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Abstract— This paper introduces an extremely robust adaptive
denoising filter in the spatial domain. The filter is based on
non-parametric statistical estimation methods, and in particular
generalizes an adaptive method proposed earlier by Fukunaga
[1]. To denoise a pixel, the proposed filter computes a locally
adaptive set of weights and window sizes, which can be proven
to be optimal in the context of non-parametric estimation using
kernels. While we do not report analytical results on the statistical
efficiency of the proposed method in this paper, we will discuss
its derivation, and experimentally demonstrate its effectiveness
against competing techniques at low SNR and on real noisy data.

I. INTRODUCTION

Classical parametric denoising methods rely on a specific
model of the signal of interest, and seek to compute the
parameters of this model in the presence of noise. A generative
model based upon the estimated parameters is then produced
as the best estimate of the underlying signal. In contrast,
non-parametric methods rely on the data itself to dictate the
structure of the model, in which case the implicit model is
referred to as a regression function [2]. In particular, consider
the estimation problem in two dimensions where the measured
data is give by

yi = z(xi) + εi, i = 1, 2, · · · , P, xi = [x1i, x2i]T , (1)

where yi’s are measurements, z(·) is the (hitherto unspecified)
regression function (i.e. an unknown image) to be estimated,
and εi’s are independent and identically distributed zero mean
noise values (with otherwise no particular statistical distribu-
tion assumed).

As the specific form of z(·) is unspecified, in order to
estimate the value of the function at any point x given by
the data, one can trust in a generic, local expansion of the
function about this point. Specifically, if x is near the sample
at xi, we have the N -term Taylor series1

z(xi) ≈ z(x) + ∇T z(x) (xi − x)

+
1
2!

(xi − x)T Hz(x) (xi − x) + · · · (2)

= β0 + βT
1 (xi − x)

+βT
2 vech

{
(xi − x) (xi − x)T

}
+ · · · , (3)

where ∇ and H are the gradient and Hessian operators
respectively and vech(·) is the half-vectorization operator [3],

This work was supported in part by the US Air Force Grant F49620-03-1-
0387, and by the National Science Foundation Science and Technology Center
for Adaptive Optics, managed by the University of California at Santa Cruz
under Cooperative Agreement No. AST-9876783.

1Other expansions are also possible, e.g. orthogonal series.

which lexicographically orders the “lower-triangular” portion
of a matrix into a column vector.

The above suggests that if we now think of the Taylor series
as a local representation of the regression function, estimating
the parameter β0 can yield the desired (local) estimate of the
regression function based on the data. Indeed, the coefficients
{βn}N

n=1 will provide localized information on the derivatives
of the regression function. Naturally, since the approach is
based on local approximations, a reasonable step one might
take now is to estimate the coefficients {βn}N

n=0 from the
data, giving the nearby samples higher weight than samples
farther away. A least-squares formulation capturing this idea
is to solve the following optimization problem:

min
{βn}N

n=0

P∑
i=1

[
yi − β0 − βT

1 (xi − x)

−βT
2 vech

{
(xi − x) (xi − x)T

}
− · · ·

]2

KH (xi − x) ,(4)

where KH(·) is defined as

KH(t) =
1

det(H)
K

(
H−1t

)
, (5)

and called the kernel function [2] which penalizes distance
away from the local position where the approximation is
centered, and where H is a 2 × 2 “smoothing” matrix which
controls the strength of this penalty. The standard choice of
the matrix is H = hI2, where h is the “global smoothing
parameter”. In particular, the function K(·) is a symmetric
function, which attains its maximum at zero, and which decays
away from zero at a rate controlled by the smoothing matrix.
More specifically, the standard definition of the kernel function
for two dimensional data has∫

R2
tK(t)dt = 0,

∫
R2

ttT K(t)dt = cI2. (6)

The choice of the particular form of the function K(·) is open,
and may be selected as a Gaussian, exponential, or other valid
forms which comply with the above constraints.

Using the matrix form, the optimization problem (4) can be
posed as weighted least-squares:

b̂ = arg min
b

∥∥y − Xxb
∥∥2

Wx
, (7)

where

y = [y1, y2, · · · , yP ]T , b =
[
β0, β

T
1 , · · · , βT

N

]T

, (8)

Wx = diag [KH(x1 − x), KH(x2 − x), · · · , KH(xP − x)] ,
(9)



Xx =

⎡
⎢⎢⎢⎣

1 (x1 − x)T vechT
{
(x1 − x)(x1 − x)T

} · · ·
1 (x2 − x)T vechT

{
(x2 − x)(x2 − x)T

} · · ·
...

...
...

...
1 (xP − x)T vechT

{
(xP − x)(xP − x)T

} · · ·

⎤
⎥⎥⎥⎦ ,

(10)
with “diag” defining the diagonal elements of a diagonal
matrix. Regardless of the order N , our primary interest is
to compute an estimate of the image (pixel values), and the
necessary computations are limited to the ones that estimate
the parameter β0. Therefore, the solution for the optimization
problem is simplified to

ẑ(x) = β̂0 = eT
1

(
XT

xWxXx

)−1
XT

xWxY, (11)

where e1 is a column vector with the first element equal to
one, and the rest equal to zero.

Three important points are worth making here. First, the
above structure allows for tailoring the estimation problem
to the local characteristics of the data, whereas the standard
parametric model is generally intended as a global fit. Second,
in the estimation of the local structure, higher weight is given
to the nearby data as compared to samples that are farther
away from the center of the analysis window. Again this is
in contrast to the general (non-adaptive) parametric approach
which does not take the location of the data samples into
account directly. Third, and no less important, the proposed
approach is useful for both denoising, and equally viable
for interpolation of sampled data at points where no actual
samples exist. As such, the proposed approach is ideally suited
for a wide class of image processing problems of practical
interest [4].

Returning to the estimation problem based upon (4), one
can choose the order N to effect an increasingly more complex
local approximation of the signal. In the statistics literature,
locally constant, linear and quadratic approximations (corre-
sponding to N = 0, 1, 2 respectively) have been considered
most widely. In particular, choosing N = 0 (corresponding
to local constant estimation), a locally adaptive linear filter is
obtained, which is known as the Nadaraya-Watson Estimator
(NWE) [5]. Specifically, the estimator (11) becomes

ẑ(x) =
∑P

i=1 KH (xi − x) yi∑P
i=1 KH (xi − x)

. (12)

Of course, higher order approximations (N > 0) are also
possible. What we concentrate on in the rest of this paper is
the modification of the kernels. More specifically, we propose
novel ways to adapt the kernels to local data. The result is a
locally adaptive image filter which is able to perform denoising
with high quality, even at very low SNR.

II. SPATIALLY ADAPTIVE KERNEL REGRESSION

A strong denoising effect can be realized by making the
global smoothing parameter h larger. However, with a larger
h, the estimated image will be more blurred so that we have
sacrificed details to the effect of denoising. In order to have
both a strong denoising effect and a sharper image, one can

consider an alternative approach that will adapt the local
effect of the filter using not only the position of the nearby
samples, but also their gray values. That is to say, the proposed
kernels will take into account two factors: spatial distances and
radiometric (gray value) distances. With this idea, the kernel
function can be denoted as

K(xi − x, yi − y). (13)

We name this the adaptive kernel function, and discuss the
selections of the function in this section.

A. Bilateral Kernel

A simple and intuitive choice of the adaptive kernel K
is to use “separable” kernels for penalizing the spatial and
radiometric distances. Indeed this is precisely the thinking
behind the bilateral filter, introduced in [6], and carefully
analyzed in [7]. One of our choices is then

K(xi − xj , yi − yj) ≡ KH(xi − xj)Khr(yi − yj), (14)

where hr is the radiometric smoothing parameter, a scalar
value, that controls the rate of decay, and KH(·) and Khr(·)
are the spatial and radiometric kernel functions, respectively.
With this kernel, for the special case N = 0, the estimator
(11) can be summarized as

ẑ(xj) =
∑P

i=1 KH (xi − xj)Khr (yi − yj) yi∑P
i=1 KH (xi − xj)Khr (yi − yj)

. (15)

In general, the values of h and hr are fixed. As a matter of fact,
breaking K into the spatial and radiometric kernels as utilized
in the bilateral case can weaken the estimator performance if
SNR is very low. A simple justification for this claim comes
from studying very noisy data sets, where radiometric distance
(yi − yj)’s tend to be large and therefore all radiometric
weights are very close to zero, and effectively useless. In
the following, we present a better selection of kernels, which
overcomes this difficulty.

B. Steering Kernel

The filtering procedure we propose next takes the above
ideas one step further, based upon the earlier non-parametric
framework. In particular, we observe that the effect of comput-
ing Khr(yi−yj) in (14) is to implicitly measure a function of
the local gradient estimated between neighboring values, and
to use this estimate to weight the respective measurements. As
an example, if a pixel is located near an edge, then pixels on
the same side of the edge will have much stronger influence in
the filtering. With this intuition in mind, we propose a two-step
approach where first an initial estimate of the image gradients
is made using some kind of gradient estimator (say standard
kernel regression with order N = 2). Next this estimate
is used to measure the dominant orientation of the local
gradients in the image (e.g. [8]). In a second filtering stage, this
orientation information is then used to adaptively “steer” the
local kernel, resulting in elongated, elliptical contours spread
along the directions of the local edge structure. With these
locally adapted kernels, the denoising is effected most strongly



edge

Fig. 1. Standard kernels (left) and steering kernels along a local edge (right).

along the edges, rather than across them, resulting in strong
preservation of details in the final output. To be more specific,
the adaptive kernel takes the form

K(xi − x, yi − y) ≡ KHi(xi − x), (16)

where Hi’s are the data-dependent full matrices which we call
steering matrices. They are defined as

Hi = hC− 1
2

i , (17)

where Ci’s are (symmetric) covariance matrices based on the
local gray-values. A good choice for C i will effectively spread
the kernel function along the local edges as shown in Fig. 1. It
is worth noting that even if we choose a large h in order to have
a strong denoising effect, the undesirable blurring effect which
would otherwise have resulted, is tempered around edges with
appropriate choice of Ci’s. With such steering matrices, for
example, if we choose a Gaussian kernel, the steering kernel
is mathematically represented as

KHi(xi − x) =

√
det(Ci)
2πh2

exp
{
− (xi − x)T Ci(xi − x)

2h2

}
.

(18)

The local edge structure is related to the gradient covariance
(or equivalently, the locally dominant orientation), where a
naive estimate of this covariance matrix may be obtained as
follows:

Ĉi ≈
[ ∑

xj∈wi
z
(j)
x1 z

(j)
x1

∑
xj∈wi

z
(j)
x1 z

(j)
x2∑

xj∈wi
z
(j)
x1 z

(j)
x2

∑
xj∈wi

z
(j)
x2 z

(j)
x2

]
, (19)

where zx1(·) and zx2(·) are the first derivatives along x1 and
x2 directions and wi is an analysis window around the position
of interest. The dominant local orientation of the gradients
is then related to the eigenvectors of this estimated matrix.
While this approach (which is essentially a local principal
components method) is simple and has nice tolerance to noise,
the resulting estimate of the covariance may in general be
rank deficient, and therefore care must be taken not to take
the inverse of the estimate directly in this case. In the rank
deficient (or nearly so) case, a rank-one approximation will
take the place of the direct inverse, or alternatively, diagonal
loading or regularization methods can be used to obtain stable
estimates of the covariance. In [8], we proposed an effective

multiscale technique for estimating local orientations, which
fits the requirements of this problem nicely.

In order to have a more convenient form of the covariance
matrix, we decompose it into three components as follows:

Ci = γiUθiΛiUT
θi

, (20)

Uθi =
[

cos θi sin θi

− sin θi cos θi

]
, Λi =

[
σi 0
0 σ−1

i

]
. (21)

where Uθi is the rotation matrix and Λi is the elongation
matrix. Now the covariance matrix is given by the three
parameters γi, θi and σi, which are the scaling, rotation, and
elongation parameters, respectively. Fig. 2 explains schemat-
ically how these parameters affect the spreading of kernels.
First, the circular kernel is elongated by the elongation matrix
Λi and its semi-minor and major axes are given by σ i. Second,
the elongated kernel is rotated by the matrix Uθi . Finally, the
kernel is scaled by the scaling parameter γi as follows. In order
to reduce noise effects while producing sharp edges, wider
footprint kernels are preferred in the flat areas, and smaller
footprints are best in the textured areas. A simple choice of γ i

is a geometric mean of the eigenvalues of C i. Such γi makes
the steering kernel area large in low frequency areas and small
in high frequency areas.

III. SUMMARY AND EXPERIMENTAL RESULTS

To summarize the proposed approach, we present Fig.
3(a) which displays a block-diagram of the proposed two-
step approach. The first step involves computing an initial
“pilot” estimate of the image gradients using a (preferably low-
complexity) denoising filter and a gradient filter. For instance,
the standard kernel regression with order (N > 0) is a
simple choice for the initial gradient estimate. Other choices,
such as the bilateral filter plus some kind of gradient filter
are also suitable for this first stage. The next stage involves
estimating the smoothing (steering) matrices from this pilot
estimate. Using the local orientation information, we compute
the final image by applying the steering kernel regression to
the original noisy image data. At relatively high SNR, this
approach will remove noise fairly well. However, at low SNR,
a further refinement is called for. In this case, we can apply
the same procedure iteratively as shown in Fig. 3(b). With this
iterative approach, we can obtain better estimates of the image
gradients. Using the gradients, the new estimated smoothing
matrices are also better. Subsequently, the regression removes
noise more effectively using those matrices. While we do not
provide an analytical proof here, we observe that a modest
number (typically less than 10) of iterations will yield a
minimum mean-squared error estimate. Iterations beyond this
point tend to worsen the bias in the estimate, while keeping
the variance still low. The net effect of ”over-iteration” being
an increasingly more blurry result.

The first denoising experiment is shown in Fig. 4. We
add white Gaussian noise with standard deviation of 25 (the
corresponding SNR is 5.64[dB]) to the Lena image of Fig.
4(a), which gives us the noisy image shown in Fig. 4(b).
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Fig. 3. Block diagram representation of the iterative denoising filter.

Fig. 4(c)2 is the denoising result by BLS-GSM (Bayes Least
Squares-Gaussian Scale Mixture) proposed by Portilla et al [9],
which removes noise in the wavelet domain and is regarded
as the state of art image denoising method. Fig. 4(d) is the
result provided by the proposed second order steering kernel
regression with h = 2.5 and 12 iterations. Corresponding root-
mean-squared errors (RMSE) for these are (c)7.01 and (d)6.83.
Our result produces very clean edges, as seen in Fig. 4(e) and
(f).

In the second experiment, we remove film grain from a real
image shown in Fig. 5(a). The denoising result by BLS-GSM
[9], bilateral filter (15) with h = 2.0 and hr = 3.5, and the
second order steering kernel regression with h = 2.0 and 3
iterations are in Fig. 5(b), (c) and (d) respectively. In this case,
the performance differences are easily seen in the residuals
(differences between noisy data and denoised data). Fig. 5(e),
(f) and (g) show the absolute values of the residuals on the
luminance channel.

In conclusion, we presented a novel (“universal”) non-
parametric denoising algorithm, and experiments on simulated
and real data attest to the superior performance of this adaptive
method compared to state of the art competing methods (such
as [9]).

2This result is produced by the software, available on
http://decsai.ugr.es/∼javier/denoise/index.html.
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(a) Original image (b) Noisy image, σ = 25

(c) BLS-GSM [9] (d) Iterative steering kernel, N = 2

(e) Detail from (c) (f) Detail from (d)

Fig. 4. The performance of different denoising methods are compared in this experiment. The RMSE of the images (b)-(d) are 25, 7.01, and 6.83, respectively.
Gaussian kernel was used for all experiments.



(a) Real noisy image (b) BLS-GSM [9]

(c) Bilateral filter, h = 2, hr = 3.5 (d) Iterative steering kernel, N = 2, h = 2

5 10 15 20 25 30 35 40 45 50 55

(e) BLS-GSM [9] (f) Bilateral filter (g) Iterative steering kernel

Fig. 5. The performance of different denoising methods are compared in this experiment on a color image with real noise. Gaussian kernel was used for all
experiments. (e), (f) and (g) are absolute values of the residuals on the luminance channel.
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