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Abstract— The framework of kernel regression [1], a non-
parametric estimation method, has been widely used in different
guises for solving a variety of image processing problems
including denoising and interpolation [2]. In this paper, we
extend the use of kernel regression for deblurring applica-
tions. Furthermore, we show that many of the popular image
reconstruction techniques are special cases of the proposed
framework. Simulation results confirm the effectiveness of our
proposed methods.

I. INTRODUCTION

In our earlier work [2], [3], we studied the kernel regression
(KR) framework, and proposed the data-adaptive version of
kernel regression for use in image and video processing.
The applicability of data-adapted kernel regression is wide-
ranging, for example, image denoising (including white Gaus-
sian, Laplacian, Salt & Pepper, Compression artifacts, and
Color artifacts), and image interpolation/reconstruction from
regular and irregularly sampled data sets (e.g. image fusion
and super-resolution). However, since these direct applica-
tions of KR neglected the atmosphere or camera’s point
spread function (blur) effects, the estimated signals (images)
need further processing. Such a two-step filtering process (e.g.
denoising + deblurring) is in general suboptimal [4]. In this
paper, we develop a one-step procedure for denoising and
deblurring, based on the kernel regression framework.

To date, the kernel regression framework has never been
directly used for deblurring. As is well-known, deblurring
is an ill-posed problem, and it requires an appropriate reg-
ularization which introduces prior information about the
desired signals. For piecewise constant signals, the total
variation (TV) regularization (L1-norm), proposed in [5], is
a better choice than the Tikhonov regularization (L2-norm)
for denoising [6], [7], [8] as well as deblurring [9], [10]
applications. The implicit assumption of piecewise constancy
in TV regularization prevents estimated signals from having
fine texture and gradation. Hence, the question which we
must consider is how to more effectively estimate signals with
texture and gradation. In this paper, we incorporate the theory
of kernel regression and propose a deblurring algorithm with
a suitable regularization.
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This paper is organized as follows. In Section II, we
briefly review the kernel regression framework and formulate
a deblurring estimator. Section III illustrates two experiments
on simulated data sets, and we conclude this paper in the last
section.

II. KERNEL DEBLURRING

A. Review

The kernel regression framework defines its data model in
2-D as

yi = z(xi) + εi, i = 1, · · · , P, xi = [x1i, x2i]T , (1)

where yi is a noisy sample at xi, z(·) is the (hitherto
unspecified) regression function to be estimated, εi is an i.i.d
zero mean noise, and P is the total number of samples in
a neighborhood (window) of interest. As such, the kernel re-
gression framework provides a rich mechanism for computing
point-wise estimates of the regression function with minimal
assumptions about global signal or noise models.

While the specific form of z(·) may remain unspecified, we
can rely on a generic local expansion of the function about a
sampling point xi. Specifically, if x is near the sample at xi,
we have the (N + 1)-term Taylor series1

z(xi) ≈ z(x) + {∇z(x)}T (xi − x)

+
1
2
(xi − x)T {Hz(x)}(xi − x) + · · · (2)

= β0+βT
1(xi−x)+βT

2 vech
{
(xi−x)(xi−x)T

}
+· · · ,(3)

where ∇ and H are the gradient (2× 1) and Hessian (2× 2)
operators, respectively, and vech(·) is the half-vectorization
operator which lexicographically orders the lower triangular
portion of a symmetric matrix. Furthermore, β0 is z(x), which
is the pixel value of interest, and the vectors β1 and β2 are

β1 =
[
∂z(x)
∂x1

∂z(x)
∂x2

]T

, (4)

β2 =
[
∂2z(x)
2∂x2

1

∂2z(x)
∂x1∂x2

∂2z(x)
2∂x2

2

]T

. (5)

Since this approach is based on local approximations, a
logical step to take is to estimate the parameters {βn}N

n=0

1Other localized representations are also possible and may be advanta-
geous.



from all the samples {yi}P
i=1 while giving the nearby samples

higher weights than samples farther away. A formulation of
the fitting problem capturing this idea is to solve the following
optimization problem,

min
{βn}N

n=0

P∑
i=1

∣∣∣yi − β0 − βT
1 (xi − x)

−βT
2 vech

{
(xi − x)(xi − x)T − · · ·

} ∣∣∣mKHi(xi − x)(6)

with

KHi(xi − x) =
1

det(Hi)
K(H−1

i (xi − x)), (7)

where N is the regression order, m is the error norm param-
eter typically set to 2, K(·) is the kernel function (a radially
symmetric function), and Hi is the smoothing (2× 2) matrix
which dictates the “footprint” of the kernel function. Although
the choice of the particular form of the kernel is open, it has
a relatively small effect on the accuracy of estimation [11].
More details about the optimization problem above can be
found in [2], [3].

Following our previous work [2], we also briefly review
three types of the kernel functions.

1) Classic kernel:

KHi(xi − x), with Hi = hI, (8)

where h is the global (spatial) smoothing parameter. This is
the standard choice of the kernel function and it is a function
of only spatial information (spatial distances). However the
classic kernel suffers from a limitation due to the local linear
action on the given data. Thus, in [2], we proposed two data-
adapted kernel functions; bilateral kernel and steering kernel,
which depend not only on spatial information but also on
radiometric information.

2) Bilateral kernel:

KHi(xi − x)Khr (yi − y), with Hi = hI, (9)

where hr is the global radiometric smoothing parameter. In
[2], we showed that the popular bilateral filter [12], [13]
is a special case of the general KR denoising approach
using the above bilateral kernel. The bilateral kernel takes
radiometric distances explicitly into account, which limits its
performance, particularly when the measurements are very
noisy.

3) Steering kernel:

KHsteer
i

(xi − x), with Hsteer
i = hC

1
2 , (10)

is a more robust choice for the data-adaptive kernel functions
[14], [2]. We call Hsteer

i the steering matrix, and a naive
estimate of the covariance matrix Ci may be obtained as
follows:

Ĉi ≈

[∑
xj∈wi

zx1(xj)zx1(xj)
∑

xj∈wi
zx1(xj)zx2(xj)∑

xj∈wi
zx1(xj)zx2(xj)

∑
xj∈wi

zx2(xj)zx2(xj)

]
,

(11)

where zxi(·) and zx2(·) are the first derivatives along x1 and
x2 directions and wi is a local analysis window around the
position of interest. The intuitive idea behind the superior
performance of the steering kernel is to rely on the image
structure information (given by the local dominant orienta-
tion [15]), instead of using radiometric distances directly to
make the data-adaptive kernels. Since the regularized local
orientation estimate as formulated in [2] has strong tolerance
to noise, the steering kernel is more stable than the bilateral
kernel.

The optimization problem (6) eventually provides a point-
wise estimator of the regression function. However, as stated
in the previous section, the data model (1) ignores other
distortion effects. In the following section, we use a blurred
and noise-ridden data model and derive a KR based deblur-
ring/denoising estimator.

B. Deblurring Estimator and Related Methods

Defining the shift-invariant point spread function (PSF) as
b(x) and the desired true function as u(x), we consider the
blurred and noise-ridden data model

y = z(x) + ε = b(x)∗ u(x) + ε, (12)

where ∗ is the convolution operator. For convenience, we
write the point-wise model in vector form as:

Y = Z + ε = BU + ε, (13)

where Y is the blurry and noisy measured image, Z is the
blurry image, B is the blur operator, and U is the image
of interest. The underline notation denotes matrices that are
lexicographically ordered into column-stack vectors:

Y =

 y1

...
y

P

 ,Z =

 z(x1)
...

z(x
P
)

 ,U =

 u(x1)
...

u(x
P
)

 , ε =

 ε1

...
ε

P

 .

(14)
Using the above notations, we also rewrite the point-wise
Taylor expansion (2) in vector form as (see Appendix for the
derivation)

Z ≈ S−v1
x1

S−v2
x2

(
Z + Zx1

v1 + Zx2
v2

+Zx2
1
v2
1 + Zx1x2

v1v2 + Zx2
2
v2
2 + · · ·

)
= S−v1

x1
S−v2

x2
B

(
U + Ux1

v1 + Ux2
v2

+Ux2
1
v2
1 + Ux1x2

v1v2 + Ux2
2
v2
2 + · · ·

)
= S−v1

x1
S−v2

x2
BU (15)

with

B =
[
B BIv1 BIv2 BIv2

1
BIv1v2 BIv2

2
· · ·

]
,

U =
[
UT UT

x1
UT

x2
UT

x2
1

UT
x1x2

UT
x2
2
· · ·

]T

, (16)

where Sv1
x1

is the v1-pixel shift operator along the x1 direction,
Zx1 and Zx2

1
are the first and the second derivative in the



x1 direction respectively, and Iv1 = diag{v1, · · · , v1}. In the
absence of other modeling errors and noise, the approximation
suggests the following constraint:

Z − S−v1
x1

S−v2
x2

BU = 0. (17)

Since Taylor approximation with a finite number of terms is
only valid when v1 and v2 are small, it suggests a likelihood
term with larger weights for smaller v1, v2:

CL(U) =
∑
v1

∑
v2

∥∥∥Y − S−v1
x1

S−v2
x2

BU
∥∥∥m

W(v)
, (18)

where v = [v1, v2]T , m is the error norm parameter and

W(v) = diag {KH1(v), · · · ,KHP (v)} . (19)

However, with this cost function alone, the optimization
problem might be still ill-posed; in particular, when the width
of the PSF is large. Therefore, we introduce a regularization
term which further restricts the solution space of the signal
of interest. To this end, since the Taylor expansion locally
represents the desired signals, we have another approximation
for the true image U directly:

U ≈ S−v1
x1

S−v2
x2

(
U + Ux1

v1 + Ux2
v2

+Ux2
1
v2
1 + Ux1x2

v1v2 + Ux2
2
v2
2 + · · ·

)
= S−v1

x1
S−v2

x2
IU (20)

with
I =

[
I Iv1 Iv2 Iv2

1
Iv1v2 Iv2

2
· · ·

]
. (21)

The above approximation gives the regularization term with
weights,

CR(U) =
∑
v1

∑
v2

∥∥∥U − S−v1
x1

S−v2
x2

IU
∥∥∥mr

Wr(v)
, (22)

where mr is the error norm parameter and Wr(v) is the
weight matrix for this term.

In summary, the overall optimization problem is formulated
as

min
U

C(U) = min
U

{CL(U) + λCR(U)}

= min
U

∑
v1

∑
v2

{∥∥∥Y − S−v1
x1

S−v2
x2

BU
∥∥∥m

W(v)

+ λ
∥∥∥U − S−v1

x1
S−v2

x2
IU

∥∥∥mr

Wr(v)

}
,

(23)

where λ is the regularization parameter. We solve the opti-
mization problem using the steepest descent method:

Û(`+1) = Û(`) + ν
∂C(U)

∂U

∣∣∣∣
U=bU(`)

, (24)

where ν is the step size. When using the data-adapted kernel
functions, we need to calculate the weight matrices W and
Wr beforehand. In [2], we proposed an iterative way to refine

(a) Original (b) The blurred image

Fig. 1. The original image and the image blurred with a 5 × 5 Gaussian
PSF with σ = 1.5. The corresponding RMSE is 11.48.

the weights. However, in the case of using the steepest descent
method here (or other iterative methods to minimize the cost
function C(U)), after the initialization, we will update U and
the weight matrices alternately in each iteration2.

There are two points that we must not ignore about the
regularization cost function (22). First, the regularization
term is general enough to subsume several other popular
regularization terms existing in the literature. In particular,
when we choose the regression order N = 0, (22) becomes∑

v1

∑
v2

∥∥∥U − S−v1
x1

S−v2
x2

U
∥∥∥mr

Wr(v)
. (25)

For mr = 2 and mr = 1, (25) can be regarded as Tikhonov
and digital TV, respectively, with Wr(v) = I, |v1| ≤ 1, and
|v2| ≤ 1. Furthermore, for mr = 1, the formulation (25)
is well known as Bilateral Total Variation (BTV) [16] with
Wr(v) = α|v1|+|v2|I, where 0 ≤ α ≤ 1. That is to say, the
kernel function for BTV is

Kα(xi − x) = α|x1i−x1|+|x2i−x2|, (26)

where α is the global smoothing parameter in this case. Of
course, other choices of the kernel function are also possible.
In the literature, the data-adaptive versions of the kernel
function have recently become popular for image restoration.
The kernel (or weight) functions of Bilateral filter [12], [13],
Mean-Shift [17], [18], and Non-Local Mean [19] are typical
examples, and those kernel functions are usable for (23) as
well.

Second, all the related regularization terms and methods
discussed above are zeroth order Taylor approximations (i.e.
they neglect the higher order derivatives). Hence, the esti-
mated images often tend to appear piecewise constant. On the
other hand, the regularization term in (22) can naturally take
higher order derivatives into account, resulting in estimated
images with more detailed texture.

III. EXPERIMENTS

Using the eye section of the Lena image, which is shown
in Fig.1(a), we create a blurred image, shown in Fig.1(b),

2Alternatively, one can consider updating the weight matrices every few
iterations.



(a) The degraded image (b) Total Variation

(c) ForWaRD [20] (d) Classic kernel deblurring

(e) Bilateral kernel deblurring (f) Steering kernel deblurring

Fig. 2. The deblurring simulation with small amount of noise: (a) the
blurred noisy image (BSNR=40[dB]), (b) the image deblurred with total
variation (λ = 0.0001), (c) ForWaRD [20], (d) the image deblurred with
classic kernel (N = 2, m = 2, mr = 2, h = 0.25, λ = 0.5), (e) the image
deblurred with bilateral kernel (N = 2, m = 2, mr = 2, h = 0.25, hr =
40.0, λ = 0.5), and (f) the image deblurred with steering kernel (N =
2, m = 2, mr = 2, h = 0.15, λ = 0.5, one iteration). The corresponding
RMSE’s are (a) 11.49, (b) 6.38, (c) 6.95 (d) 6.01, (e) 5.96, and (f) 5.99.

by convolving with a 5 × 5 Gaussian PSF with a standard
deviation of 1.5. The resulting RMSE for the blurred image
is 11.48. With the blurry Lena image, we did simulations with
two different noise levels.

First, we added white Gaussian noise with BSNR =
40[dB]3, which gives us the image shown in Fig.2(a). The
estimated images by the TV method (λ = 0.0001), For-
WaRD4 [20], the classic kernel deblurring (N = 2,m =
2,mr = 2, h = 0.25, λ = 0.5), the bilateral kernel deblurring
(N = 2, m = 2,mr = 2, h = 0.25, hr = 40.0, λ = 0.5), and
the steering kernel deblurring (N = 2,m = 2, mr = 2, h =

3Blurred Signal to Noise Ratio = 10 log
“

var(blurred signal)
var(noise)

”

[dB]
4The software is available at http://www-dsp.rice.edu/software/ward.shtml.

We used the default parameters which are suggested by the authors.

(a) The degraded image (b) ForWaRD [20]

(c) BTV [16] (d) Steering kernel deblurring

Fig. 3. The deblurring simulation with large amount of noise: (a) the blurred
noisy image (BSNR=20[dB]), (b) ForWaRD [20], (c) Bilateral Total Variation
[16], and (d) steering kernel deblurring (N = 2, m = 2, mr = 1, h =
1.4, λ = 0.5). The corresponding RMSE’s are (a) 12.36, (b) 9.55, (c) 8.91,
and (d) 8.59.

0.15, λ = 0.5) are illustrated in Figs.2(b)-(f), respectively.
The corresponding RMSE’s are (a) 11.49, (b) 6.38, (c) 6.95
(d) 6.01, (e) 5.96, and (f) 5.99. In this case, the estimated
images are (at least visually) very similar.

Second, we set the amount of noise to BSNR = 20[dB] to
create the blurry and noisy image shown in Fig.3(a). The es-
timated image by ForWaRD [20], BTV [16], and the steering
kernel deblurring (N = 2, m = 2,mr = 1, h = 1.4, λ = 0.5)
are illustrated in Fig.3(b), Fig.3(c), and Fig.3(d), respectively.
The corresponding RMSE’s are (a) 12.36, (b) 9.55, (c) 8.91,
and (d) 8.59. The steering kernel is the best in this simulation.

IV. CONCLUSION AND FUTURE WORK

This paper presented a simultaneous denoising and de-
blurring method based on the kernel regression framework,
explained how it is related to other methods, and demonstrated
its performance using simulated data sets. The simulations in-
dicated the superiority of our methods in the most challenging
scenarios; namely, for very noisy deblurring problems.

We applied the method for 2-dimensional data. However,
it is also possible to generalize this method to deal with
higher-dimensional data. Moreover, aside from single frame
deblurring and denoising, the proposed method is also ap-
plicable to irregularly sampled data sets and to multi-frame
deconvolution problems as well.



APPENDIX I
TAYLOR APPROXIMATION IN VECTOR FORM

The Taylor expansion in the 1-D case is

z(xi) ≈ z(x) + z′(x)(xi − x) +
1
2
z′′(x)(xi − x) + · · · . (27)

When we have P positions of interest, Z =
[z(x1), · · · , z(x

P
)]T is a vector composed of the data

set of interest. By defining v = xi − x, the nearby values
for each position are approximately expressed by using the
Taylor expansion asz(x1+v)

...
z(xP +v)

 ≈

z(x1)
...

z(xP )

+

z′(x1)
...

z′(xP )

v +

z′′(x1)
...

z′′(xP )

v2

2
+ · · ·

(28)
which in vector form is

SvZ ≈ Z + Z′v + Z′′ v
2

2
+ · · · , (29)

where Sv is the warping operator. Finally, we have the Taylor
expansion in matrix form

Z ≈ S−v

(
Z + Z′v + Z′′ v

2

2
+ · · ·

)
. (30)
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