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ABSTRACT

The drizzle algorithm is a widely used tool for image enhancement in the astronomical literature. For example, a
very popular implementation of this method, as studied by Frutcher and Hook [1], has been used to fuse, denoise,
and increase the spatial resolution of the images captured by the Hubble Space Telescope (HST). However, the drizzle
algorithm is an ad-hoc method, equivalent to a spatially adaptive “linear” filter, which limits its range of performance.

To improve the performance of the drizzle algorithm, we make contact with the field of non-parametric statistics
and generalize the tools and results for use in image processing and reconstruction. In contrast to the parametric
methods, which rely on a specific model of the signal of interest, non-parametric methods rely on the data itself to
dictate the structure of the model, in which case this implicit model is referred to as a regression function. We promote
the use and improve upon a class of non-parametric methods called kernel regression [2, 3].

1. INTRODUCTION

Recovering high quality images is a fundamental issue in image processing. There are many methods for image
denoising and interpolation of given regularly sampled data sets, as illustrated in Fig.1(a) and Fig.1(b), respectively.
In a more general case, a given data set is not regularly sampled, as illustrated in Fig.1(c). Fig.2 schematically
represents a typical example where we have such a irregularly sampled data set. In a process often called image fusion
we combine several under-sampled and noisy images (frames) in order to reconstruct a high quality image. In this
section, we review a well-known image reconstruction method for irregularly sampled data sets, called the shift-and-
add algorithm, and introduce two alternative methods in general form, which are categorized as the spatially adaptive
filter and the data-adaptive filter.

1.1. Shift-and-Add Algorithm
The shift-and-add algorithm, developed through the years in different guises such as [4, 5, 6, 7, 8, 9, 10, 11], is a
simple method to reconstruct an image from a data set composed of multiple images. Fig.3 schematically explains the
algorithm. Suppose we have several images and know the relative motions between every pair of frames. We proceed
by selecting a frame, upsampling it, and shifting all the samples (pixels) of the frame to their appropriate positions on
a finer resolution grid. If several samples are located at (or sufficiently near) the same pixel lattice position, taking
either the average value or the median value is an appropriate way to combine them and reduce noise.

The shift-and-add algorithm, however, has two serious drawbacks. One is that the algorithm places every sample
on its nearest pixel lattice. That is to say, the pixel values from the low-resolution images are interpolated or directly
snapped to the nearest high resolution grid points. This generates some positional (or motion) errors, which in effect
add another kind of noise to the reconstructed images. Such errors cause the emergence of undesirable and false
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Fig. 1. (a) Denoising. (b) Interpolation of regularly sampled data. (c) Reconstruction from irregularly sampled data.
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Fig. 2. Irregularly sampled data given by image fusion.

jaggies (or zipper) artifacts around edges of objects in the images. Although we can reduce the positional errors by
choosing large resolution enhancement factor (i.e. a finer high resolution grid), this choice comes with the distinct
disadvantage that we have an insufficient number of (non-redundant) low-resolution frames, we may be forced to leave
many high-resolution pixels unfilled. Meanwhile, if the motions are very small, then all samples are registered at same
locations, and consequently, a reconstructed image will have missing pixels. Fig.3 is an illustration of the missing
pixels problem presented by the shift-and-add approach. A fast and memory efficient way to ameliorate the drawbacks
this method is proposed in [11].

There are two other approaches to overcoming the same drawback, called the drizzle algorithm and the Nadaraya-
Watson Estimator (NWE) which were proposed in [1] and [12], respectively. These two methods can be categorized
as spatially adaptive filters which make use of linear combinations of pixels in a local neighborhood to denoise or
reconstruct a pixel at a desired position. They can be referred to as spatially adaptive because the coefficients of these
localized filters are dependent on the relative positions of the nearby samples being used, with higher weight given to
pixels closer to the position of interest. These methods, however, do not take the actual pixel values of these nearby
pixel values into account, and therein lies their weakness. In the following section, we briefly review drizzle and
NWE, and more generally the class of spatially adaptive filters, and claim that they can be generalized to a much more
effective class of filters which takes both the relative spatial and “radiometric” distances of nearby pixels into account.
In this spirit, we call these more general filters “data-adaptive”, and describe them in general form.

1.2. Introduction to Spatially Adaptive and Data-Adaptive Filters
Suppose we have two samples, marked at points 1 and 2 as illustrated in Fig.4(a), and wish to compute an appropriate
pixel value at an arbitrary (pixel) position x = [x1, x2]T , which is marked in gray. The drizzle algorithm draws a square
window (an effective area) around each sample, and computes a weighted average of all the available samples. The
weights are essentially given by the size of the overlapped regions between the effective areas and a pixel lattice of
interest. The size of effective areas is controllable by a parameter called pixfrac [1]. When the size of effective areas is
set sufficiently small that no effective areas overlap on multiple pixel lattices, the drizzle algorithm becomes equivalent
to the shift-and-add algorithm described earlier. Therefore, we can regard the shift-and-add algorithm as a special case
of the drizzle algorithm. As can be expected, and is shown in Fig.4(a), it takes some computational load to calculate
weights at a pixel lattice where an effective area is partially overlapping, particularly if the images have undergone
somewhat complex geometric distortions.

On the other hand, unlike the drizzle algorithm, the effective areas of each sample in the NWE spread on the entire
region of a pixel grid, and weights are given by a function of spatial distances between each sample’s position and the
center point of the pixel lattice of interest. To say this differently, a range of influence is defined for each given pixel
by imposing a weight (kernel) function centered at that pixel’s location. This weight is typically a decaying function
away from pixel position, and the rate of decay can be controlled (even estimated from the local neighborhood). As
such, the implementation of NWE is easier, and somewhat more general. So as we can see, both the drizzle algorithm
and NWE create an output pixel value using its nearby samples and as illustrated in Fig.4, unlike the shift-and-add
algorithm, they deal with all the samples at the exact positions where the samples are measured.
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Fig. 3. Schematic representation of the shift-and-add algorithm.
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Fig. 4. The schematic representations of a pixel value computation by (a) drizzle algorithm and (b) Nadaraya-Watson estimator.

As explained above, the drizzle algorithm and NWE have some similarities, which is worth formalizing mathe-
matically. By defining K as the kernel function, z(x) as the true pixel value we wish to reconstruct at x, and yi as the
i-th measured sample at xi, we can can express NWE as,

ẑNWE (x) =
∑

i KH(xi − x) yi∑
i KH(xi − x)

, x = [x1, x2]T . (1)

Where H controls the spread of the kernel function, as we will explain later in the paper. In contrast, the weights in
the case of drizzle are not simply a function of the distances (xi − x). However, since the weights in both cases depend
only on the position of a pixel of interest x and the samples’ positions xi, we can write both by a general formulation
using the general kernel function K as:

ẑ(x) =
∑

i K(xi, x) yi∑
i K(xi, x)

. (2)

Therefore, we categorize both the drizzle algorithm and NWE as spatially adaptive filters. The intellectually interesting
next step to take here in order to improve performance is to explicitly take radiometric information into account as
well, and formulate a more general class of filters which we call “data-adaptive” filters. To be more mathematically
precise, we can write these as

ẑ(x) =
∑

i K(xi, x, yi, y) yi∑
i K(xi, x, yi, y)

. (3)

The formulations of (2) and (3) can be written even more generally still. Namely, the spatially adaptive filter and the
data-adaptive filter can take the form of the weighted linear combination of all the samples as follows:

Spatially adaptive filter : ẑ(x) =
∑

i Wi(xi, x) yi, (4)
Data-adaptive filter : ẑ(x) =

∑
i Wi(xi, x, yi, y) yi, (5)

We shall discuss this general form in section 2.1, but for now, the weight Wi can be thought of as an equivalent
kernel[2, 3], in the sense that it is a weight function derived from the original choice of kernels. A number of image
processing methods such as the SUSAN filter[13], Bilateral filter[14], Mean-Shift[15], Non-Local Mean[16], etc.,
which have recently shown great promise, have been motivated by various ways of choosing and improving the data-
adaptive weights Wi(xi, x, yi, y). Most, if not all, of the aforementioned methods are suitable for one application;
namely denoising. What we will illustrate here is that the equivalent kernel framework can be made available for not
only denoising, but for interpolation as well. With this in mind, we focus on the kernel regression framework [3] in
the rest of this paper, which encompasses the general formulation discussed above.

But first, we present a simulation which illustrates an example of the data-adaptive filter (5) comparing to the
spatially adaptive filter (4) in Fig.5. In the simulation, we blurred the original image (Fig.5(a)) with a 5 × 5 Gaussian



(a) The original image (b) Blurry and irregularly sampled image (c) Drizzle algorithm

(d) Nadaraya-Watson Estimator (e) Classic kernel reg. (N = 2) (f) Steering kernel reg. (N = 2)

Fig. 5. An image reconstruction simulation on irregularly sampled data: (a)The original image, (b)Blurry and irregularly sampled
image (the green pixels are representing missing pixels.), (c)-(e)The reconstructed images by spatially adaptive methods, and (f)The
reconstructed image by a data adaptive method. The corresponding PSNR’s with respect to the blurred image for the reconstructed
images are (c)21.46, (d)24.83, (e)28.48, and (f)30.15.

PSF with the standard deviation 1.0, and irregularly downsampled the blurred image (we randomly discarded 75%
of the original pixels), which is in Fig.5(b) (the green pixels are representing the missing pixels). This situation can
occurr when the quality of a data transmission channel is so poor that the channel drops many data points, or a data
set is so noisy that many pixels are eliminated by a pre-processing mechanism. The estimated images by spatially
adaptive methods: the drizzle algorithm (pix f rac = 0.14), NWE (h = 1.0), the second order classic kernel regression
(h = 1.4), are shown in Fig.5(c) through Fig.5(e), respectively. The reconstructed image by a data-adaptive method
(the second order iterative steering kernel regression with h = 4.5 and one iteration) which we will discuss in Section
2.2.2, is shown in Fig.5(f). The corresponding PSNR’s2 are indicated in the caption of the figure. Note that we chose
the parameters for each method in the above simulation to produce the best PSNR. Furthermore, and a final deblurring
of the interpolated images was necessary to recover the high frequency components. To summarize, in this paper,
we will present the theory behind the spatially adaptive filter (4) including both the drizzle algorithm and NWE by
using the kernel regression framework to understand more clearly about the spatially adaptive filter, and expand our
discussion to a data-adaptive filter (5) in order to improve their performances.

In this paper, we introduce new aspects of the kernel regression framework to the astronomy science community.
The novelties of this paper include

(i) We exploit the kernel regression framework to justify a powerful variation of the drizzle algorithm with superior
performance, applicable to both regularly and irregularly sampled data.

(ii) Unlike the drizzle algorithm, the effective size and shape of the kernel (effective areas) in the proposed method are
adaptive locally not only to the spatial sampling density of the data, but also to the actual (measured brightness)
values of those samples.

(iii) The proposed method is applicable to both single frame and multi-frame processing scenarios, and is equally
effective for both oversampled and undersampled images.

(iv) The proposed method takes advantage of a generic model that is appropriate for reconstructing images contam-
inated with different noise models, including additive Gaussian, Laplacian, and Salt & Pepper, and even for
removal of compression artifacts.

2Peak Signal to Noise Ratio = 20 log10

(
Peak Signal Value

Root Mean Square Error

)
[dB]



Experiments on simulated and real data show diverse applications and the superiority of the proposed adaptive
technique with respect to the state of the art methods in the literature. We show that the proposed algorithm not only
visually and numerically (PSNR comparison) improves the quality of reconstruction, but also due to its non-parametric
structure, will result in images that are faithful with respect to the photometric properties of the original (ideal) image.

2. IMAGE PROCESSING AND RECONSTRUCTION

In this section, we present the derivation of the spatially adaptive filter by using the kernel regression framework, and
we will see that the filter class introduced in (2) which includes the drizzle algorithm and NWE, is neatly explained as
a special case of the general formulation (4). Following this, our discussion will progress to the data-adaptive filter.

2.1. Spatially Adaptive Filters
Classical parametric denoising methods rely on a specific model of the signal of interest, and seek to compute the
parameters of this model in the presence of noise. A generative model based upon the estimated parameters is then
produced as the best estimate of the underlying signal. In contrast, non-parametric methods rely on the data itself
to dictate the structure of the model, in which case the implicit model is referred to as a regression function [2]. In
particular, consider the estimation problem in two dimensions where the each measured sample in Fig.1(c) is given by

yi = z(xi) + εi, i = 1, 2, · · · , P, xi =
[
x1i , x2i

]T , (6)

where yi’s are measurements, z(·) is the (hitherto unspecified) regression function (i.e. an unknown image) to be
estimated, and εi’s are independent and identically distributed zero mean noise values (with otherwise no particular
statistical distribution assumed).

As the specific form of z(·) is unspecified, in order to estimate the value of the function at any point x given by the
data, one can trust in a generic, local expansion of the function about this point. Specifically, if x is near the samples
at xi, we have the N-term Taylor series3

z(xi) ≈ z(x) + {∇z(x)}T (xi − x) +
1
2!

(xi − x)T {Hz(x)} (xi − x) + · · · (7)

= β0 + β
T
1 (xi − x) + βT

2 vech
{
(xi − x) (xi − x)T

}
+ · · · , (8)

where ∇ andH are the gradient (2 × 1) and Hessian (2 × 2) matrices respectively and vech(·) is the half-vectorization
operator [17], which lexicographically orders the lower-triangular portion of a matrix into a column vector.

The above suggests that if we think of the Taylor series as a local representation of the regression function, esti-
mating the parameter β0 can yield the desired (local) estimate of the regression function based on the data. Indeed, the
coefficients {βn}Nn=1 will provide localized information on the derivatives of the regression function. Naturally, since
the approach is based on local approximations, a reasonable step might be to estimate the coefficients {βn}Nn=0 from the
data, giving the nearby samples higher weight than samples farther away. A general fitting formulation capturing this
idea solves the following optimization problem:

min
{βn}Nn=0

P∑
i=1

∣∣∣∣yi − β0 − βT
1 (xi − x) − βT

2 vech
{
(xi − x) (xi − x)T

}
− · · ·

∣∣∣∣m K (xi, x) , (9)

where m is a parameter, which when set to m = 2 would yield a local weighted least squares formulation; but can also
be set to m = 1 for instance, for a more robust framework. In the kernel regression framework, K(xi, x) is defined as

K(xi, x) =⇒ KH(xi − x) =
1

det(H)
K
(
H−1(xi − x)

)
. (10)

The kernel function K penalizes distance away from the local position where the approximation is centered, and where
H is a 2×2 “smoothing” matrix which controls the width of this weight function in terms of assigning relative weights
to pixels near and far. The standard choice of the matrix is

Hi = hµiI2, (11)
3Other expansions are also possible, e.g. orthogonal series.



where h is the so-called global smoothing parameter, and µi is a scalar called local density parameter that captures the
local density of data, nominally set to µi = 1, though adaptive ways of computing µi are proposed in [18]. In general,
the function K(·) is a symmetric function, which attains its maximum at zero, and which decays away from zero at
a rate controlled by the smoothing matrix. More specifically, the standard definition of the kernel function for two
dimensional data has ∫

R2
tK(t)dt = 0,

∫
R2

ttT K(t)dt = cI2. (12)

The choice of the particular form of the function K(·) is open, and may be selected as a Gaussian, exponential, or other
valid form that complies with the above constraints.

As we alluded to earlier, reasonable choices of the penalizing parameter (m) are 2 or 1. When we choose m = 2,
the optimization problem (9) can be posed as weighted least-squares, which takes the following matrix form:

b̂ = arg min
b

∥∥∥y − Xxb
∥∥∥2

Wx
, (13)

where
y = [y1, y2, · · · , yP]T , b =

[
β0,β

T
1 , · · · ,βT

N

]T
, Wx = diag

[
K(x1, x),K(x2, x), · · · ,K(xP , x)

]
, (14)

Xx =


1 (x1 − x)T vechT

{
(x1 − x)(x1 − x)T

}
· · ·

1 (x2 − x)T vechT
{
(x2 − x)(x2 − x)T

}
· · ·

...
...

...
...

1 (xP − x)T vechT
{
(xP − x)(xP − x)T

}
· · ·

 , (15)

with “diag” defining the diagonal elements of a diagonal matrix. Regardless of the order N, our primary interest is to
compute an estimate of the image (pixel values), and the necessary computations are limited to those that estimate the
parameter β0. Therefore, the solution for the optimization problem is simplified to

ẑ(x) = β̂0 = eT
1

(
XT

x WxXx
)−1

XT
x Wx y, (16)

where e1 is a column vector with the first element equal to one, and the rest equal to zero. This estimator can be
summarized using the spatially adaptive “equivalent” weight function Wi. That is

ẑ(x) = β̂0 =
∑

i Wi(xi, x,N) yi. (17)

where in this case Wi depends upon the regression order N as well as the sample positions xi, and the position of
interest x.

If we seek a more robust formulation as in the case where the data contain outliers, the choice m = 1 may be more
appropriate (9). Regardles, for any m, we can rewrite (9) in matrix form as

b̂ = arg min
b

∥∥∥y − Xxb
∥∥∥m

Wx
. (18)

For a general m, a closed-form solution as in the one above for m = 2 is not practical and we must resort to an iterative
estimator such as the steepest descent method. The steepest descent iterations for this case amount to the following:

b̂
(n+1)
= b̂

(n)
+ µXT

x Wx sign
(
y − Xxb̂

(n)) � ∣∣∣∣y − Xxb̂
(n)
∣∣∣∣m−1
, (19)

where µ is the step size, and � is the element-by-element multiplication operator.

Returning to the estimation problem based upon (9), one can choose the order N to effect an increasingly more
complex local approximation of the signal. In the statistics literature, locally constant, linear and quadratic approxi-
mations (corresponding to N = 0, 1, 2 respectively) have been considered most widely. In particular, choosing N = 0
(corresponding to local constant estimation), a spatially adaptive filter (2) is obtained from (17). Of course, higher
order approximations (N > 0) are also possible, and the estimator (16) can be written in the generalized spatially
adaptive filter (4) (q.v. [3]). What we concentrate on in the rest of this paper is the modification of the kernels. More
specifically, we propose novel ways to adapt the kernels to local data. The result is a class of locally adaptive image



filters which are able to perform denoising with high quality, even at very low SNR4, while being simultaneously
applicable to interpolation of missing data.

In the interest of completeness, we mention that the normalized convolution method presented in [19] is very
similar to kernel regression with the classic kernel function (10), which is a spatially adaptive filter introduced in this
section. An edge adaptive version of this work is also very recently proposed in [20].

2.2. Data-Adaptive Filter
A strong denoising effect can be realized by making the global smoothing parameter h larger (or making the effective
areas larger). However, with a larger h, the estimated image will be more blurred so that we have sacrificed details
to the effect of denoising. In order to have both a strong denoising effect and a sharper image, one can consider an
alternative approach that will adapt the local effect of the filter using not only the position of the nearby samples, but
also their gray values, which yields us the data-adaptive version of kernel regression,

min
{βn}Nn=0

P∑
i=1

∣∣∣∣yi − β0 − βT
1 (xi − x) − βT

2 vech
{
(xi − x) (xi − x)T

}
− · · ·

∣∣∣∣m K (xi, x, yi, y) . (20)

Correspondingly, for m = 2, we have

ẑ(x) = β̂0 =
∑

i Wi(xi, x, yi, y,N) yi. (21)

That is to say, the proposed kernels will take into account two factors: spatial distances and radiometric (gray value)
distances. If the kernel choice is made such that it depends only on the difference between the positions and gray
values of available pixels and the position/value of the pixel of interest, then the kernel function can be denoted as

K(xi, x, yi, y) =⇒ K(xi − x, yi − y). (22)

We name this the data-adaptive kernel function, and discuss the selections of the function in this section.

2.2.1. Bilateral Kernel

A simple and intuitive choice of the data-adaptive kernel K is to use “separable” kernels for penalizing the spatial and
radiometric distances. Indeed this is precisely the thinking behind the bilateral filter, introduced in [14], and carefully
analyzed in [21]. Mathematically, the bilateral choice is given by

K(xi − x j, yi − y j) ≡ KH(xi − x j)Khr (yi − y j), (23)

where hr is the radiometric smoothing parameter (a scalar value) that controls the rate of decay, and KH(·) and Khr (·)
are the spatial and radiometric kernel functions, respectively. With this kernel, for the special case N = 0, the estimator
(16) can be summarized as

ẑ(x j) =
∑P

i=1 KH(xi − x j)Khr (yi − y j)yi∑P
i=1 KH(xi − x j)Khr (yi − y j)

. (24)

In general, the values of h and hr are fixed. While the bilateral kernel choice is attractive and simple, breaking K into
the spatial and radiometric kernels separately can weaken the estimator performance if the SNR is very low. A simple
justification for this claim comes from studying very noisy data sets, where radiometric distance (yi − y j)’s tend to be
large and therefore all radiometric weights are very close to zero, and effectively useless. In the following, we present
a better selection of kernels, which overcome this difficulty.

2.2.2. Steering Kernel

To pose the framework which takes us beyond the bilateral kernel choice, we observe that the effect of computing
Khr (yi − y j) in (23) is to implicitly measure a function of the local gradient estimated between neighboring values, and
to use this estimate to weight the respective measurements. As an example, if a pixel is located near an edge, then
pixels on the same side of the edge will have much stronger influence in the filtering. With this intuition in mind, we
propose a two-step approach where first an initial estimate of the image gradients is made using some kind of gradient

4Signal to Noise Ratio is defined as 10 log10(σ2/σ2
n), where σ2, σ2

n are variance of a clean image and noise, respectively.
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Fig. 6. (a) Standard kernels. (b) Steering kernels along a local edge.

estimator (say standard –spatially adaptive– kernel regression). Next this estimate is used to measure the dominant
orientation of the local gradients in the image (e.g. [22]). In a second filtering stage, this orientation information is
then used to adaptively “steer” the local kernel, resulting in elongated, elliptical contours spread along the directions
of the local edge structure. With these locally adaptive kernels, the denoising is effected most strongly along the edges,
rather than across them, resulting in strong preservation of details in the final output. To be more specific, the adaptive
kernel takes the form

K(xi − x, yi − y) =⇒ KHi (xi − x), (25)

where Hi’s are the data-dependent symmetric, positive definite, matrices which we call steering matrices. They are
defined as

Hi = hµiC
− 1

2
i , (26)

where Ci’s are covariance matrices based on the gradients of the local gray-values. The principal directions indicated
by a good choice for Ci will effectively spread the kernel function along the local edges as shown in Fig. 6. It is worth
noting that even if we choose a large h in order to have a strong denoising effect, the undesirable blurring effect which
would otherwise have resulted is tempered around edges with appropriate choice of Ci’s.

More specifically, the local edge structure is related to the gradient covariance (or equivalently, the locally dominant
orientation) in an analysis window around the position of interest. The dominant local orientation of the gradients is
then related to the eigenvectors of this estimated matrix. While this approach (which is essentially a local principal
components method) is simple and has nice tolerance to noise, the resulting estimate of the covariance may be rank
deficient, and therefore care must be taken not to take the inverse of the estimate directly in this case. In [22],
we proposed an effective multiscale technique for estimating local orientations, which fits the requirements of this
problem nicely.

In order to have a convenient and intuitive form of the covariance matrix, we decompose it into three components
as follows:

Ci = γiUθiΛiUT
θi
, (27)

Uθi =
[

cos θi sin θi
− sin θi cos θi

]
, Λi =

[
σi 0
0 σ−1

i

]
. (28)

where Uθi is the rotation matrix andΛi is the elongation matrix. The covariance matrix is given by the three parameters
γi, θi and σi, which are the scaling, rotation, and elongation parameters, respectively. Fig.7 explains schematically
how these parameters affect the spreading of kernels. A simple choice of γi, for instance is a geometric mean of the
eigenvalues of Ci. Such a γi makes the steering kernel area large in low frequency areas and small in high frequency
areas [3]. To complete the description of our framework, we note that we implement the steering kernel regression
in an iterative setting as follows: (i) initial estimation of gradient images, (ii) compute steering matrices, (iii) apply
steering kernel regression, which yield an estimated image and gradient images, (iv) repeat (ii) and (iii) several more
times. Due to the page limitation, we direct the interested readers to a more detailed description about the iteration
method in [3].

Fig.8 illustrates another simulation and shows the power of data-adaptive methods. This simulation uses the blurry
image shown which is shown in Fig.8(a) and capturing two stars; a brighter one and a darker one. We added white
Gaussian noise (SNR = 20[dB]) to the original image. The resulting noisy image is shown in Fig.8(b). Next, we
irregularly downsampled the noisy image (discarded 80% of the pixels of the noisy image where these missing pixels
are in green) as shown in Fig.8(d). The reconstructed images by the classic drizzle algorithm (pix f rac = 0.3) and
iterative steering kernel regression (N = 2, h = 5.3, and one iteration) are in Fig.8(d) and Fig.8(e), respectively, where
the corresponding PSNR’s are 28.91[dB] and 31.74[dB]. Furthermore, Fig.8(f) illustrates the comparison between the
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Fig. 8. Another simulation of image reconstruction from noisy and irregularly sampled data: (a)The original (blurry) image,
(b)Noisy image, (c)Irregularly sampled image (the green pixels are representing missing pixels.), (d)The reconstructed image
by the drizzle algorithm, (e)The reconstructed image by the iterative steering kernel regression, and (f)Comparison between the
drizzle algorithm and steering kernel regression by plotting the middle cross-section of the respective images: the solid (blue) line
is the original image, the dash-dot (green) line is the drizzle algorithm, and the dash (red) line is the iterative steering kernel regres-
sion. The bias and variance of the drizzle algorithm by a Monte-Carlo simulation (by using different realizations of measurement
noise with the same sampling positions shown in (c)) are Bias = 0.298 and Var = 17.99, and the ones of iterative steering kernel
regression are Bias = 0.00065 and Var = 7.43.

drizzle algorithm and steering kernel regression by plotting one horizontal cross-section in the middle of the each
reconstructed image. As seen in the reconstructed images and the comparison, steering kernel regression did a better
job visually and photometric-wise.

3. EXPERIMENTS

The first experiment is an example of image reconstruction from a real astronomical data set, which is shown in
Fig.9(a). The real data have some outliers due to the bad image sensors. The black dots of Fig.9(b) are representing



those bad ones. Moreover, because illumination of each image sensors (detectors) is not uniform, we correct the raw
pixel value by using the flat field data shown in Fig.9(c). Fig.9(d) shows the compensated image by both Fig.9(b)
and Fig.9(c). The green pixels are representing missing pixels. As seen in Fig.9(d), the outliers are eliminated, but
the data set has some missing pixels and noise. We reconstructed the image using both the drizzle algorithm (with
pix f rac = 0.99) and using the iterative steering kernel regression (with N = 2, h = 15.0, and one iteration), which
are shown in Fig.9(e) and Fig.9(f), respectively. To compare the performance between the drizzle algorithm and
steering kernel regression, Fig.10 illustrates the absolute residual images (absolute difference between the estimated
images and the noisy image). The residual images of steering kernel regression (Fig.10(a)) is noise-like, whereas on
the other hand, we see structure (namely) stars in the residual image corresponding to the reconstruction using the
drizzle algorithm (Fig.10(b)). That is to say, the drizzle algorithm unexpectedly remove some image contents from
the original data set. In addition, Fig.10(c) and Fig.10(d) illustrate details from these residual images which make the
point more clearly.

The second experiment is concerned with fusion of frames and simultaneous cosmic ray noise reduction. We
downloaded two images of NGC5195, known as the companion of the spiral galaxy Messier 51, from the astronomical
data archives5, which are taken by HST and illustrated in Fig.11(a) and Fig.11(b). They are corrupted by noise
caused by cosmic rays, and each has a gap in the middle, which is indicated in green color. Unlike the previous
experiment, the exact positions of the outliers are unknown; in other words, we do not have a mask for bad pixels. If
we apply the drizzle algorithm directly to the data set, we have the reconstructed image illustrated in Fig.11(c) (we
used pix f rac = 1.0). Although Fruchter and Hook presented a method to create a mask of bad pixels for this kind
of data sets in [1], the method includes several steps. However, in this situation, the kernel regression with m = 1
(robust kernel regression) helps us to reduce cosmic ray noise without the use of the bad pixel mask. After estimating
the relative position between these two frames, we processed the two images and reconstructed the image shown in
Fig.11(d) which employed classic kernel regression (N = 2, m = 1, and h = 0.8).

The third experiment is concerned with cosmic ray noise reduction and simultaneous resolution enhancement, or
super-resolution, on a real data set. We have 5 frames of Cotton candy nebula6. All the frames are shown in Fig.12(a)
through Fig.12(e). Directly applying the drizzle algorithm with pix f rac = 1.0 and classic kernel regression (N = 2,
m = 1, and h = 1.0), we reconstruct an image having twice as many pixels in both vertical and horizontal directions as
the original ones. Fig.12(f) and Fig.12(g) show the estimated images. Both of the methods produced good interpolated
image. However, without the pre-processing (creating the mask), the drizzle algorithm cannot suppress the cosmic ray
noise.

4. CONCLUSION

In this paper, we defined and discussed spatially adaptive filters and contrasted them to the more general and superior
data-adaptive filters, which can be used for both denoising and interpolation. Simulations and experiments confirmed
that data-adaptive filters have excellent performance not only on regularly sampled date, but also on irregularly sam-
pled data sets. Moreover, unlike the drizzle algorithm, we also showed that applying data-adaptive kernel regression
can suppress cosmic ray noise effectively, and without the numerous steps involved in doing the same using the drizzle
algorithm.

There is another important aspect of the drizzle algorithm presented in [1], which concerns correcting geometric
distortion effects. The algorithm corrects these by transforming the effective areas in the same way as the estimated
distortions undergone by the frames. It is worth noting that the same can be done in the general kernel regression
framework without much additional complication in implementation.

Since the kernel regression framework is built on a very general data model, its applicability is extremely wide.
Applying it to astronomical images is only an example. We have demonstrated its applicability to many more data
sources for example in [3]. Furthermore, although we discussed the framework in two dimensions, kernel regression
is, of course, able to process (denoise and interpolate) higher-dimensional data sets as well.

5http://archive.stsci.edu/
6The data is available at www.stsci.edu/instruments/wfpc2/dither/examples.html
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field data, and (e)-(f)The reconstructed images by the drizzle algorithm and iterative steering kernel regression, respectively.
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Fig. 10. The absolute residual images (absolute difference between the estimated images and the noisy image): (a)The drizzle
algorithm, (b)Iterative steering kernel regression, and (c)-(d)The selected regions of the each residual image around the sections
where the arrows point. While the image (d) illustrate the residual in the very narrow scale as the scale bar shows, it is still
noisy-like, which indicates that the iterative steering kernel regression removed noise only, unlike the drizzle algorithm.



(a) NGC5195 #1 (b) NGC5195 #2

(c) Drizzle algorithm (d) L1 classic kernel reg. (N=2)

Fig. 11. An example of the cosmic ray reduction on NGC5195: (a)-(b)The first and second input frames (the green pixels are
representing missing pixels.), (c)The reconstructed image by applying the drizzle algorithm directly (without creating the mask for
the outliers), (d)The reconstructed image by L1 classic kernel regression.



(a) The first frame (b) The second frame

(c) The third frame (d) The fourth frame

(e) The fifth frame

(f) Drizzle algorithm (g) L1 Classic kernel reg. (N=2)

Fig. 12. A super-resolution example on the cotton candy nebula sequence: (a)-(e)The first through fifth frames, (f)The reconstructed
image by applying the drizzle algorithm directly (without creating the bad pixel mask), and (g)The image reconstructed by L1 classic
kernel regression.


