A Behavior Language: Joint Action and
Behavioral Idioms

Michael Mateas! and Andrew Stern?

! College of Computing and School of Literature, Communication and Culture

Georgia Institute of Technology
michaelm@cc.gatech.edu
www.cs.cmu.edu/ michaelm/
InteractiveStory.net
andrew@interactivestory.net
www.interactivestory.net

Summary. This chapter presents ABL (A Behavior Language, pronounced “able”)
, a language specifically designed to support the creation of life-like computer char-
acters (believable agents). Concurrent with our development of ABL, we are us-
ing the language to implement the believable agent layer of our interactive drama
project, Fagcade. With code examples and case-studies we describe the primary fea-
tures of ABL, including sequential and parallel behaviors, joint goals and behaviors
for multi-agent coordination, and reflective programming (meta-behaviors). Specific
idioms are detailed for using ABL to author story-based believable agents that can
maintain reactive, moment-by-moment believability while simultaneously perform-
ing in tightly coordinated, long term dramatic sequences.

1 Introduction

ABL is based on the Oz Project (Bates [1]) believable agent language Hap,
developed by A.B. Loyall (Loyall and Bates [17], Bates, Loyall, and Reilly [2]).
Hap was designed to support the detailed expression of artistically-chosen per-
sonality, automatic control of real-time interactive animation, and architec-
tural support for many of the requirements of believable agents (Loyall [15]).

ABL extends Hap in several ways, most significantly by adding joint goals
and behaviors, which support the multi-agent coordination required for the
performance of dramatic action. ABL also changes Hap’s syntax, making it
more Java-like, and generalizes the mechanisms by which an ABL agent con-
nects to a sensory-motor system, making it possible for others to use ABL in
their own believable agent projects.

This chapter will discuss ABL by means of examples from Facade, as well
as an early Oz believable agent project, the Woggles (Loyall and Bates [16]).



2 Michael Mateas and Andrew Stern
2 Why ABL?

Believable agents are applicable as non-player characters in interactive sto-
ries and games, as tour guides through virtual spaces, teachers and tutors
in educational software, virtual salespeople for marketing products, and so
on. To achieve a non-trivial degree of life-likeness in such agents, they must
possess the ability perform several intelligent activities in parallel — for exam-
ple, to gaze, speak, walk, use objects, gesture with their hands and convey
facial expressions, all at the same time. Additionally, while performing these
parallel behaviors, believable agents need to be reactive in immediate, varied
and fine-grained ways, so as to respond convincingly and satisfyingly to the
user’s moment-by-moment interaction. In ABL, an activity (e.g., walking to
the user, or speaking a line of dialog) is represented as a goal, and each goal
is supplied with one or more behaviors to accomplish its task. An active goal
chooses one of its behaviors to try. A behavior is a series of steps, that can
occur sequentially or in parallel. Typically, once a behavior completes all of
its steps, it succeeds and goes away. However if any of its steps fail, then
the behavior itself fails and the goal attempts to find a different behavior to
accomplish its task, failing if no such alternative behavior can be found. Fur-
thermore, a behavior may have subgoaled its own set of goals and behaviors.
To keep track of all the active goals and behaviors and subgoal relationships,
ABL maintains an active behavior tree (ABT).

In contrast to standard imperative languages one might use to control
agents (e.g. C++, Java), in ABL an author can, in relatively few lines of
code, specify collections of goals and behaviors that can cleanly inter-mix
character actions, modulate their execution based on the continuously sensed
state of the world, and perform local, context-specific reactions to a player’s
actions.

This paradigm of combining sequential and parallel behaviors, and propa-
gating success and failure through the ABT, are the foundation of the power
of ABL as a language for authoring believable agents. Parallel behaviors make
it easy to author characters that pursue multiple goals and thus mix the per-
formance of multiple behaviors. This powerful capability doesn’t come for
free — it effectively makes ABL a parallel programming language, thus intro-
ducing to the author the well-known complexities of parallel programming.
ABL is designed to make simple character behavior easy to author with just
a few lines of code, while still providing the power to let experienced authors
write complex, expressive behavior. ABL’s support for joint goals and behav-
iors helps the author to harness the expressive power of multi-agent teams of
characters.

3 Application of ABL in Facade

We are using ABL to implement the believable agent layer of the Fa¢ade in-
teractive drama architecture (Fig. 1). Fagade is a serious attempt to move



A Behavior Language: Joint Action and Behavioral Idioms 3

beyond traditional branching or hyper-linked narrative, to create a dramat-
ically interesting virtual world inhabited by computer-controlled characters,
within which the player experiences a story from a first person perspective
(Mateas and Stern [19, 22]). The complete, real-time 3D, one-act interactive
drama will be available in a free public release at the end of 2003.

\
Jalce) ae youl angmy aﬁ?’&ﬂpﬁ’b

Fig. 1. Screen capture from Facade

In the drama, Grace and Trip, a married couple in their early thirties, have
invited the player over for drinks. The player soon learns that their marriage
is in serious trouble, and in fact, tonight is the night that all their troubles are
going to come to the surface. Whether and how their marriage falls apart, and
the state of the player’s relationship with Grace and Trip at the end of the
story, depends on how the player interacts in the world. The player interacts by
navigating in the world, manipulating objects, and through natural language
dialog.

This project raises a number of interesting AI research issues, including
drama management for coordinating plot-level interactivity, broad but shal-
low support for natural language understanding and discourse management,
and autonomous believable agents in the context of interactive story worlds.
This chapter focuses on the last issue, describing the idioms developed within
ABL for organizing character behaviors. For details of the rest of the Facade
architecture, including the drama manager and natural language processing
system, see (Mateas and Stern [19, 21], Mateas [18]).



4 Michael Mateas and Andrew Stern

4 ABL Overview

This section provides an overview of the ABL language and discusses some of
the ways in which ABL modifies or extends Hap. The discussion of joint be-
haviors, the mechanism for multi-agent coordination, occurs in its own section
below.

4.1 Hap

Since ABL re-implements and extends Hap, this section briefly describes the
architecture of a Hap agent and the organization and semantics of the Hap
language. All examples use the ABL syntax. The definitive reference on Hap
is Loyall’s dissertation [15].

The ABL compiler is written in Java and targets Java; the generated Java
code is supported by the ABL runtime system.

Behavior Library Active Behavior Tree

Behaviory Behavior,
Behavidr,

Goal; Goals
Working Memory
) Seq.
WME, WME, behavior,
*\ e
,
) i Mental
\ Sensors ML
Sensor T o
1oh Available for execution
~
\ R L
World

Fig. 2. Architecture of a Hap/ABL agent

The architecture of a Hap/ABL agent appears in Fig. 2. The agent has
a library of pre-written behaviors. Each behavior consists of a set of steps,
to be executed either sequentially or in parallel, that accomplish a goal. The
current execution state of the agent is captured by the active behavior tree
(ABT) and working memory. The ABT contains the currently active goals
and behaviors. The ABT is a tree rather than a stack because some behaviors
execute their steps in parallel, thus introducing parallel lines of expansion in



A Behavior Language: Joint Action and Behavioral Idioms 5

the program state. The leaves of the ABT constitute the conflict set. The agent
continuously executes a decision cycle, during which a leaf step is chosen for
execution. As each step is executed, it either succeeds or fails. In a sequential
behavior, step success makes the next step available for execution. When
the last step of a sequential behavior succeeds, or when all steps of a parallel
behavior have succeeded, the enclosing behavior succeeds. For both sequential
and parallel behaviors, if any step fails, it causes the enclosing behavior to
fail. In this way, success and failure propagate through the ABT.

The four basic step types are introduced in the example behavior code
below. For now, note that one of the step types is act, which performs a
physical action with the agent’s body, such as taking a step or grasping an
object. The exact details of the execution of a physical action depend on both
the agent’s body and the world. For example, Fa¢ade agents have virtual,
animated bodies within a real-time, graphical, 3D story world; however, one
could just as well use ABL to implement behavior for physical robot agents,
text-based agents, etc.

Working memory contains any information the agent needs to keep track
of during execution. This information is organized as a collection of working
memory elements (WMEs). WMEs are like instances in an object-oriented
language; every WME has a type plus some number of typed fields that can
take on values. WMEs are also the mechanism by which an agent becomes
aware of sensed information. Sensors report information about changes in
the world by writing that information into WMEs. Hap/ABL has a number
of mechanisms for writing behaviors that are continuously reactive to the
contents of working memory, and thus to sensed changes in the world. The
details of sensors, like actions, depend on the specific world and agent body.

4.2 Example Behaviors

Hap/ABL programs are organized as collections of behaviors. In the example
sequential behavior shown below, an agent waits for someone to knock on a
door, sighs, then opens the door and greets the guest.

sequential behavior AnswerTheDoor() {
WME w;
with (success_test { w = (KnockWME) } ) wait;
act sigh();
subgoal OpenDoor();
subgoal GreetGuest();
mental_act { deleteWME(w); }

}

This behavior demonstrates the four basic step types, namely wait, act,
subgoal, and mental_act. wait steps are never chosen for execution; a naked
wait step in a sequential behavior would block the behavior from executing



6 Michael Mateas and Andrew Stern

past the wait. However, when combined with a success_test, a wait step can
be used to make a demon that waits for a condition to become true. Success
tests are continuously monitored conditions that, when they become true,
cause their associated step to immediately succeed. Though in this example
the success_test is associated with a wait step to make a demon, it can be
associated with any step type.

Success tests, as well as other tests that will be described shortly, perform
their test against the agent’s working memory. In this example, the success_test
is looking for WMEs of type KnockWME, which presumably is placed in the
agent’s working memory when someone knocks on a door. Since there are no
field constraints in the test, the test succeeds as soon as a KnockWME appears.

An act step tells the agent’s body (sensory-motor system) to perform an
action. For graphical environments such as Fuacade, physical acts will ulti-
mately be translated into calls to the animation engine, though the details of
this translation are hidden from the Hap/ABL program. In this example, the
act makes the body sigh. Note that physical acts can fail — if the sensory-motor
system determines that it is unable to carry out the action, the corresponding
act step fails, causing the enclosing behavior to fail.

Subgoal steps establish goals that must be accomplished in order to ac-
complish the behavior. The pursuit of a subgoal within a behavior recursively
results in the selection of a behavior to accomplish the subgoal.

Mental acts are used to perform bits of pure computation, such as math-
ematical computations or modifications to working memory. In the final step
of the example, the mental_act deletes the KnockWME (making a call to a
method defined on ABL agents), since the knocking has now been dealt with.
In ABL, mental acts are written in Java.

The next example demonstrates how Hap/ABL selects a behavior to ac-
complish a subgoal through signature matching and precondition satisfaction.

sequential behavior OpenDoor() {
precondition {
(KnockWME doorlD :: door)
(PosWME spritelD == door pos :: doorPos)
(PosWME spritelD == me pos :: myPos)
(Util.computeDistance(doorPos, myPos) > 100)
}
specificity 2;
// Too far to walk, yell for knocker to come in
subgoal YellAndWaitForGuestToEnter(doorID);

}

sequential behavior OpenDoor() {
precondition { (KnockWME doorlID :: door) }
specificity 1;
// Default behavior - walk to door and open

}



A Behavior Language: Joint Action and Behavioral Idioms 7

In this example there are two sequential behaviors OpenDoor(), either of
which could potentially be used to satisfy the goal OpenDoor(). The first be-
havior opens the door by yelling for the guest to come in and waiting for
them to open the door. The second behavior (details elided) opens the door
by walking to the door and opening it. When AnswerTheDoor() pursues the
subgoal OpenDoor(), Hap/ABL determines, based on signature matching, that
there are two behaviors that could possibly open the door. The precondition
of both behaviors is executed. In the event that only one of the preconditions
is satisfied, that behavior is chosen as the method to use to accomplish the
subgoal. In the event that both preconditions are satisfied, the behavior with
the highest specificity is chosen. If there are multiple satisfied behaviors with
highest specificity, one is chosen at random. In this example, the first Open-
Door() behavior is chosen if the lazy agent is too far from the door to walk
there (“too far” is arbitrarily represented as a distance > “100”).

The precondition demonstrates the testing of the fields of a WME. The ::
operator assigns the value of the named WME field on the left of the operator
to the variable on the right.> This can be used both to grab values from
working memory that are then used in the body of the behavior, and to chain
constraints through the WME test.

The last example demonstrates parallel behaviors and context conditions.

parallel behavior YellAndWaitForGuestToEnter(int doorID) {
precondition { (CurrentTimeWME t :: startT)}
context_condition {(CurrentTimeWME t <= startT + 10000)}
number_needed_for_success 1;
with (success_test {{DoorOpenWME door == doorID)}) wait;
with (persistent) subgoal YellForGuest(doorlD);

}

In a parallel behavior, the steps are pursued simultaneously. YellAndWait-
ForGuestToEnter(int) simultaneously yells “come in” towards the door (the
door specified by the integer parameter) and waits to actually see the door
open. The persistent modifier on the YellForGuest(int) subgoal makes the sub-
goal be repeatedly pursued, regardless of whether the subgoal succeeds or fails
(one would imagine that the behavior that does the yelling always succeeds).
The number_needed _for_success annotation (only usable on parallel behaviors)
specifies that only one step has to succeed in order for the behavior to succeed.
In this case, that one step would be the demon step waiting for the door to ac-
tually open. The context_condition is a continuously monitored condition that
must remain true during the execution of a behavior. If the context condition
fails during execution, then the behavior immediately fails. In this example,
the context condition tests the current time, measured in milliseconds, against
the time at which the behavior started. If after 10 seconds the door has not

3 In ABL, a locally-scoped appropriately typed variable is automatically declared
if it is assigned to in a WME test and has not been previously explicitly declared.



8 Michael Mateas and Andrew Stern

yet opened (the guest is not coming in), then the context condition will cause
the behavior to fail.

As failure propagates upwards through the subgoal chain, it will cause
the first OpenDoor() behavior to fail, and eventually reach the OpenDoor()
subgoal in AnswerTheDoor(). The subgoal will then note that there is another
OpenDoor() behavior that has not been tried yet and whose precondition is
satisfied; this behavior will be chosen in an attempt to satisfy the subgoal. So
if the guest does not enter when the agent yells for awhile, the agent will then
walk over to the door and open it.

These examples give a sense for the Hap semantics which ABL reimple-
ments and extends. There are many other features of Hap implemented in
ABL that are not possible to re-describe here, including how multiple lines of
expansion mix (based on priority, blocking on physical acts, and a preference
for pursing the current line of expansion), declaration of behavior and step
conflicts (and the resulting concept of suspended steps and behaviors), and
numerous annotations that modify the default semantics of failure and success
propagation (Loyall [15]).

4.3 ABL Extensions

ABL extends Hap in a number of ways, including:

e Generalizing the mechanisms for connecting to the sensory-motor system.
The ABL runtime provides abstract superclasses for sensors and actions.
To connect an ABL program to a new sensory-motor system (e.g., an
animation engine, a robot), the author defines specific sensors and actions
as concrete subclasses of the abstract sensor and action classes. ABL also
includes additional language constructs for binding sensors to WMEs. ABL
then takes responsibility for calling the sensors appropriately when bound
WDME:s are referenced in working memory tests.

e Atomic behaviors. Atomic behaviors prevent other active behaviors from
mixing in. Atomic behaviors are useful for atomically updating state (e.g.
updating multiple WMEs atomically), though they should be used spar-
ingly, as a time-consuming atomic behavior could impair reactivity.

e Reflection. ABL gives behaviors reflective access to the current state of the
ABT, supporting the authoring of meta-behaviors that match on patterns
in the ABT and dynamically modify other running behaviors. Supported
ABT modifications include succeeding, failing or suspending a goal or be-
havior, and modifying the annotations of a subgoal step, such as changing
the persistence or priority. Safe reflection is provided by wrapping all ABT
nodes in special WMEs. Pattern matching on ABT state is then accom-
plished through normal WME tests. A behavior can only touch the ABT
through the reflection API provided on these wrapper WMEs.

e Multiple named memories. Working memories can be given a public name,
which then, through the name, are available to all ABL agents. Any WME



A Behavior Language: Joint Action and Behavioral Idioms 9

test can simultaneously reference multiple memories (the default memory
is the agent’s private memory). In Fa¢ade, named memories are useful for
giving agents access to a global story memory.

The most significant ABL extension of Hap is support for joint goals and
behaviors, described in the following section.

5 Joint Goals and Behaviors

In order to facilitate the coordination of characters in the carrying out of dra-
matic action, we extended the semantics of Hap, in a manner analogous to
the STEAM multi-agent coordination framework (Tambe [31]). This section
describes joint goals and behaviors, ABL’s support for multi-agent coordina-
tion.

The driving design goal of joint behaviors is to combine the rich seman-
tics for individual expressive behavior offered by Hap with support for the
automatic synchronization of behavior across multiple agents.

In ABL, the basic unit of coordination is the joint goal. When a goal is
marked as joint, ABL enforces, in a manner transparent to the programmer,
coordinated entry into and exit from the behaviors chosen to accomplish the
goal. The keyword joint can be used to modify both goals and behaviors, telling
ABL that entry into and exit from the joint behavior should be automatically
coordinated with team members.

5.1 ABL’s Under-the-hood Negotiation Process for Joint Goals
and Behaviors

Entry into a behavior occurs when the behavior is chosen to satisfy a sub-
goal. Exit from the behavior occurs when the behavior succeeds, fails, or is
suspended. ABL’s algorithm for executing a joint subgoal and coordinating
entry appears in Fig. 3.

When ABL executes a joint goal, a behavior is chosen for the goal using
normal Hap behavior selection methods, with the additional constraint that
the behavior must be joint (marked with the joint keyword).

Joint behaviors include a specification of the team members who must
participate in the behavior. If a joint behavior is found for the joint goal,
ABL marks the goal as negotiating and begins negotiating entry with team
members specified in the joint behavior. The negotiating joint goal is removed
from the conflict set, blocking that line of expansion until negotiation com-
pletes. All other parallel lines of expansion are still pursued. If the negotiation
takes awhile, perhaps because there are a large number of distributed team-
mates who are synchronizing during the negotiation, all negotiating agents
continue to execute the decision cycle and engage in behavior. An intention-
to-enter message is sent to all team members. The initiating message includes
information about the goal signature and arguments.



10 Michael Mateas and Andrew Stern

1. The initiating agent chooses a joint behavior for the joint goal based on sig-
nature matching, precondition satisfaction, and specificities.

2. If a joint behavior is found for the joint goal, mark the goal as negotiating
and broadcast an intention to enter the goal to all team members, otherwise
fail the goal.

3. If all team members respond with an intention to enter the joint goal, add
the joint behavior (and behavior children) to the ABT.

4. If any team member reports an intention to refuse entry to the joint goal,
broadcast an intention to refuse entry and fail the behavior when all team
members respond with an intention to refuse entry.

Fig. 3. Agent initiating a joint behavior via joint subgoal execution

The goal remains in the negotiating state until all team members respond
with an intention to enter or an intention to refuse entry. If all agents respond
with intention-to-enter messages, this signals that all agents in the team have
found appropriate behaviors in their local behavior libraries; the goal state
is changed to executing, and the selected behavior and its steps are added to
the ABT. If any agent responds with an intention to refuse entry, presum-
ably because, given the goal signature and goal arguments, it could not find a
satisfied joint behavior, the initiating agent sends all team members an inten-
tion to refuse entry. When all agents report that they intend to refuse entry,
the initiating agent fails the joint behavior (whose steps never actually got a
chance to execute). This causes the goal to attempt to find a different joint
behavior with satisfied precondition, perhaps one with a different set of team
members. Just as with a normal (non-joint) goal, if no such alternate behavior
can be found, the goal fails.

Figure 3 shows the entry negotiation algorithm for the initiator of a joint
goal, that is, the agent who originally executes the joint goal step, and who
thus begins the joint behavior selection and negotiation process. The team-
mates of a joint goal initiator use a similar negotiation algorithm. The only
difference is that for non-initiators, a joint goal with appropriate signature
and arguments must be created and attached to the root collection behavior
of the ABT.

1. An initiating agent broadcasts to all team members an intention to exit (either
succeed, fail, or suspend) an executing joint goal.

2. All agents receiving an intention to exit respond by broadcasting to all team
members their own intention to exit (succeed, fail, or suspend).

3. When all team members respond with the appropriate intention to exit, the
joint goal is succeeded, failed or suspended as appropriate.

Fig. 4. Agent exiting a joint behavior



A Behavior Language: Joint Action and Behavioral Idioms 11

The algorithm for coordinating exit from a joint behavior is shown in
Fig. 4. For example, assume that a joint behavior has been successfully en-
tered by a team. At this point each member of the team is executing a joint
behavior from their local behavior library with the same signature, arguments,
and team members. One of the team members, in executing their local joint
behavior, encounters a condition where they should exit the behavior. Perhaps
the last step of the behavior succeeds, causing the joint behavior and goal to
succeed, or the context condition fails, causing the joint behavior and goal to
fail, or a higher priority conflicting goal (either joint or non-joint) enters the
ABT, causing the joint goal to suspend. The agent encountering this situa-
tion becomes the initiator of the intention to exit (the exit initiator does not
have to be the same agent as the entry initiator). The exit initiator marks the
joint goal as negotiating and broadcasts the appropriate intention to exit to
all team members. While the joint goal is in the negotiating state it blocks
that line of expansion; all other lines of expansion in the ABT are still active.

As each team member receives an intention to exit, it marks its local
version of the joint goal as negotiating and broadcasts an exit intention. Once
exit intentions have been received from all team members, an agent exits the
negotiating goal (succeeds, fails or suspends the goal).

5.2 Example of Basic Joint Goal and Behavior Support

This section provides a simple example of the joint goal negotiation protocol
in action, based on the follow-the-leader behavior of the Woggles [16].

Fig. 5. Close-up of three woggles



12 Michael Mateas and Andrew Stern

The Woggle world, an early demonstration system produced by the Oz
Project, consists of a Dr. Seuss-like landscape inhabited by three Woggles —
the shy Shrimp, the aggressive Wolf, and the friendly Bear (Fig. 5.2). As the
Woggles play, fight and hang out with each other, the player is able to enter
the Woggle world as a fourth Woggle.

The diagram in Fig. 6 shows the original behavior structure for a fol-
lower playing follow-the-leader. The behavior is decomposed into three sub-
behaviors, one to copy the leader’s jumps, one to copy the leader’s squashes,
and one to monitor whether the follower is falling too far behind the leader.
Each of these behaviors is in turn decomposed into a sensing behavior that
gathers information from the world (e.g. see jump, check if you are behind),
and a behavior that acts on the sensed information (e.g. copy the jump
recorded by the “see jump” behavior). Communication between behaviors
takes place via memory elements posted to and matched from the agent’s

working memory.
follow-the-leader
make sure you
copy squashes don’t fall behind
see squash and do squash checkif you
remember are behind

Fig. 6. Original behavior structure for the follower

see jump and
remetmber

The diagram in Fig. 5.2 shows the original behavior structure for the leader
playing follow-the-leader. The top level behavior is decomposed into two sub-
behaviors, one to do “fun stuff” (the hopping and squashing that the follower
will copy) and one to monitor whether the follower has fallen behind. The
“fun stuff” behavior is further decomposed into three different ways to have
fun. The “make sure follower does not fall behind” behavior is decomposed
into a sensing behavior that monitors the follower’s activity, and a behav-
ior that waits for the follower to catch up in the event that the follower did
fall behind. Note that both Fig. 6 and Fig. 5.2 elide the sequential struc-
ture of the behaviors, showing only the persistent, parallel, subgoal structure.
The complete “lead-the-follower” behavior first chooses a co-Woggle to invite,
moves over to the invitee, offers an invitation to play follow-the-leader (using
Woggle body language), and then, if the invitee signals that the invitation is



A Behavior Language: Joint Action and Behavioral Idioms 13

accepted, starts the two parallel behaviors “fun stuff” and “monitor follower”
diagrammed in Fig. 5.2.

For two Woggles to play a game of follow-the-leader, one of the Woggles
must first decide that it wants to be a leader and successfully invite the other
Woggle to be a follower. The two Woggles then independently execute their
respective behavior hierarchies. These two independent hierarchies coordinate
via sensing, by mutually monitoring each other’s physical activities. In addi-
tion to the follow-the-leader behavior hierarchy, both Woggles have a number
of other behaviors executing in parallel. These behaviors are monitoring the
world for certain actions, such as someone saying “hi”, a friend being at-
tacked by someone else, someone inviting the Woggle to play a game, etc. If
the follower pauses in the middle of the game to respond to one of these world
events, perhaps suspending its local follow-the-leader behavior hierarchy, the
leader will experience this as the follower falling behind. If the follower takes
too long to get back to the game, the leader will “time out” and the lead-the-
follower behavior will fail (stop executing with failure). The leader will then
start doing something else.

make sure followes
doesn’t fall behind

checkif
follower behind

acrobatics to catch up

Fig. 7. Original behavior structure for the leader

However, unless similar timeouts have been placed in the right behaviors
in the follower, the follower, after completing the interruption, will unsuspend
and continue playing follow-the-leader. In fact, the original Woggle code does
not have the appropriate timeouts in the follower, and so this condition can
happen.

At this point, the former leader is jumping around the world doing its own
thing while the follower dutifully follows behind copying the leader’s actions;
the leader is not aware that the follower’s actions are in any way related to the
leader, and the follower has no idea that the leader is no longer playing follow-
the-leader. This is one example of the coordination failures that can happen



14 Michael Mateas and Andrew Stern

//Leader’s version of FollowThelLeader
joint parallel behavior FollowThelLeader {
teammembers Shrimp, Bear;
precondition { <I'm a leader and feel like leading> }

subgoal DoFunStuff();
subgoal MakeSureFollowerDoesntFallBehind();

}

//Follower’s version of FollowTheLeader
joint parallel behavior FollowThelLeader {
teammembers Shrimp, Bear;
precondition { <I'm a follower and feel like playing> }

subgoal CopyJumps();
subgoal CopySquashes();
subgoal MakeSureYouDontFallBehind();

Fig. 8. Joint behaviors for follow-the-leader

even in a rather simple joint action when the joint activity is produced through
the ad hoc synchronization of independent behavior hierarchies.

Using ABL’s joint behaviors, the top of the leader’s and follower’s follow-
the-leader behavior hierarchies are shown in Fig. 8. To simplify the example,
consider just two of the Woggles, Shrimp and Bear. Since either can be a
leader or follower, both Woggles have both the leader and follower versions of
the behavior in their behavior libraries. One of them, say Bear, decides to play
follow-the-leader — this decision is made by logic in some other behavior, per-
haps a high level motivational behavior, resulting in the creation of a WME;,
LeaderWME, indicating that Bear wants to lead a game of follow-the-leader, a
body language request to Shrimp to play, and the execution of joint subgoal
FollowTheLeader().

The execution of the joint subgoal results in ABL trying to find a satisfied
joint behavior to accomplish the goal. The preconditions distinguish between
the leader and follower cases. If the behaviors did not have preconditions test-
ing LeaderWME, then the initiator of FollowThelLeader() might inadvertently
select the follower version of the behavior. Sensing could also be used to dis-
tinguish the two cases, selecting the leader version if a body language request
to play from another Woggle has not been recently seen, and the follower
version if it has. Once ABL has selected the leader version of joint behav-
ior FollowTheLeader() for Bear, the subgoal FollowThelLeader() is marked as
negotiating and a request-to-enter is sent to Shrimp. ABL creates a joint sub-
goal FollowTheLeader() at the root of Shrimp’s ABT and selects the follower
version of the behavior from his joint behavior library, again using precon-



A Behavior Language: Joint Action and Behavioral Idioms 15

ditions to distinguish cases. Note that the preconditions can also be used
to add personality-specific tests as to whether the Woggle feels like playing
follow-the-leader. In Shrimp’s case, for example, Shrimp may only feel like
playing if he has not recently been picked on by another Woggle. Assuming
that Shrimp’s precondition is satisfied, ABL sends an intention-to-enter from
Shrimp to Bear. Both Shrimp and Bear have received intentions-to-enter from
all team members, so ABL adds their respective selected behaviors to their
ABT’s; they are now both playing follow-the-leader.

Once coordinated entry into FollowThelLeader() is established, they con-
tinue playing follow-the-leader until one of them exits the behavior. Perhaps
Wolf threatens Shrimp in the middle of the game, causing Shrimp to engage
in high priority fear reaction that suspends his local FollowThelLeader() goal.
The goal is marked as negotiating and an intention to suspend is sent to Bear.
ABL marks Bear’s goal as negotiating and sends an intention to suspend to
Shrimp. They have both received intentions to suspend from all team mem-
bers, so ABL locally suspends the FollowThelLeader() goal for each. Similar exit
negotiations ensure synchronization on goal success and failure. Every team
member is guaranteed that if it is locally executing the joint goal FollowThe-
Leader(), all team members are executing the joint goal FollowThelLeader().

5.3 Nested / Multiple Joint Goals and Behaviors

Joint goals and behaviors thus synchronize behavior execution across agents;
the entry into a joint behavior is precisely a synchronization point. Joint and
individual behaviors can be nested arbitrarily within the behavior hierarchy,
depending on the granularity of the synchronization required. In the simple
joint behaviors in Fig. 8, only the FollowTheLeader() behavior is joint. How-
ever, smaller granularity behaviors could also be joint. For example, jump and
squash could be implemented as joint behaviors within the follow-the-leader
behavior hierarchy. When a joint jump is entered, it would coordinate the
leader and followers for the specific act of jumping. In essence, this would es-
tablish an automatic pattern of communication between the Woggles saying
“now the leader is going to do a jump and all the followers should copy it”.
In addition, an agent can be committed to multiple simultaneous joint goals
with different team members. For example, Shrimp could be a follower com-
mitted to a FollowTheLeader() goal with Bear while simultaneously committed
to a Hassle() goal with Wolf (a goal coordinating Wolf and Shrimp in Wolf
hassling Shrimp). As the two behaviors mixed together, Shrimp would keep a
wary eye on Wolf, occasionally slinking or groveling, while trying to keep up
in follow-the-leader with Bear.

5.4 Full Complexity of Joint (Goal Negotiation

So far this chapter has described a simplified version of ABL’s automatic joint
goal negotiation protocol. The full negotiation protocol must appropriately
handle a number of edge cases and race conditions, specifically:



16 Michael Mateas and Andrew Stern

1. ABL must achieve a consistent team state when multiple team members
simultaneously intend to exit a joint goal for inconsistent reasons (e.g.
three different team members simultaneously try to fail, succeed, and sus-
pend the same joint goal).

2. ABL must resolve inconsistencies resulting from out-of-order receipt of
negotiation messages. Messages may arrive out of order due to the mes-
sage transport mechanism or due to differences in the execution speed of
different team members.

3. ABL must resolve negotiation conflicts arising within a single agent due
to the parallel pursuit of multiple goals. For example, in the middle of a
negotiation to enter a goal, a parent goal may suspend, and thus cause
the recursive suspension of all individual and joint goals in the tree rooted
at the parent goal.

The details of the full joint goal framework are beyond the scope of this
chapter; please see [18] for more detail. The bottom line is that joint goals
and behaviors guarantee coordinated entry and exit across arbitrarily sized
teams consisting of fully asynchronous, arbitrarily scheduled team members.

6 Facade ABL Idioms: Implementing Dramatic Beats

Developing a believable agent language such as ABL involves simultaneously
defining and implementing language constructs that support the authoring
of expressive behavior, and the exploration of idioms for expressive behav-
ior using the language. This section describes the ABL idioms developed for
Facade.

In [22, 20] we argued that much work in believable agents is organized
around the principle of strong autonomy, and that, for story-based believable
agents, this assumption of strong autonomy is problematic. An agent orga-
nized around the notion of strong autonomy chooses its next action based on
local perception of its environment plus internal state corresponding to the
goals and possibly the emotional state of the agent. All decision making is
organized around the accomplishment of the individual, private goals of the
agent. But believable agents in a story must also participate in story events,
which requires making decisions based on global story state (the entire past
history of interaction considered as a story) and tightly coordinating the ac-
tivity of multiple agents so as to accomplish joint story goals. In order to
resolve the tension between local and global control of characters, in Facade
we organize behaviors around the dramatic beat. In the theory of dramatic
writing, the beat is the smallest unit of dramatic action (McKee [23]). In
Facade, a beat is a ~60-second-long dramatic interaction between characters
such as a brief conflict about a topic, a short psychological headgame, or the
revelation of an important secret.

Beat-specific ABL behaviors provide the procedural knowledge necessary
to perform an interactive dramatic beat. This section focuses on describing



A Behavior Language: Joint Action and Behavioral Idioms 17

the ABL idioms used for authoring such behaviors. In Fa¢ade, beat sequencing
(selecting the next beat to make active) is handled by the drama manager;
see [19, 21, 18] for details of the drama manager.

6.1 Beat Goal and Handler Behaviors

Beats are organized around a collection of beat goal behaviors — the dramatic
content the beat is designed to communicate to the player through animated
performance. Our authoring strategy for handling player interaction within a
beat is to specify the ”canonical” beat goal behavior logic (i.e., what dramatic
performance the author intends the beat to accomplish), as well as a collection
of beat-specific handler behaviors that modify this default logic in response to
player interaction. In order to modify the default logic, the handler behaviors
make use of meta-ABL functionality to modify the ABT state.

While handler behaviors can in principle arbitrarily modify the ABT state,
most fall into one of two general classes — miz-in handler behaviors that add
an additional beat goal behavior in the middle of a beat while keeping the rest
of the sequencing the same, and re-sequencing handler behaviors that more
radically reorganize the beat goal sequence. The ability to factor behavior into
sequences that achieve longer-term temporal structures, and meta-behaviors
that modify these longer-term temporal structures, is a powerful idiom enabled
by ABL’s support for reflection.

6.2 Inside a Beat Goal Behavior

Within individual beat goals, joint goals and behaviors are used to coordi-
nate the characters in the performance of dramatic action. As can be seen
in Fig. 9, the detailed, coordinated, physical performance of even a single
line of dialog can be quite rich. The characters must engage in coordinated
dramatic performance to accomplish the intentions of the beat goals, while
simultaneously pursuing longer-term, individual goals that cross beat goal
boundaries. (Cross-beat behaviors are described later in this chapter.) This
is achievable because ABL can support the autonomous pursuit of individual
goals in parallel with tightly coordinated team activity, in the ways described
in the previous section of this chapter.

6.3 Organizing Beat Goal Behaviors

The high-level beat goal specification for an example beat, “Argue about
Grace’s decorating,” appears in Fig. 10. The author intends this beat to reveal
conflict in Grace and Trip’s marriage by hinting at the fact that there is
something weird about Grace’s obsessive decorating of their apartment. In
this beat Grace is trying to get the player to agree that something is wrong
with her current decorating scheme, while Trip is trying to get the player to



18 Michael Mateas and Andrew Stern

Grace: ... but looking at it here in the apartment, it just looks like ... (laugh
half-lighthearted, half-bitter) a monstrosity!

Grace physical performance:

Throughout the line Grace physically adjusts to face the player.
On the bold words she slightly nods her head and barely raises both arms.
At the beginning of the line she looks at the armoire with a frown, changing
to a serious expression a short way into the dialog.

e At the beginning of the line her mood becomes anxious.

Trip physical performance:

Throughout the line Trip physically adjusts to face the player.

At the beginning of Grace’s line he turns (just his head and eyes) to look at
Grace.

A short way into Grace’s line he gets an impatient expression on his face.

A short way into Grace’s line he reacts with an anxious reaction.

Fig. 9. Detailed performance specification for one line of dialog

Transition In (the no-subtopic version)

G: So, Player, I'm hoping you can help me understand where I went wrong with
my new decorating (bitter laugh).
T: (pacifying tone) Oh, Grace, let’s not do that.

Address subtopic, part 1 (armoire subtopic)

G: (sigh) You know, when I saw this armoire on the showroom floor, I thought it
had such a clean, simple look to it...
T: It’s a nice choice.

Address subtopic, part 2 (armoire subtopic)

G: ..but looking at it here in the apartment, it just looks like... (laugh half-
lighthearted, half-bitter) a monstrosity!
T: (under-breath impatient sigh) uhh...

Wait Timeout (default version)
(G looks impatiently between the object and the player, T fidgets)
Transition Out (lean towards Grace affinity)

G: Ah, yes, I've been waiting for someone to say that!

T: (frustrated) What are you talking about?

G: Trip, our friend is just being honest about my decorating, which I appreciate.
T: (sigh) But I still think this looks fine... (annoyed)

Fig. 10. Excerpts from the beat goal specification for the “Argue about Grace’s
decorating” beat



A Behavior Language: Joint Action and Behavioral Idioms 19

agree that it looks great and everything is fine. This beat is an instance of
what we call an “affinity game”.

In our idiom for Facade, beats generally have a transition-in beat goal
responsible for establishing the beat context and possibly relating the beat
to action that happened prior to the beat, a transition-out beat goal commu-
nicating the dramatic action (change in values) that occurred in the beat as
a function of player interaction within the beat, and a small number of beat
goals between the transition-in and transition-out that reveal information and
set up the little interaction game within the beat.

In our example decorating beat, the transition-in beat goal introduces
the ostensible topic of the beat: Grace thinks something is wrong with her
decorating. The particular transition-in shown in Fig. 10 is the most “generic”
transition-in, the one to use if the interaction prior to this beat did not have
anything to do with the room or decorating. Other transition-in beat goals
are available in this beat for cases in which the player has somehow referred to
decorating just prior to this beat being sequenced, for example, by referring
to an object associated with decorating such as the couch or the armoire*.

In the body of this beat, the two “address subtopic” beat goals, Grace
specifically critiques some aspect of her decorating. Trip objects and thinks it
looks fine, revealing conflict between them. For this beat there are a number
of different “address subtopic” beat goals for different decorating subtopics,
corresponding to different objects in the room; at the beginning of this beat
goal behavior, if the player has not referred to a specific object, one is cho-
sen at random, otherwise the object referenced by the player (perhaps in an
interaction just prior to this beat) is used.

The beat goal sequence described up to this point is the default logic for
the beat, that is, the sequence of activity that would happen in the absence
of player interaction. Of course, the whole point of an interactive drama is
that the player can interact — thus there needs to be some mechanism for
incorporating interaction into the default beat logic. This is the job of handler
behaviors.

6.4 Incorporating Player Interaction: Handler Behaviors

Each handler behavior is a demon that waits for some particular type of player
interaction and “handles” it accordingly. Player interaction includes dialog
interaction (in Fag¢ade, the player can speak to the characters at any time by
typing text) and physical interaction (e.g. the player moves and stands next to
some object). Every beat specifies some beat-specific handlers; additionally,
there are global handlers for handling interactions for which there are no beat-
specific responses supplied by the current beat. Handlers are meta-behaviors;

4 “References” to an object can happen verbally, e.g. the player types “I like the
couch”, and/or physically, by standing near an object and looking at it or picking
it up.



20 Michael Mateas and Andrew Stern

they make use of reflection to modify the default logic of the beat. Handlers
fall into two broad classes: mix-in handlers, which primarily mix a response
into the current beat, and re-sequence handlers, which modify the sequencing
logic of the current beat.

The most straightforward use of mix-in handlers is to choose a transition-
out beat goal when the player interacts during the “wait-timeout” beat goal.
The transition-out communicates how the player’s interaction within the beat
has changed the story situation. One of the primary story values in Fac¢ade
is the player’s affinity with the characters, whether the player is allied with
Trip, with Grace, or is neutral. Affinity in Facade is zero-sum — if the player
moves towards positive affinity with Trip, the affinity with Grace becomes
negative. For this beat there are three transition-out beat goals, one each for
the cases of the affinity changing towards Trip, one for towards Grace, and
one for staying neutral. The example transition-out beat goal in Fig. 10 is the
one for an affinity change towards Grace; in this case the player has agreed
with Grace (e.g. “Yes, the armoire is ugly”), and, perhaps surprisingly, Grace
is happy to hear someone say that.

However, the player, free to speak and act at any time, could have inter-
acted earlier in the beat before the body beat goals had completed — that is,
before the conflict for the beat had been fully established. For example, imag-
ine that after Grace’s line in the transition-in of the decorating beat (“So,
Player, I'm hoping you can help me understand where I went wrong with my
new decorating” ), the player quickly agrees with Grace (“Yeah, it looks bad”).
Since the beat conflict has not been established, it would not make sense to
choose the transition-out yet. In this case, a beat-specific mix-in beat goal
occurs®, during which Trip says “Well hold on, hold on, take a closer look,
give it a chance to soak in a little.” To accomplish this, a beat-specific mix-in
handler behavior written to handle early-agreement first aborts the current
active beat goal behavior, then spawns a particular high-priority beat goal
behavior designed to respond to the agreement. Because of its high priority,
the newly mixed-in agreement-response beat goal behavior will happen first;
then, the original beat goal behaviors will continue in their normal order. Beat
goal behaviors are responsible for determining if they had been interrupted
by mixed-in beat goals, and are designed to perform their content in alternate
ways as needed.

Global mix-in handlers respond to interactions that are not handled within
the current local (specific) beat context. For example, imagine that during the
decorating beat the player asks if Grace and Trip are planning to ever have
children. There is no beat-specific meaning to referring to children within the

5 The determination that the player’s utterance “Yeah, it looks bad” is an agree-
ment with Grace, and further, that agreement in this context should result in
a mix-in rather than a transition-out, is handled by Facade’s natural language
processing (NLP) system, not by ABL behaviors. For details on Fagade’s NLP
system, see [19, 18].



A Behavior Language: Joint Action and Behavioral Idioms 21

decorating beat, so a global handler responds to this interaction with a global
mix-in.

Finally, consider the case of beat goal re-sequence handlers — handlers that
significantly modify the current sequence of beat goals. Within the decorating
beat, a re-sequence handler reacts to references to all the objects related to
the decorating beat. There are a number of variants of the “address subtopic”
beat goals, each of which makes use of a different object to establish the beat
conflict. The version of the “address subtopic” beat goals in Fig. 10 uses the
armoire; other versions use the couch, the paintings, the wedding picture, etc.
If during the beat the player makes a reference, either physically or verbally,
to any of these objects, the beat switches subtopics; the switch-subtopic re-
sequence handler rewinds the beat goal logic to address the new subtopic.

6.5 Cross-Beat behaviors

In addition to beat goals and handlers, characters in Facade also engage in
longer-term behaviors that cross beat goal and beat boundaries. The perfor-
mance of these longer-term behaviors happens in parallel with the perfor-
mance of beat goals. An example cross-beat behavior is the staging behavior
that an agent uses to move to certain dramatically significant positions (e.g.
close or far conversation position with the player or another agent, into po-
sition to pickup or manipulate an object, etc.). A staging request to move
to close conversation position with the player might be initiated by the first
beat goal in a beat. The staging goal is spawned to another part of the ABT.
After the first beat goal completes its behavior, other beat goals and handlers
can happen as the agent continues to walk towards the requested staging
point. At any time during a cross-beat behavior, beat goals and handlers can
use reflection to find out what cross-beat behaviors are currently happening
and succeed or fail them if the cross-beat behaviors are inappropriate for the
current beat goal’s or handler’s situation.

Additional cross-beat behaviors include fixing a drink for the player (mov-
ing to the bar, making a drink, walking to the player and handing her the
drink, all in parallel with the performance of beat goals) and personality
behaviors such as Grace recollecting a dream she had last night, or Trip ob-
sessively consulting his fortune-telling crystal ball toy.

7 Coupled ABL Agents Form A Multi-Mind

When authoring multiple coordinating agents, the common approaches are
either to view the multiple agents as the effectors of a single, centralized con-
trol system (one mind), or as completely separate entities (many minds) that
coordinate via sensing and explicit communication. This is typically treated
as an architectural decision, made once up front and then frozen. In contrast,
joint goals, by introducing complex patterns of coupling among a collection of



22 Michael Mateas and Andrew Stern

ABL agents, open up a spectrum between one and many minds in which the
degree of coupling can dynamically change. Thus, rather than architecturally
committing to the one-mind or many-minds extreme, the authors of ABL
agents can dynamically tune the degree of coupling as they author behaviors.
This variable coupling can be best understood by comparing it in more detail
to the one-mind and many-minds approach.

In the one-mind approach, a collection of agents are really the different
effectors of a single entity. This single entity controls the detailed, moment-
by-moment activity of all the “agents”. One can certainly imagine writing
such an entity in ABL; sensors and actions would be parameterized to refer
to specific “agents”. In an interactive drama context, this is similar to the
story plans approach employed by Lebowitz [11, 12], in which he generated
non-interactive episodic soap operas (as text) by using story plans (as op-
posed to character plans) to coordinate multiple characters in specific story
events. One-mind provides maximum coordination control, but also introduces
maximum program complexity. Besides the usual data hiding and modularity
arguments that such a program would be hard to write and understand, and
that, consequently, unforeseen side effects would arise from cross-talk between
“agents”, there is the additional issue that much of the combinatorics of agent
interaction would be thrust upon the author. All simultaneous agent activity,
whether explicitly coordinating or not, has to be explicitly authored.

The many-minds approach is the intuitive model of strong autonomy.
Agents individually pursue their own goals and behaviors. Any coordinated
activity arises from sensed coordination between agents. The internal details
of agents are hidden from each other, providing the data hiding and modular-
ity that makes programs easier to write and understand. Agent interaction is
mediated by the world; much of the combinatorics of agent interaction arises
through the world mediation without having to be explicitly authored. But,
dramatic interactions in a story world require a degree of coordination difficult
to achieve with sensing or ad hoc communication mechanisms [22, 20].

Joint goals, by introducing complex patterns of coupling between teams
of ABL agents, open up a middle ground in this apparent dichotomy between
one and many minds. When an ABL agent participates in a joint goal, the
execution details of its ABT now depend on both its autonomous response to
the environment as it pursues its individual goals and behaviors, and on the
execution details of its team members’ ABTS, but only to the degree those
execution details impinge on the joint goal. With joint goals, a collection of
agents becomes a variably coupled multi-mind, neither a single master entity
controlling a collection of puppets, nor a collection of completely autonomous
agents, but rather a coupled system in which a collection of ABTs influence
each other, not arbitrarily, but in a manner controlled by the semantics of
joint goal commitment. At any point in time, an ABL agent may hold multiple
simultaneous joint goals, potentially with different teams. These joint goals
fully participate in the rich, cascading effects of normal ABT nodes; only
now the web of communication established between specific nodes in multiple



A Behavior Language: Joint Action and Behavioral Idioms 23

ABTs allows ABT execution effects to cascade across agents as well as within
agents. As the number and frequency of joint goal commitments across a
collection of agents increases, the collection of agents is moving towards a
one-mind. As the number and frequency decreases, the collection of agents is
moving towards many minds.

8 Related Work

As mentioned previously, ABL builds on the Oz Project work on believable
agents (Bates, Loyall, and Reilly [2], Neal Reilly [25], Loyall [15], Sengers [28]),
both technically, in that ABL is a re-implementation of Hap adding additional
features and language constructs, and philosophically, in that ABL is informed
by the Oz stance on believability.

The Media Lab’s Synthetic Character group explores architectures that
are based on natural, animal systems, particularly motivated by the etholog-
ical study of animal behavior (Blumberg [3]). Their recent architecture, C4
(Burke et.al. [4]), builds on their previous architectures, and includes a focus
on learning, particularly reinforcement learning for action selection (see Yoon,
Blumberg, and Schneider [32]) for a discussion of animal training techniques
applied to believable characters). Their work is grounded in the premise that
modeling realistic, animal-like, sensory and decision making processes is nec-
essary to achieve believability, particularly the appearance of self-motivation
and the illusion of life.

The Virtual Theater Project at Stanford has explored the use of explic-
itly represented character models in synthetic actors. For example, in the
Master and Servant scenario, the agents make explicit use of the notion of
status, borrowed from improvisational acting, to condition their detailed per-
formance of a dramatic scenario (Hayes-Roth, van Gent, and Huber [10]). In
the Cybercafe, the agents make use of explicit personality traits (e.g. confi-
dence, friendliness), borrowed from trait theories in psychology, to condition
the selection and performance of behaviors (Rousseau and Hayes-Roth [27]).
More recent work has focused on building annotated environments in which
a character dynamically gains new competencies and behaviors from objects
in the environment (Doyle [6], Doyle and Hayes-Roth [7]). In this approach,
a character’s core, invariable features are factored out from the character’s
environment-specific capabilities and knowledge, with the later being repre-
sented in the environment rather than in the character.

A number of groups have explored the use of believable agents in edu-
cational simulations. Such work requires that the agent simultaneously com-
municate its personality while achieving pedagogical goals. The IntelliMedia
Project at North Carolina State University has used animated pedagogical
agents to provide advice to students in constructivist learning environments
(Lester et. al. [14], Lester and Stone [13]). The group has also performed



24 Michael Mateas and Andrew Stern

studies to determine whether using agents to deliver advice in such environ-
ments actually improves student learning vs. providing the same advice in
a non-agent-based form (Moreno, Mayer and Lester [24]). The Institute for
Creative Technologies at USC is building story-based military training envi-
ronments inhabited by believable agents. The agent architecture makes use of
a cognitive appraisal model of emotion (Gratch and Marsella [9]) built on top
of the STEVE agent architecture (Rickel and Johnson [26]).

Cavazza, Charles and Mead [5] are exploring the use of deliberative charac-
ter planning for interactive story. They use hierarchical task-network planning
to generate plans for character goals. Plots are generated as a function of the
interaction between character plans. When the steps of a plan fail (perhaps
because of player interaction), the system replans in the new situation.

Over the last several years, game designers have built a number of innova-
tive believable agent architectures for use in commercial games. The virtual
pets products Petz and Babyz (Stern, Frank, and Resner [30], Stern [29])
employ a multi-layer architecture in which state machines perform low-level
action sequencing while a goal-processing layer maintains higher-level goal
state, activating and deactivating state machines as needed. Creatures em-
ploys an artificial life architecture in which a neural net selects actions, an
artificial hormone system modulates the activity of the neural net, and a
genome encodes parameters of both the neural net and hormonal system, al-
lowing traits to be inherited by progeny (Grand [8]). Finally, the creatures
in Black & White make use of decision tree learning to learn to perform ac-
tions on the player’s behalf, while the simulated people in the Sims hill-climb
on a desire satisfaction landscape defined by both the internal drives of the
agent and the current objects in the environment (objects provide actions for
satisfying drives).

9 Conclusion

During the production of Facade, we have written over 100,000 lines of ABL
code, constituting the behaviors for dozens of beats, as well as lower-level be-
haviors (e.g. gesturing) and cross-beat behaviors (e.g. fixing a drink). Based
on this experience, we have found ABL to be a robust, powerful program-
ming framework for authoring believable agents. Two of ABL’s new features,
joint goals and reflection, have proven particularly useful for authoring story-
based characters. The behavior of story-based characters must, in addition
to maintaining reactive, moment-by-moment believability, must also tightly
coordinate behavior to carry out dramatic action and engage in long term
discourse sequences.

Joint goals, when combined with the rest of ABL’s reactive planning frame-
work, enable coordinated dramatic performance while still supporting rich,
real-time interactivity. In Facade, joint goals coordinate the performance of



A Behavior Language: Joint Action and Behavioral Idioms 25

individual lines of dialog within beat goals. The automatic coordination pro-
tocol associated with joint goals ensures that each character “knows” where
they are in the performance of a beat goal. As shown in the Woggle example,
the ad-hoc sensor-based coordination of even relatively simple and short lived
coordinated behaviors is prone to errors. In an experience like Facade, in which
multiple characters coordinate every 5 to 10 seconds across a heterogeneous
collection of behaviors for minutes on end, architectural support for coordi-
nation becomes a necessity. But, with ABL’s joint goal mechanism, language
support for coordination does not compromise the reactivity of an agent’s in-
dividual decision making. For example, within Fac¢ade’s joint behaviors, the
characters continue to respond to contingencies, such as adjusting their posi-
tion in response to player movement, changing the gestures accompanying a
line of dialog to accommodate holding an object, modifying their facial expres-
sions and body language as a function of emotional state, as well as mixing in
longer-term behaviors, such as making a drink, all while coordinating on the
performance of lines of dialog.

The reflection framework in ABL supports the authoring of meta-behaviors,
that is, behaviors that modify the runtime state of other behaviors. In Facade,
meta-behaviors enabled the beat goals plus handlers idiom described ear-
lier in this chapter, providing a nice solution to the problem of providing
longer-term responsive sequential activity, in this case discourse sequences,
within a reactive planning framework. Without reflection, one might accom-
plish such longer-term sequences in two ways, by unwinding the possible
temporal sequences in a hierarchy of goals and behaviors, or through a set
of flat (non-hierarchically organized) behaviors that references a declarative
discourse state. The first case has the positive feature that the longer-term
discourse state is represented by the evolving structure of the ABT, but at
the expense of increased authorial complexity in both the behavior hierarchy
and the preconditions The second case involves a simpler behavior structure,
but pays for it with the necessity to maintain declarative state in addition to
the execution state of the agent, introducing the usual problems of keeping
declarative representations of a dynamic situation up-to-date. ABL’s reflec-
tion mechanisms enables a third approach, in which the longer-term sequential
activity is explicitly represented in the ABT (the canonical sequence), with
meta-behaviors modifying the canonical sequence in response to interaction.
With meta-behaviors, an ABL agent can engage in a form of look-ahead plan-
ning, in which future sequences of activity are constructed by manipulating
the reactive execution state (the ABT).

ABL thus provides support for both the coordinated, more deliberative
activity required for storytelling, with the moment-by-moment reactivity re-
quired for lifelike behavior responsive to player interaction.



26

Michael Mateas and Andrew Stern

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Bates, J.: Virtual reality, art, and entertainment. Presence: The Journal of

Teleoperators and Virtual Environments 1(1):133-138 (1992)

Bates, J., Loyall, A. B., Reilly, W. S.: Integrating reactivity, goals, and emotion
in a broad agent. In: Proceedings of the Fourteenth Annual Conference of the
Cognitive Science Society, Bloomington, Indiana (1992)

Blumberg, B.: Old Tricks, New Dogs: Ethology and Interactive Creatures. (Ph.D.
Dissertation, MIT Media Lab 1996)

Burke, R., Isla, D., Downie, M., Ivanov, Y., Blumberg, B.: CreatureSmarts: The
Art and Architecture of a Virtual Brain. In: Proceedings of the Game Developers
Conference, San Jose, CA (2001) pp 147-166

Cavazza, M., Charles, F., Mead, S.: Characters in search of an author: Al-based
virtual storytelling. In: Proceedings of the International Conference on Virtual
Storytelling, Avignon, France (2001)

Doyle, P.: Believability through context: Using "knowledge in the world” to
create intelligent characters. In: Proceedings of the International Joint Confer-
ence on Agents and Multi-Agent Systems (AAMAS 2002), Bologna, Italy (ACM
Press 2002) pp 342-349

Doyle, P., Hayes-Roth, B.: Agents in annotated worlds. In: Proceedings of
the Second International Conference on Autonomous Agents, Minneapolis, MN
(1998)

Grand, S.: Creation: Life and How to Make It (Harvard University Press
Cambridge MA 2001)

Gratch, J., Marsella, S.: Tears and Fears: Modeling emotions and emotional be-
haviors in synthetic agents. In: Proceedings of the 5th International Conference
on Autonomous Agents, Montreal, Canada (ACM Press 2001)

Hayes-Roth, B., van Gent, R. Huber, D.: Acting in character. In: Creating
Personalities for Synthetic Actors, ed. by Trappl, R., Petta, P. (Springer Berlin
New York 1997)

Lebowitz, M.: Story telling as planning and learning. Poetics 14:483-502 (1985)
Lebowitz, M.: Creating characters in a story-telling universe. Poetics 13:171—
194 (1984)

Lester, J., Stone, B.: Increasing believability in animated pedagogical agents.
In: Proceedings of the First International Conference on Autonomous Agents.
Marina del Rey, CA (1997) pp 1621

Lester, J., Voerman, J., Towns, S., Callaway, C.: Deictic believability: Coordi-
nating gesture, locomotion, and speech in lifelike pedagogical agents. Applied
Artificial Intelligence 13(4-5):383-414 (1999)

Loyall, A.B.: Believable Agents. Ph.D. thesis, Tech report CMU-CS-97-123
(Carnegie Mellon University 1997)

Loyall, A.B., Bates, J.: Real-time control of animated broad agents. In: Pro-
ceedings of the Fifteenth Annual Conference of the Cognitive Science Society,
Boulder, CO (1993)

Loyall, A.B., Bates, J.: Hap: A reactive, adaptive architecture for agents. Techni-
cal Report CMU-CS-91-147. Department of Computer Science (Carnegie Mellon
University 1991)

Mateas, M.: Interactive Drama, Art and Artificial Intelligence. Ph.D. thesis,
Tech report CMU-CS-02-206 (Carnegie Mellon University 2002)



19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

A Behavior Language: Joint Action and Behavioral Idioms 27

Mateas, M., Stern, A.: Integrating plot, character and natural language pro-
cessing in the interactive drama Fagade. In: Proceedings of Technologies for
Interactive Digital Storytelling and Entertainment (TIDSE 2003), Darmstadt,
Germany (2003)

Mateas, M., Stern, A.: Towards integrating plot and character for interactive
drama. In: Socially Intelligent Agents: The Human in the Loop, ed. by Dauten-
hahn, K. (Kluwer 2002)

Mateas, M., Stern, A.: Architecture, Authorial Idioms and Early Observations of
the Interactive Drama Fagade. Tech report CMU-CS-02-198 (Carnegie Mellon
University 2002)

Mateas, M., Stern, A.: Towards integrating plot and character for interactive
drama. In: Working notes of the Social Intelligent Agents: The Human in the
Loop Symposium, AAAT Fall Symposium Series. (AAAI Press Menlo Park CA
2000)

McKee, R.: Story: Substance, Structure, Style, and the Principles of Screenwrit-
ing (HarperCollins New York 1997)

Moreno, R., Mayer, R., Lester, J.: Life-Like pedagogical agents in constructivist
multimedia environments: Cognitive consequences of their interaction. In: Pro-
ceedings of the World Conference on Educational Multimedia, Hypermedia, and
Telecommunications (ED-MEDIA ), Montreal (2000) pp 741-746

Neal Reilly, W. S.: Believable Social and Emotional Agents Ph.D. Dissertation.,
School of Computer Science (Carnegie Mellon University 1996)

Rickel, J., Johnson, L.: Animated agents for procedural training in virtual
reality: Perception, cognition, and motor control. Applied Artificial Intelligence
13:343-382 (1998)

Rousseau, D., Hayes-Roth, B.: A social-Psychological model for synthetic actors.
In: Proceedings of the Second International Conference on Autonomous Agents,
Minneapolis, MN (1998)

Sengers, P.: Anti-Boxology: Agent Design in Cultural Context. Ph.D. Disserta-
tion. School of Computer Science (Carnegie Mellon University 1998)

Stern, A.: Virtual Babyz: Believable agents with narrative intelligence. In:
Working Notes of the 1999 AAAI Spring Symposium on Narrative Intelligence,
ed. by Mateas, M., Sengers, P. (AAAI Press 1999)

Stern, A., Frank, A., Resner, B.: Virtual Petz: A hybrid approach to creating
autonomous, lifelike Dogz and Catz. In: Proceedings of the Second International
Conference on Autonomous Agents (AAAI Press Menlo Park CA 1998) pp 334—
335

Tambe, M.: Towards flexible teamwork. Journal of Artificial Intelligence Re-
search 7:83-124 (1997)

Yoon, S.Y., Blumberg, B., Schneider, G.: Motivation driven learning for inter-
active synthetic characters. In: Proceedings of Autonomous Agents 2000 (2000)






