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Abstract— We briefly describe and compare some recent
advances in image denoising. In particular, we discuss three
leading denoising algorithms, and describe their similarities
and differences in terms of both structure and performance.
Following a summary of each of these methods, several examples
with various images corrupted with simulated and real noise of
different strengths are presented. With the help of these exper-
iments, we are able to identify the strengths and weaknesses of
these state of the art methods, as well as seek the way ahead
towards a definitive solution to the long-standing problem of
image denoising.

I. INTRODUCTION

Denoising has been an important and long-standing prob-

lem in image processing for many decades. In the last

few years, however, several strong contenders have emerged

which produce stunning results across a wide range of image

types, and for varied noise distributions, and strengths. The

emergence of multiple very successful methods in a relatively

short period of time is in itself interesting, in part because

it points to the possibility that we may be approaching the

limits of performance for this problem. At the same time,

it is interesting to note that these methods share an under-

lying likeness in terms of their structure, which is based on

nonlinear weighted averages of pixels, where the weights are

computed from metric similarity of pixels, or neighborhoods

of pixels. The said weights are computed by giving higher

relevance to “nearby” pixels which are more spatially, and

tonally similar to a given reference patch of interest. In this

sense, as we will see below, they are all based on the idea of

using a kernel function which controls the level of influence

of similar and/or nearby pixels.

Overall, two important problems present themselves. First,

what are the fundamental performance bounds in image

denoising, and how close are we to them? And second, what

makes these “kernel-based” methods so successful, can they

be improved upon, and how? While we do not intend to

address either of these questions in this paper, we do take

a modest step in exposing the similarities, strengths, and

weaknesses of these competing methods, paving the way for

the resolution of the more fundamental questions in future

work.
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II. NONPARAMETRIC KERNEL-BASED METHODS

In this section, we give descriptions of three algorithms.

We discuss “Data-adaptive Kernel Regression” of Takeda et

al. [1], “Non-local Means” of Buades et al. [2], and “Optimal

Spatial Adaptation” of Kervrann, et al. [3].

A. Data-Adaptive Kernel Regression

The kernel regression framework defines its data model in

2-D as

yi = z(xi) + εi, i = 1, · · · , P, xi = [x1i, x2i]
T , (1)

where yi is a noisy sample at xi, z(·) is the (hitherto

unspecified) regression function to be estimated, εi is an i.i.d

zero mean noise, and P is the total number of samples in a

neighborhood (window) of interest.

While the specific form of z(·) may remain unspecified, we

can rely on a generic local expansion of the function about a

sampling point xi. Specifically, if x is near the sample at xi,

we have the N -th order Taylor series

z(xi) ≈ z(x) + {∇z(x)}
T
(xi − x)

+
1

2
(xi − x)T {Hz(x)}(xi − x) + · · · (2)

= β0+βT
1(xi−x)+βT

2 vech
{

(xi−x)(xi−x)T
}

+· · · ,(3)

where ∇ and H are the gradient (2× 1) and Hessian (2× 2)

operators, respectively, and vech(·) is the half-vectorization

operator which lexicographically orders the lower triangular

portion of a symmetric matrix. Furthermore, β0 is z(x), which

is the pixel value of interest.

Since this approach is based on local approximations and

we wish to preserve image detail as much as possible, a logi-

cal step to take is to estimate the parameters {βn}
N
n=0 from all

the samples {yi}
P
i=1 while giving the nearby samples higher

weights than samples farther away in spatial and radiometric

terms. A formulation of the fitting problem capturing this idea

is to solve the following optimization problem,

min
{βn}N

n=0

P
∑

i=1

∣

∣

∣
yi − β0 − βT

1 (xi − x)

−βT
2 vech

{

(xi − x)(xi − x)T
}

− · · ·
∣

∣

∣

q

·Kadapt(xi − x, yi − y) (4)



where q is the error norm parameter (q = 2 or 1 typically), N
is the regression order (N = 2 typically), and Kadapt(xi −
x, yi − y) is the data-adaptive kernel function. Takeda et al.

introduced steering kernel functions in [1]. This data-adaptive

kernel is defined as

Ksteer(xi − x, yi − y) = KHi
(xi − x), (5)

where Hi is the (2 × 2) steering matrix, which contains

four parameters. One is a global smoothing parameter which

controls the smoothness of an entire resulting image. The

other three are the scaling, elongation, and orientation an-

gle parameters which capture local image structures. We

estimate those three parameters by applying singular value

decomposition (SVD) to a collection of estimated gradient

vectors in a neighborhood around every sampling position

of interest. With the steering matrix, the kernel contour is

able to elongate along the local image orientation. In order

to further enhance the performance of this methods, we

apply orientation estimation followed by steering regression

repeatedly to the outcome of the previous step. We call the

overall process iterative steering kernel regression (ISKR).

Returning to the optimization problem (4), the minimiza-

tion eventually provides a point-wise estimator of the regres-

sion function. For instance, for the zeroth regression order

(N = 0) and q = 2, we have the estimator in the general

form of:

ẑ(x) =

∑P

i=1 Kadapt(xi − x, yi − y) yi
∑P

i=1 Kadapt(xi − x, yi − y)
. (6)

B. Non-Local Means

The Non-Local Means (NLM) method of denoising was

introduced by Buades et al. [2] where the authors use a

weighted averaging scheme to perform image denoising. They

make use of the fact that in natural images a lot of structural

similarities are present in different parts of the image. The

authors argue that in the presence of uncorrelated zero mean

Gaussian noise, these repetitive structures can be used to

perform image restoration.

The estimator of the non-local means method is expressed

as

ẑ
NL

(xj) =

∑

i6=j K
hs,hr

(ywj
− ywi

) yi
∑

i6=j K
hs,hr

(ywj
− ywi

)
, (7)

where ywi
is a column-stacked vector that contains the given

data in a patch wi (the center of wi being at xi):

ywi
= [· · · yℓ · · · ]T , yℓ ∈ wi. (8)

The kernel function is defined as the weighted Gaussian

kernel:

K
hs,hr

(ywj
− ywi

) = exp

{

−
‖ywj

− ywi
‖2
Whs

h2

}

, (9)

where the weight matrix Whs
is given by

Whs
= diag

{

· · · , Khs
(x

j−1
−xj), Khs

(0), Khs
(x

j+1
−xj), · · ·

}

,
(10)

hs and hr are the parameters which control the degree of

filtering by regulating the sensitivity to the neighborhood

dissimilarities1, and Khs
is defined as the Gaussian kernel

function. This essentially implies that the restored signal at

position xj is a linear combination (weighted mean) of all

those given data which exhibit a largely similar (Gaussian-

weighted) neighborhood.

The method, as presented in theory, results in an extremely

slow implementation due to the fact that a neighborhood

around a pixel is compared to every other pixel neighborhood

in the image in order to calculate the contributing weights.

Thus for an image of size M × M , the algorithm runs in

O(M4). Such drawbacks have been addressed in some recent

publications improving on the execution speed of the non-

local means method [4], [5], while modestly compromising

on the quality of the output.

In summary, the implementation of the work boils down to

the pseudocode described in algorithm 1.

Algorithm 1 Non-Local Means algorithm

y ⇐ Noisy Image

z ⇐ Output Image

hr, hs ⇐ Filtering parameters

for every pixel yj ∈ y do

wj ⇐ patch with yj at the center

Wj ⇐ search window for wj

for every wi ∈ Wj and i 6= j do

K(i) ⇐ exp

{

−
||ywi

−ywy ||
2
Whs

h2
r

}

ẑ(xj) ⇐ ẑ(xj) + K(i) ∗ yi

end for

z(xj) ⇐ ẑ(xj)/
∑

i K(i)
end for

C. Optimal Spatial Adaptation

While the related NLM method is controlled by smoothing

parameters hr, hs calibrated by hand, the method of Kervrann

et al. [3] called “optimal spatial adaptation (OSA)” improves

upon Non-Local Means method by adaptively choosing a

local window size. The key idea behind this method is to

iteratively grow the size of a local search window Wi starting

with a small size at each pixel and to stop the iteration at an

“optimal” window size. The dimensions of the search window

grow as (2ℓ+1)×(2ℓ+1) where ℓ is the number of iterations.

To be more specific, suppose that ẑ
(0)

(xi) and v̂
(0)

i are the

initial estimate of the pixel value and the local noise variance

at xi, which are initialized as

ẑ
(0)

(xi) = yi, v̂
(0)

i = σ̂2, (11)

1A large value of hr results in a smoother image whereas too small a
value results in inadequate denoising. The choice of this parameter is largely
heuristic in nature.
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Fig. 1. Examples of white Gaussian noise reduction: The columns left through right show the noisy image and the restored images by ISKR [1], NLM [2],
OSA [3]. The rows from top to down are showing the experiments with different standard deviations (σ = 15, 25, 50). The corresponding PSNR values are
shown in Table I.

where σ̂ is an estimated standard deviation.

In each iteration, the estimation of each pixel is updated

based on the previous iteration as follows.

ẑ
(ℓ+1)

(xi) =

∑

xj∈W
(ℓ)
i

K
H

(ℓ)
i

(ẑ
(ℓ)

wi
− ẑ

(ℓ)

wj
) yj

∑

xj∈W
(ℓ)
i

K
H

(ℓ)
i

(ẑ(ℓ)wi
− ẑ

(ℓ)

wj
)

(12)

where ẑ
(ℓ)

wi
is a column stack vector that contains the pixels

in an image patch wi, H
(ℓ)

j = hr(V
(ℓ)

j )−
1
2 , and hr is the

smoothing parameter. The matrix V̂
(ℓ)

j contains the harmonic

means of estimated local noise variances:

V̂
(ℓ)

j =
1

2
diag

[

· · · ,
(v̂

(ℓ)

i−1
)2(v̂

(ℓ)

j−1
)2

(v̂(ℓ)

i−1
)2 + (v̂(ℓ)

j−1
)2

,
(v̂

(ℓ)

i
)2(v̂

(ℓ)

j
)2

(v̂(ℓ)

i
)2 + (v̂(ℓ)

j
)2

, · · ·

]

(13)

and K is defined as the Gaussian kernel function:

K
H

(ℓ)
i

(ẑ
(ℓ)

wi
−ẑ

(ℓ)

wj
) = exp

{

−
(ẑ

(ℓ)

wi
− ẑ

(ℓ)

wj
)T (V̂(ℓ)

j )−1(ẑ
(ℓ)

wi
− ẑ

(ℓ)

wj
)

h2
r

}

.

(14)

A patch size p is considered to be able to take care of

the local geometry and texture in the image and is fixed (e.g

9 × 9 or 7 × 7) while the size of a local search window Wi

is grows iteratively, determined by a point-wise statistically-

based stopping rule.

The optimal window size is determined by minimization of

the local mean square error (MSE) estimate at each pixel with

respect to the search window size. In the absence of ground

truth, this is approximated as the upper bound of the MSE

obtained by estimating the bias and the variance separately.

This estimation process is presented in detail in [3].

III. EXPERIMENTS

In this section, we will compare the denoising performance

of the methods introduced in the previous section by using

synthetic and real noisy images. For all the experiments, we

chose q = 2 and N = 2 for ISKR.

The first denoising experiment is shown in Fig. 1. For

this experiment, using the Lena image, we added white
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Fig. 2. Fish denoising examples: The images in the first row from left to right illustrate the noisy image, the estimated images by ISKR, NLM, and OSA
method, respectively, and the second row illustrate absolute residual images in the luminance channel.

TABLE I

THE PSNR VALUES OF THE EXAMPLES OF WHITE GAUSSIAN NOISE

REDUCTION (FIG. 1).

STD (σ) Noisy SKR NLM OSA
15 24.60 33.69 32.40 33.71
25 20.22 31.70 29.59 31.73
50 14.60 28.28 25.55 28.46

Gaussian noise with three different standard deviations (σ =
15, 25, 50). The synthetic noisy images are in the first column

of Fig. 1, and the denoised images by ISKR, NLM, and OSA

are shown in the second, third, and fourth columns, respec-

tively. The corresponding PSNR2 values are shown in Table

I. For ISKR and NLM, we chose the parameters to produce

the best PSNR values. The OSA method automatically chose

its smoothing parameter.

Next, we applied the three method to some real noisy

images: Fish and JFK images. The noise statistics are un-

known for all the images. Applying ISKR, NLM, and OSA

in Y Cb Cr channels individually, the restored images are

illustrated in the first rows of Figs. 2 and 3, respectively.

To compare the performances of the denoising methods, we

take the absolute residuals in the luminance channel, which

are shown below the corresponding denoising results of each

method.

2Peak Signal to Noise Ratio = 10 log10

(

2552

Mean Square Error

)

[dB]

IV. CONCLUSION

While the present study is modest in its scope, several

interesting but preliminary conclusions do emerge. First, we

consider the relative performance of the considered methods.

While very popular recently, the NLM method’s performance,

measured both qualitatively and quantitatively, is inferior

to the other two methods. This is a bit surprising given

the relatively recent surge of activity in this direction. The

computational complexity of the NLM method is also very

high, but as we mentioned earlier, this is a problem that has

recently been addressed [4], [5].

The other two methods (ISKR and OSA) are very close

in performance, with OSA having a slight edge in terms of

PSNR. However, as the authors have also stated in their paper

[3], this method tends to do less well when there is excessive

texture present in the image. The ISKR algorithm suffers from

a similar, but somewhat milder version of the same problem.

A good comparison of these effects can be seen in Fig. 2.

The OSA method’s performance depends strongly on the

initial estimate of the noise variance, which can be badly

biased if the assumptions of Gaussian noise statistics are

violated. Indeed, if the estimated variance is much higher

than the correct noise variance, this method can perform

rather poorly. As such, it is worth pointing out that in the

real experiments reported in this paper (Figs. 2 and 3) the

automatically estimated noise variance led to rather poor

results for OSA. Therefore, we adjusted this value by hand

until the most visually appealing result was obtained. To be

fair, we followed the same line of thinking and chose the
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Fig. 3. JFK denoising examples: The images in the first row from left to right illustrate the noisy image, the estimated images by ISKR, NLM, and Kevrann’s
method, respectively, and the second row illustrate absolute residual images in the luminance channel.

parameters for ISKR and NLM as well to yield the best visual

results.

While the ISKR does not depend on an explicit estimate or

knowledge of the underlying noise variance (or distribution),

several parameters such as window size, and the number

of iterations, must be set by hand. Regarding the latter, if

the iterations are continued, the image becomes increasingly

blurry and MSE rises. Also, the ISKR is computationally very

intensive, and efforts must be made in order to improve this

aspect of the algorithm.

In terms of possible improvements, for all considered

methods, there is room for growth and further innovation.

In terms of both NLM, and OSA, it is worth noting that the

weights produced by these methods for local pixel processing

are always restricted to be non-negative numbers. This is

an inherent limitation which can be overcome, and should

lead to improved performance. For the ISKR, the choice

of novel iteration methods; a proper stopping rule (limiting

the number of iterations) based on the analysis of residuals

of the estimation process; and reduction of computational

complexity are all important issues for future research.
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