to meet its QoS constraints. We
have provided optimal (or near-optimal) resource allo-
cation schemes for applications which need a single re-
source, but need to satisfy one or more QoS dimensions.
A video-conferencing system with timeliness, audio qual-
ity and encryption constraints is used as an example to
motivate and apply Q-RAM.
We are pursuing several avenues as future work. First,

optimal schemes are needed for applications with multiple
QoS dimensions (see Section 4.4.3) and for allocation of
multiple resources. Second, the underlying OS/kernel for
Q-RAM must not only support
exible resource manage-
ment schemes but also provide feedback to the Q-RAM

manager about available resources and resource consump-
tion by various application threads. The run-time over-
head for these actions are also yet to be studied in de-
tail. Finally, Q-RAM is based on single-node systems
and needs to be extended to distributed systems.

Acknowledgments
The authors would like to thank other Amaranth project members

at Carnegie Mellon University, including Carol Hoover, Pradeep

Khosla, Phil Koopman and Lui Sha. The Amaranth project is

de�ning a comprehensive framework for QoS management along

multiple quality dimensions, and its goals include the construction

of system prototypes and applications. The authors would also

like to thank John Wilkes of Hewlett Packard and Tom Lawrence

of Rome Air Force Laboratories for insightful discussions on QoS-

based resource allocation.

References
[1] T. Baker. Stack-based scheduling of realtime processes. Journal

of Real-Time Systems, 3(1):67{100, March 1991.

[2] K. G. Shin D. D. Kandlur and D. Ferrari. Real-time communica-
tion in multi-hop networks. IEEE Transactions on Parallel and
Distributed Systems, pages 1044{1056, Oct 1994.

[3] R. Gu�erin, H. Ahmadi, and M. Naghshineh. Equivalent capacity
and its application to bandwidth allocation in high-speed networks.
IEEE Journal on Selected Areas in Communications, September
1991.

[4] K. Je�ay. Scheduling sporadic tasks with shared resources in hard
real-time systems. Technical report, TR90-038, Department of
Computer Science, University of North Carolina at Chapel Hill,
November 1989.

[5] M. B. Jones and P. J. Leach. Modular real-time resource manage-
ment in the rialto operating system. Technical Report MSR-TR-
95-16, Microsoft Research, Advanced Technology Division, May
1995.

[6] M. H. Klein, T. Ralya, B. Pollak, R. Obenza, and M. G. Harbour.
A Practitioner's Handbook for Real-Time Analysis: Guide to
Rate-Monotonic Analysis for Real-Time Systems. Kluwer Aca-
demic Publishers, 1993. ISBN 0-7923-9361-9.

[7] C. Lee, R. Rajkumar, and C. Mercer. Experiences with processor
reservation and dynamic qos in real-time mach. In the proceedings
of Multimedia Japan 96, April 1996.

[8] J. P. Lehoczky, L. Sha, and J. K. Strosnider. Enhancing aperiodic
responsiveness in a hard real-time environment. IEEE Real-Time
System Symposium, 1987.

[9] C. L. Liu and Layland J. W. Scheduling algorithms for multipro-
gramming in a hard real time environment. JACM, 20 (1):46 { 61,
1973.

[10] J. W. S. Liu, K-J Lin, R. Bettati, D. Hull, and A. Yu. Use of
Imprecise Computation to Enhance Dependability of Real-Time
Systems. Kluwer Academic Publishers, 1994.

[11] C. W. Mercer, S. Savage, and H. Tokuda. Processor Capacity
Reserves for Multimedia Operating Systems. In Proceedings of
the IEEE International Conference on Multimedia Computing
and Systems, May 1994.

[12] A. L. Peressini, R. E. Sullivan, and Jr. J. J. Uhl. Convex Pro-
gramming and the Karish-Kuhn-Tucker conditions, chapter 5.
Springer-Verlag, 1980.

[13] R. Rajkumar. Synchronization in Real-Time Systems: A Priority
Inheritance Approach. Kluwer Academic Publishers, 1991. ISBN
0-7923-9211-6.

[14] D. Seto, J. P. Lehoczky, L. Sha, and K.G. Shin. On task schedu-
lability in real-time control systems. IEEE Real-Time System
Symposium, December 1996.

[15] J. A. Stankovic and K. Ramamritham. The design of the spring
kernel. In Proceedings of the Real-Time Systems Symposium, Dec
1987.

[16] E. M. Atkins T. F. Abdelzaher and Kang Shin. Qos negotiation
in real-time systems and its application to automated
ight con-
trol. In The Proceedings of the IEEE Real-time Technology and
Applications Symposium, June 1997.

[17] W. Zhao, K. Ramamritham, and J. Stankovic. Preemptive schedul-
ing under time and resource constraints. IEEE Transactions on
Computers, Aug. 1987.

[18] T. F. Lawrence. The Quality of Service Model and High Assurance.
Workshop on High Assurance Systems, July 1997.

