Towards Game Generation
Michael Mateas (UC Santa Cruz), Mark Nelson (Georgia Tech)

Research in game generation seeks to build Al systhat make design decisions with respect to dineeg
rules, as well as the visual realization of th@suM/here procedural content generation focuseiseon
generation of assets such as textures, meshestanmand sounds, and the physical layout of tgvel
game generation focuses on generating the gamgethdenselves, the game mechanics that describe how
the game state evolves over time, and how play@nainfluences the game state. Procedural content
generation is then used to realize the abstraceghmamics. This paper provides a brief work-ingpess
report on game generation working taking placdeExpressive Intelligence Studio at UC Santa Cruz.

Why Game Generation
The goal of our game generation research is neggiace human designers, but rather:
» to facilitate formal game analysis through the catafional expression of game rules,
mechanics, and representations,
» to enable new game mechanics and game genres wWieeigame dynamically morphs and
changes as a function of player interaction,
* to move human design up the abstraction hierarohyhé meta-authorship of generative
processes that generate games.

Both game designers and game scholars have disciiesaeed for a game design language, noting that
designers currently lack a unified vocabulary fesctibing existing games and thinking through tbsigh

of new ones. Many of the proposed design langupgeoaches focus on offering aid to the designéngei

in the form of design patterns, which name and rilesaesign elements, or in the closely-relatedonodf
design rules, which offer advice and guidelinessfoecific design situations. Other analyses drathatks
and terminology from various humanistic disciplirefor example, games have been analyzed in tefms o
their use of space, as semiotic systems, as narffatims, in terms of the temporal relationshipsiveen
actions and events, and in terms of sets of feqinra taxonomic space, using clusters in thisepac
identify genres.

The Game Ontology Project (GOP) (www.gameontolomy,ds developing a game ontology that
identifies the important structural elements of garand the relationships between them, organihieg t
hierarchically [1, 2]. Our use of the teontology is borrowed from computer science, and referbeo t
identification and (oftentimes formal) descriptiohentities within a domain. Often, the elements ar
derived from common game terminology (e.g. leva bass) and then refined by both abstracting more
general concepts and by identifying more precisgpecific concepts. An ontology is different thagaane
taxonomy in that, rather than organizing gameshieir icharacteristics or elements, it is the element
themselves that are organized. The GOP providesmnaefvork for exploring, dissecting and understagdin
the relationships between different game eleménfew examples of research questions we have ajread
begun to explore include: “How can we understameractivity in games?”, “How is gameplay regulated
over the progress of a game?”, and “What roles dpase play within games?”

Where the GOP attempts to achieve broad coveragéaity high level of abstraction, producing ange
formal analysis in which ontological elements agsatibe in natural language (English) and intertded
facilitate human game analysis, the game generatioject formalizes ontological elements at a Heglel

of detail. The ontological structure must be formabugh that it supports machine reasoning. Thais th
game generator becomes a highly detailed thedppihf game structure and game design expressed
operationallyas a program; in the same way that Al-based story generatove,haver the years, served as
operational models of both narrative and the stygryeration process, and thus served to expose the
strengths and weaknesses of different models oétiag, so too can game generation facilitate férma
game analysis. Given the formality and level obdetquired of the game model, we're starting by
formalizing small subsets of the Game Ontology €&rpjfocusing on simple arcade games.

In addition to facilitating game analysis, gameeration enables new game mechanics and game genres
where the game dynamically changes (or is dynalgigeherated from scratch) as a function of either

player input or other exogenous events. Newsganeegree such category of game — a hewsgame is a
micro-game that provides commentary on a news iteath in the same way a political cartoon provides
commentary. But unlike a political cartoon, newsgarprovide their commentary through gameplay; only
through interaction on the part of the player & ploint made. Some well known newsgames include
September 12 [3], critiquing the war on terroMadrid [4], a memorial game released shortly after the
Madrid train bombings on March 11, 2004, awh Backrub [5], poking fun at the impromptu back rub
President Bush gave German Chancellor Angela MaxtkalG-8 meeting in July 2006. Newsgames have a
number of properties that make them amenable teggmeration. First, in order to function as effect
commentary, newsgames must be timely, appearirignat day or two of the news item. Yet even
microgames can be difficult to complete in onlyagydMadrid, for example, took a team of several people
two days of intense effort to complete. Thus, awtticrgeneration facilitates the rapid construction
necessary for timely commentary. Second, newsgéenesto be small microgames exhibiting simple play
mechanics, making automated generation tractabés ie the short term. Game generation can thus
enable newsgames as an effective form of commerdaoyving many newsgames to appear on a daily
basis in response to news events.

With lan Bogost, we are exploring the use of gameegation in the area of political games. Currently
political games tend to hardcode their rhetoribeziinto the visual representation (for examplsually
representing invaders as tax bills that must bé dtvvn so as to express an anti-tax viewpointjniar the
simulation rules of simple simulation games (foample, tuning an economic simulation so as to naake
specific point about the relationship between &t®s and business growth). As an alternative tingaal
single rhetoric into the visual representation simulation rules, we’re creating a framework in gfhthe
system dynamically generates a series of mini-gahssakes the player on a tour through the idgok
space associated with a political issue. The speagdimes generated are a function of how the plagsr
played previous mini-games in the sequence. Whitd éndividual mini-game represents a single, hard-
coded rhetoric, the design process for conveyirtgetoric through a game has been pushed into tine ga
itself, allowing this process to dynamically resgda the gameplay. A computational model of ideg|og
borrowing techniques fromerminal Time [6, 7], will guide the game generator describethia paper.

Service Games

We are beginning our game generation work with &nrapcade games, specifically starting with a game
style we calkervice games. In a service game, the player engagesriatiteime management in the
context of satisfying “customer” requests. In ortteunderstand the design space of service gatiss, i
useful to look at a number of such games in or@utl out common elements and understand the sgface
variation. The political game generation frameworéntioned above will need to be able to generate
games in many game styles. However, we're currdatlysing on a single style as a way to make psxgre
on our architecture and knowledge representatiomdisms.

The canonical service gameTiapper [8], a 1983 arcade game from Bally Midway in whtbk player
serves beers to customers (customers must be duef@e they reach the end of the bar) and coltguss
and empty glasses (see figure 1). As levels advdheglayer is placed under increasing time presas
the numbers of customers increase and they moveindgteasing speed up the bar. Beers are served by
filling glasses from the tap and releasing them mittve bar. When a customer receives a glass of thesr
drain it and send the empty glass sliding backhegdar; the player must catch the empty glass edfor
reaches the end of the bar. Occasionally a custaifideave a tip. If the player collects the tghe earns
bonus points; additionally, dancers appear for igd\geconds after the tip is collected, distracinme of
the customers, temporarily halting their advancéhepbar.

Pressure Cooker [9] is a 1983 Atari 2600 cartridge from Activisiamwhich the player is a short order
cook at hamburger stand who assembles hamburgerddo without letting the hamburgers or ingredient
fall on the floor (see figure 2). UnliKEapper, in which beer orders must be delivered but doreqtire
assembly, hamburger orders in Pressure Cookerresting player to put together multiple ingredidjets).
cheese, lettuce, tomato). Customers are not ettpliepresented; rather, the hamburger orders are
represented in a grid at the bottom of the scréba.player stacks completed hamburgers in bindeRat
than the time limit for fulfilling an order beingsociated directly with an order, instead time tisnaire
associated with the movement of partially-assembbadburgers on a conveyor belt. If the hamburger is

not properly assembled before it reaches the etiteadonveyor belt, it falls on the floor and tHayer
looses points.

E—hisiomM

Figure 2: Pressure Cooker

Figure 1: Tapper

CGurrent Employee

Albertine Clare

Figure 3: Disaffected!

Figure 4: Bush Backrub

Dissaffected! [10], an “anti-advergame” from Persuasive Gamé=ased in January of 2006, provides a
contemporary example of a political game makingafdbe service mechanic (see figure Bissaffected!

is a videogame parody of a Kinko’s copy store. isatisfied customers line up in the store, thgerla
confronts obstacles such as fellow employees whuisego work, or who indiscriminately move customer
orders around. As is characteristic of service gamach customer has a time limit within which pheeyer
must satisfy their order. If too many customersriytgave the store with their orders unfilledetbame
ends.

The last example service game we will presentisghper iBBush Backrub, a newsgame poking fun at the
impromptu back rub President Bush gave German Gtlan@ngela Merkel at a G-8 meeting in July 2006.
In Bush Backrub, the player, as President Bush, runs back anid bmtween world leaders giving backrubs.
Happiness meters under each leader continuousty drbackrub recharges the meter. If the happiness
meter under any leader drops to 0, the game is &ges service game, it has the interesting prypxrt
service requests being continuous rather thanatescBackrub requests are constantly active, with
backrubs recharging an analog value rather thdiflifg discrete requests.

Knowledge Representation for Game Generation

A game generator requires formally represented keaye of game design. We've currently identified
four different knowledge sources: abstract gamehaeics, game representation, thematic world, and
player input. By separating game design knowledge four independent knowledge sources, we hope to
support the mixing and matching of knowledge sosifneorder to define different design spaces.

The game mechanics knowledge source describedetinests of the abstract game state, and how that
game state evolves over time, both autonomouslyraresponse to player interaction. In our game
generation project, we are starting with the geimmaf abstract mechanics; thus, the ontologyhi t
knowledge source has been worked out in the gtedetsil. The game mechanics knowledge source helps
define the game type currently being explored endhsign space. For service games, the game meshani
knowledge source contains knowledge about theatig objects:

Service requests: An open request for a specifidcgeor object. InTapper, customers who aren’t
currently drinking a beer have an open request foeer. Open service requests have a timer
associated with them; if the service request isatisfied within the time period, the player is
penalized in some way (e.g. Tapper losing a life, in Pressure Cooker loosing “perfarme
points”). Service requests can chain, with thesgadtion of an outstanding service request
resulting in the spawning of an additional requefen of a different type. For example, in

Tapper, satisfying an outstanding beer request genegateguest to pick up the drained beer mug.
The customer throws the beer mug down the bamiieement of the mug down the bar
represents the timer associated with the requesie glass reaches the end of the bar without the
player picking it up, it falls off the end of thaand breaks, resulting in the player losinge lif
Occasionally, satisfying a drink requestTapper results in a tip being left on the bar. If theyga
picks up the tip before it disappears, she gaimsib@oints, in addition to causing dancers to
appear who may temporarily distract customers.tifhis modeled as a service request that is
randomly spawned, with low probability, after ttaisfaction of an outstanding beer request.
Service request sources: The game entities that msrvice requests. Tapper, the bar

customers are service request sourceBréasure Cooker, the abstract request board at the bottom
of the screen lists the ingredients of the curyergtjuested hamburgers without
anthropomorphically representing the service refggmsrces as customers. Services request
sources can have state associated with them reypires¢he request source’s (customer’s) attitude
towards their associated service request(s). Faample, inTapper, customers can be in the state
of being satisfied (while they possess and dragir theer), unhappy (while they have an
outstanding beer request, during which time th@gatedly pound the bar and slowly move up the
bar, indicating the countdown of the timer assedatith their current request), and distracted
(when the dancers appear after the player hasgigie tip, some of the customers turn towards
the dancers — during this period they have no anthg service request). Dissaffected!,

service request sources (customers) can becompezaged, at which point the timer of the
service request associated with the customer calaws twice as quickly.

Requested service: a specific service associatédavgervice request issued by a service request
source. InTapper, the requested service is a non-compound objdmtés), inPressure Cooker a
compound object (a hamburger composed of speaifietients), iBush Backrub an action (a
backrub). In the later case, a backrub increasesm@nuous “happiness” value rather than
satisfying a service request — so the service stg@essociated with the three world leaders (the
service request sources) are continuously outsigndather than coming into being, being
discretely satisfied, and disappearing. One camingea version oBush Backrub (perhaps called
Bush Spha) with multiple requested service types (backrdgipure, facial, etc.) where the player
must run back and forth satisfying the correct esjfior each world leader. In this game, service
requests would be more discrete, with, for examplequest for a pedicure coming into being
once the backrub request has been satisfied.

Service source: a source for the requested seividapper, the service source is the tap, where
players can retrieve beers (requested serviceglieed to customers (service request sources), in
order to fulfill an outstanding service requestdgquest for a beer). In many service request games,
much of the gameplay revolves around the playerimgoack and forth between service request
sources (customers) and service sources; therskile game lies in time management, fulfilling

open service requests in an order that minimizesittmber of services requests that time out. In
Pressure Cooker, the service source is compound, consisting df ba¢ conveyor belt carrying
partially constructed hamburgers, as well as ingred bins (colored blocks). Ingredients fly out
of the bins towards the player; the player musttcétte appropriate ingredients and apply them to
the hamburgers under constructionBlsh Backrub, the service source is implicit and is attached
to the player avatar. Providing a service meretjuiies moving to the service request source
(world leader), rather than coordinating movemeatieen two locations (request and service
source). IDissaffected!, the service sources are the piles of completett Yeog. copy jobs)
scattered throughout the workspace. Co-workersormhdmove completed jobs between piles,
forcing the player to frantically search througfeatient service sources (piles) for the requested
service.

In addition to objects, the game mechanics knowdestiurce has an ontology of events. Events reify
state changes associated with objects as welleagderthe representational hooks for the audioalisu
representation of state changes. For service gawest types include:

» Service fulfillment event: an open service requeétlfilled.

» Service acquisition event: an attempt to acquiseraice (object) or the ingredients for a
compound service (object). The attempt may sucoeéall. In Tapper, the player must hold
down the joystick button (corresponding to pullthg lever on the keg) long enough to fill
the glass. If the button is not held down long agiguhe glass is only partially filled and
can't be sent down the bar to fulfill an open seeviequest. In the visual representation
Tapper represents the service acquisition event by depithe glass filling; a failed
acquisition attempt is represented by a partiallydlass.

» Service request source spawn event: the appeavhacgervice request source. In
Dissaffected!, customer spawning is visually represented byrtasgi customer walk through
the front door. IrBush Backrub, all service request sources (the world leadgupar at the
beginning of the game and never disappear.

» Service request source removal event: the remd\abkervice request source.Tapper,
customers disappear (are pushed off the end dfahdf they are served a beer when they are
close to the far end of the bar (the timer of tlasgociated service request has not counted
down very far).

At the abstract mechanics level, a game is repteddry a collection of predicate calculus assestion
written using the above ontology. The assertioqdura the evolution of game state over time. Aglesi
in-progress is a collection of uncompleted assastiohich are incrementally modified by the design
process (our architecture for modeling the gaméydgwmocess is described in more detail below).

The other three knowledge sources have not yet theesioped in as much detail as the game mechanics
knowledge source. Here we provide brief descriptiofithe knowledge we intend to include in eachraau

The game representation knowledge source captaesgl&dge about how to provide an audio-visual
representation of the underlying game state. Tinisedge source includes both spatial layout kndgde
as well as well as interface design knowledge épresenting non-spatial game states. For exanmple, i
representing a countdown timer, it might be represthrough the movement of objects towards a goal
location (inTapper, the countdown of a timer associated with an dper request is represented through
the movement of the customer towards the closeoétite bar), a sweeping analog clock Dirssaffected!,
timers associated with service requests appearadsgaclocks floating above the heads of customersy
slowly emptying bar graph (iBush Backrub, the timer is represented by a bar under eachovealder).
The knowledge for these different strategies fpresenting a number (the timer is just a numbentiog
down) live in the representation knowledge souiifferent representation knowledge sources cornedpo
to different representational styles. We're curgedefining a representation knowledge source for 2
game representations. A different representatiawkedge source might describe representational
strategies for 3D first-person displays. The geabibe able to independently swap out the reptaten
knowledge source, so that representational chaigels as 2D top-down vs. 3D first-person can beedari
independently of the abstract game mechanics.

The thematic knowledge source captures knowledgatahe theme (real-world references) expressed by
the game. ITapper, for example, the theme is a bar. In order to greservice games set in a bar, our
system requires information about bars such asg/flieal spatial layouts of bars, the types of rqdesple
play in bars (e.g. the bartender behind the barcttktail server, the bouncer, a customer), thesyf
activities in bars (e.g. drinking, watching TV ,Kialg, fights...), and the objects found in bars (&ags,
glasses, mixed drinks, beer...). At the simplest letwe thematic knowledge source can be used to™ski
the abstract game mechanics after the mechaniestie®an generated, determining for example that a
service request should be for a beer, that theeplstyould be a bartender or a cocktail server/|eta.
pipelined architecture in which the abstract gamreetmanics are completely generated prior to applying
thematic knowledge, the same underlying game coelchapped to different themes such as bar, fadt foo
restaurant, or copy store by dropping in differtdetmatic knowledge sources. Ultimately, howeverreve
less interested in such a pipelined approach thasxploring the ways in which thematic and game
mechanics knowledge are applied simultaneouslirgedact richly during the game generation process.
Thematic knowledge should suggest gameplay opptigsimnd constrain the abstract mechanics, just as
the abstract mechanics constrain thematic mappiaysexample, if the bar theme is active, thematic
knowledge might reason that as people drink thepie drunk, and drunk people move erratically,
suggesting that drunk customers might serve asdestfor the player as they serve drinks, but drihye
player is a cocktail server moving between tabléss movement from theme to mechanics is partibular
important for the generation of political gamesgenhmuch of the rhetorical force of the game depamd
the appropriate incorporation of thematic eleménttsthe gameplay.

The last knowledge source, control mappings, captknowledge about the mapping between the physical
player input and abstract player actions in theayaanld. This knowledge source provides analogous
knowledge to the game representation knowledgecepbut on the input side rather than output dioe.
example, in mapping the player’s acquisition oéeviee during a service acquisition event (e.¢infila
beer inTapper) to the game controls, it is this knowledge souhed recommends different control
mapping strategies (e.g. button tap, holding thteobufor a certain length of time, holding the buttwhile
pumping the joystick, etc.). Different control mapp knowledge sources correspond to different magppi
strategies, usually for physically different colliers. So you may have a game control knowledgecsou
for button and joystick controls, another for 3Bseal controls (ala the Nintendo Wii), and a tHird
dancepad controls. Again, we aim for this knowlegdgerce to be changeable independently of the other
sources, allowing the formation of design spacésriofy different combinations of game mechanicatest
representation, theme and control mappings.

Architecture

A game design is represented through a collectidogical formula describing the game mechanics and
associated thematic mappings, state representationnput mappings employed by the game. The
predicates and functions of these assertions kea faom the ontologies of the active knowledgerses,
which, collectively, define the active design spaldee knowledge of the active knowledge sourcesiis
into action by a rule-based system whose ruleshmatcthe structure of the design-in-progress, dsase
knowledge in the active knowledge sources, to imemrgtally modify the design-in-progress. The lefttha
side of the rules is not limited to matching on streicture of ground terms, but can perform arhjtra
inference, allowing rules to match on inferred pndies of the design (inference rules live in the
knowledge sources, along with the taxonomic agsestdf terms defined in the ontologies).

Rules are divided into three different categonmsnely local and global critics and local proposkogal
proposers and critics are the most frequently alest Local proposers are specialists on specifiparts
of the design, focusing on, for example, the caod# under which a service request source should be
removed, or the visual representation of a timarthfe name implies, local proposers propose changes
the design, corresponding to asserting or retrgdtigical assertions in the current design. Locappsers
tend to propose promiscuously, suggesting manyildessesign changes; as specialists, the proposed
design changes don't take global design constraitisaccount. Local critics look at the suggestiomade
by local proposers and assign them numeric quaitpgs. The actual design proposal implementeten
evolving design is chosen probabilistically basadte quality ratings (a proposal with a high gyali
rating will be chosen more often). Together, thealgroposers and critics serve a stochastic, tettp

brainstorming function, trying out many differergsign proposals without worrying too much about how
they fit together to form a unified design.

Global critics take into account global design d¢raists, and are thus responsible for ensuringahahe
individual design decisions made by the local pegps form a coherent design. Global critics turn
different collections of local proposers on and aff well as tune parameters in local proposers. Fo
example, a global critic may notice that the curdasign requires different controller actions ¢ b
performed by the player for acquiring differentsess of the same general type (e.g. differentgygfe
beer in alapper variant with multiple beer types) and activate &tk local proposers and critics such that
it becomes likely that either the same controlkgica will be chosen for the different servicegtat the
services are differentiated enough that differemtioller actions make sense (e.g. pushing theifkys
button to acquire a beer vs. moving the joystiocgkiend forth rapidly to blend a martini). Globaiticis
thus provide top-down guidance to the bottom ugnistarming, focusing brainstorming on specific desi
problems.

Once a design has been generated as a collectasseftions, it must be turned into running cod¢ th
instantiates a playable game. We are currentlygusimple parameterized code techniques in which we
provide the system with carefully parameterizedding blocks for service games (code objects
corresponding to generic service request souregsgsted services, etc.), and fill in the pararmeter
instantiate a specific game by querying the forynadpresented design. Eventually we want to moae to
richer code generation approach in which the cedgnerated by reasoning about the current design,
without the need for the author to provide theeystvith large blocks of pre-written code as is resgiby
the parameterized code library approach. We cuyréandle art assets by mapping thematic elements t
canned assets. If a design refers to a concretEseource such as a beer tap or stack of papar, o
physical prop such as a counter, the appropriat@saet is retrieved from an indexed library. Eualy

we would like to procedurally generate art assat®et on assertions about the properties of theedesi
asset, though this art generation problem issifuill generality, as big as the rest of the gaemegation
problem.

Conclusion

As a research agenda, game generation facilitategaf game analysis, enables new game mechanics and
game genres, and moves human game authorship apdtraction hierarchy from individual games to
potential game spaces. In this paper we've predentework-in-progress towards creating a game
generator.

Bibliography

1. Zagal, J., Mateas, M., Frenadez-Vara, C., Hdt&ha., and Lichti, N. Towards an Ontological
Language for Game Analysis. Rmoceedings of the Digital Interactive Games Research Association
Conference (DIGRA 2005), Vancouver, B.C., June 2005.

2. Zagal, J., Fernandez-Vara, C., and Mateas, Mhdptay Segmentation in Vintage Arcade Games.
Forthcoming in Bogost, I., and Bittanti, M. (Edsjudologica Retro Volume 1. Vintage Arcade (1971-
1984).

3. September 12. Montevideo, Uruguay, newsgaming.com, 2001.

4. Madrid. Montevideo, Uruguay, newsgaming.com, 2004.

5. Bush Backrub. Addicting Games, 2006.

6. Domike, S., Vanouse, P. and Mateas, M. The Rbomnt History Apparatus Presents: Terminal Time.
In Mateas, M. and Sengers, P. edarrative Intelligence, 2003, 155-173.

7. Mateas, M., Vanouse, P. and Domike, S. Generatiddeologically-Biased Historical Documentaries.
In Seventeenth National Conference on Artificial Intelligence (AAAI 2000), Austin TX, 2000, AAAI
Press, 36-42.

8. Tapper. Bally Midway, 1983.

9. Pressure Cooker. Activision, 1983.

10. Disaffected!. Persuasive Games, 2006.

