
Xtmap: Generate-and-Test Mapper for Table-Lookup Gate Arrays

Kevin Karplus*
Board of Studies in Computer Engineering

University of California, Santa Cruz
Santa Cruz, CA 95064

(408)459-4250 Internet: karplus@ce.ucsc.edu

Abstract
Technology mapping i s the process of taking a fine-

grain network describing a multiple-output logic func-
t ion, and covering i t wi th cells t o get a network that is
legal in a given iechnology. The goals of the mapping
are t o produce small , fas t , and testable circuits.

This paper introduces X t m a p , a new technology map-
per f o r f - i n p u t table-lookup cells based on a generate-
and-test paradigm. X t m a p can opt imize f o r area and
delay simultaneously , and produces smaller circuits
than previous mappers that considered delay, while
matching their delay values.

Tables of benchmark results compare X t m a p with
X m a p , Dagmap, FlowMap, chortle-d, and mis-pga.

Keywords: Combinational logic synthesis, technol-
ogy mapping, FPGAS, Xilinx

1 Technology mapping

Most logic minimizers have two parts: a technology-
independent minimizer that tries to simplify the logic
without directly considering what technology will be
used, and a technology-dependent minimizer that tries
to find a good implementation in a specific technol-
ogy. The technology-dependent phase of minimization
usually consists of a decomposition into a fine-grain
network, followed by a technology mapper that covers
the fine-grain network with legal cells.

This paper will concentrate only on the last part-
covering the fine-grain network. The logic minimizer
that the technology mapper Xtmap is embedded in
(ITEM) uses a fine-grain network representation for the
higher-level minimization steps, and so further decom-
position is not needed. To ensure that the technology
mapping will always complete successfully, the target
technology must be able to implement each gate of the
fine-grain network as a single cell. That is, the initial
network must already be a feasible (if not particularly
good) mapping to the target technology.

*This research was funded by NSF grant MIP-8903555.

391
1063-63W93 $3.00 0 1993 IEEE

.-

The Xtmap mapper (like Xmap and Xcmap) is a
faithful mapper, in that it makes no rearrangement of
the fine-grain network. However, i t does allow limited
duplication of nodes in the network, in that cells are
allowed to overlap.

Early work in technology mapping concentrated on
mapping to cell libraries [14, 2, 71, but more recent
work has focussed on mapping to the uniform cells of
field-programmable gate arrays (FPGAS) [15, 8, 9, 5, 4,

Cell-library-based mappers do not work particularly
well when mapping to the flexible cells of FPGAS. The
usual technique for using them is to create dummy cell
libraries, where each library entry is one way to config-
ure a cell in the gate array. The cell-library approach
allows older technology mappers to be used, but does
not scale well as the size of the basic cells increases,
because the library tends to grow exponentially with
the size of the basic cell. If only a restricted subset of
the possible configurations is used, the size of the li-
brary can be controlled, but the quality of the mapping
suffers.

3, 12, 111.

2 Generate-and-test mapping

Covering algorithms have generally fallen into three
groups: input-first greedy algorithms (Xmap [12])
output-first greedy algorithms (Amap [l l]), dynamic
programming (Dagon [14], mis [7], chortle [8], Dag-
map [5], FlowMap [4], Rmap [IS]). An input-first al-
gorithm maps the inputs to a gate before choosing the
gate, while an output-first algorithm chooses a gate be-
fore mapping its inputs. A greedy algorithm is one
that enumerates a few alternatives, and commits to
one on the basis of simple heuristics. A dynamic pro-
gramming algorithm chooses between several different
local choices, based on the value of different partial
implementa.tions (for a good description of dynamic
programming, see [6, Chapter IS]).

This paper introduces a mapper using a slightly
different paradigm: generate-and-test.

Xtmap is an output-first algorithm based on a
generate-and-test paradigm. The algorithm starts at

mailto:karplus@ce.ucsc.edu

an output, and generates many ways for that output
to be implemented in a single cell, covering some por-
tion of the fine-grain network. Each of the candidate
implementations is evaluated (tested) using a simple
heuristic, and the best one chosen. The inputs of the
new cell then are added to the set of functions that need
to be mapped. Figure 1 gives simplified pseudocode
for the algorithm. In the actual implementation, map-
pings are chosen recursively for the inputs of the new
cell, and the ToMap set is not explicitly represented.

To complete the description of a generate-and-test
mapper, three subroutines have to be described:

e the method for choosing which node of the fine-

e the heuristics for determining the value of a cell

e the generator for single cells (Section 2.3) .

Choosing the next node to map

Xtmap has a top-level loop that iterates over the
principal outputs, and uses a recursive call to the map-
per for each input to a newly created cell. Because
the ToMap set is implicitly represented on the recur-
sion stack, it need not be explicitly represented. No
attempt is made to choose the order in which the prin-
cipal outputs or the inputs to a new cell are mapped.

2.2

grain network to map next (Section 2.1),

(Section 2.2), and

2.1

Value of an FPGA cell

The basic assumption of Xtmap, as with any greedy
mapper, is that a series of locally optimal choices
(with respect to the heuristic functions) will result in
a globally good solution. The heuristic functions need
to capture any interaction between cells that is likely
to be important in the final solution.

One of the biggest advantages in mapping to FPGAS,
rather than to cell library technologies, is that all cells
cost the same, and so we only need to look at how well
we cover the fine-grain network.

One key simplification of the generate-and-test para-
digm is that only the generator needs to know about
the function of a cell-the function itself does not mat-
ter in determining the value of the cell. Instead, the
cell can be evaluated only on the basis of which nodes
in the fine-grain networks are inputs to the cell, and
which are hidden-that is, which nodes are covered by
the cell but are neither inputs nor outputs of the cell.

The value of a cell is computed as the sum of weight
functions computed on the inputs and hidden set, as
shown in Figure 2.

One would expect it to be more useful to use already
mapped nodes in the input set, than to have to map
new nodes, particularly new ones with low fanout.

This means that we would expect to set the weights
to meet the constraints a1 > a2, a2 < 0 , and a3 <
0. Fanout appears in a denominator, because the
difference between a fanout of 1 and 2 is much more
significant than a difference between 11 and 12, this
means that a negative value for a3 gives a fairly large
penalty for a mapping with low-fanout inputs, and a
much smaller penalty to ones with high-fanout inputs.
Furthermore, a mapping for a cell is generally better
if the size of the portion of the network remaining to
map is less. If we use the sum of the area estimates for
the inputs as an estimate of how much remains to be
mapped, we would expect a4 < 0.

There seems to be little advantage to using up part
of a cell to re-implement already mapped nodes, and so
we would expect to have bl < 0. For hidden nodes, one
would expect it to be best to hide nodes that haven’t
been implemented, particularly if they have low fanout.
Thus one would expect to have b2 > 0 and b3 > 0.

To minimize delay in the circuit, the Delayweight
should be set to a negative number. The expected
constraints on the weights were usually met by sets of
parameters found by the learning algorithms described
i n Section 3, but all were violated by at least one of the
weight sets found by the random neighborhood search
learning technique. The values used in the results
section (a1 = 0, a:! = -30, a3 = -14, a4 = -11, bl =
1, b:! = 5, b3 = 5, Delayweight = -256) were found
by learning on one network, and discovered to work
reasonably well on many networks. The only expected
constraint that is violated is that bl is positive, instead
of negative. N o attempt has been made to see if the
results are improved by reducing bl .

The quality of the delay estimate arrival is impor-
tant for producing good mappings. At first, the algo-
rithm just used the longest distance from a principal
input to the node in the fine-grain network, but this
did not prove to be a particularly good predictor of de-
lay, and the circuits produced had larger delays than
those produced by Chortle and Dagmap.

An improved delay estimate was obtained by doing
an initial mapping of the fine-grain network using
Xcmap (a re-implementation of the main algorithm
of Dagmap), and recording the Iulheighl: the height
in the mapped circuit. By setting the delay weight
to a sufficiently large negative number, the generate-
and-test algorithm can be forced to produce circuits
whose delay (as measured by lutheight) is as small as
that produced by Xcmap, as long as the generator for
the node is guaranteed to try the set of inputs used by
Xcmap (Xtmap does try that set of inputs, as described
in Section 2.3).

392

ToMap + Principal outputs
while ToMap # 8

Choose node n from ToMap and delete it
For each generated single-cell implementation of

Compute value for implementation of n
Implement highest value cell
Add inputs of cell (that aren’t already mapped) to ToMaF

Figure 1: Pseudocode for the generate-and-test technology mapping paradigm.

Value(inset, hidset) = inweight(i) + hidweight(h)
i e in-set h e hidset
+Delayweight max arrival(i)

i E inset
a1
a2 otherwise

if i is already mapped
inweight(i) = a4 areaest(i) + as/fanout(i) +

61 if h is already mapped
otherwise hidweight(h) = bs/fanout(h) +

Figure 2: Formula for computing the value of a cell. Of the many candidates for implementing a particular
node in the network, the one with the highest value will be selected. T h e function arrival(i) estimates the
arrival time for the signal at node i ; the fanout(i) function counts the number of nodes that use i as an input
in the fine-grain network; and the areaest(i) estimates the area needed t o map the input. Currently, arrival
is hardwired t o be lutheight, and areaest is hardwired to be the count metric (an area estimator described
in [IO]).

2.3 Generator for table-lookup cells

The generator needs to produce a number of feasible
single-cell implementations for a node in the fine-grain
network. The approach I have taken is to write a
simple generator for each different FPGA technology,
rather than a general-purpose generator to use with a
variety of technologies. However, this is not essential
to the concept, and a general-purpose generator could
be written, perhaps along the lines of Proserpine [I].
A generator has been written for f-input table-lookup
functions, and other generators are being written for
other target FPGA technologies.

For table-lookup cells, the generator can be fairly
simple, as the function of the cell is irrelevant-all that
matters is how many inputs are needed. The genera.tor
for Xtmap tries to produce all possible vertex cut sets
of size f or less separating the node being mapped from
the primary inputs using a simple depth-first search
algorithm.

Simplified pseudocode for the generator is given in
Figure 3. The recursive procedure takes two parame-
ters: a set of nodes to consider as inputs to the cell and

a set of nodes that are not to be expanded in the search.
The nodes in the input set are replaced one at a time
by their own inputs, until the complete input set gets
too large. After a node has been expanded in this way,
it is marked so that it will not be expanded again, to
avoid repeated enumeration of the same cut sets. The
set of hidden nodes (hidset) keeps track of the nodes
that have been removed from the input set, for use in
determining the value of the cell (see Section 2.2).

The actual algorithm used in Xtmap is slightly more
complicated. One simple but important modification
is that unnecessary inputs are removed from inse t ,
before inset is counted and the cell is evaluated. An
input i is considered to be unnecessary if inputs(i) C
i n se t . This optimization is inefficiently implemented,
and accounts for a large part of Xtmap’s running time.

Note that not all vertex cut sets with (in se t (5 f are
enumerated by this simple algorithm, as some vertex
cut sets may require intermediate cut sets with more
than f nodes, and these would be missed.

Another, more important improvement can be made
to the generator by adding an alternative definition
of the inputs of a node. Both the Xmap and Xcmap

393

'RyExpansions(set inset , set noexpand, set hidset)
if linsetl > f then return
Evaluatecell(inset , hid-set)
for each input i in in-set-noexpand

TryExpansions(inset - { i } U inputs(i), noexpand, hidset U { i })

Figure 3: Simplified pseudocode for generating trial cells for f-input lookup tables. The generator is called
initially with TryExpansions(inputs(n), 0, 0). EvaluateCell is called t o test each trial cell.

greedy mappers compute legal (linset I 5 f) vertex cut
sets for every node in the fine-grain network. These
cut sets can be used as alternatives to inputs(i) both
in the TryExpansions algorithm and in defining the
unnecessary nodes of inset . Updating the set of hidden
nodes requires a little more work than before, as all the
nodes between i and the stored vertex cut are hidden,
not just i.

Even with the improvements,the algorithm misses
some f-cuts, and these missed cuts are often the most
interesting ones for high-quality mapping, since they
are generally lower in the network than the cuts that
are enumerated. The algorithm could be improved by
using the techniques of FlowMap [4] or Rmap [18] to
ensure that all f-cuts are enumerated.

The pseudocode for the version of Try Expansions
used to produce numbers for the benchmarks is shown
in Figure 4. The function lutinputs(i) looks up a legal
cut set for i found by the algorithm for Xcmap (unless
Xmap found a smaller delay for the node, in which case
the cut set found by Xmap is used).

Because the Xcmap (Dagmap) algorithm guarantees
minimum delay implementation for tree circuits and
for nodes that can be implemented in a single cell
directly from the principal inputs, adding the lutinputs
expansions causes the generator to catch many of the
interesting possible cells that i t otherwise would have
missed.

3 Learning the weights for the
heuristics

My original hope was that a good set of weights
could be chosen and fixed for all circuits, but I was
unsuccessful in finding a good set of weights manually,
and so I implemented learning algorithms to try to find
good weights. Two different learning algorithms have
been implemented: random neighborhood search and
learning from an existing mapping.

The random neighborhood search algorithm is slow,
but effective. Xtmap is run repeatedly with different

values for the weights, and the goodness of each map-
ping determined. New values are generated by per-
turbing the values that produced the best mapping so
far.

Goodness may be number of cells, delay, or area-
delay product, or any similar function-I usually use
the number of Xilinx cells multiplied by the delay
of the circuit with a unit-delay model. Other area
measures, such as the number of lookup tables before
merging or the pin count, are available in ITEM, as are
other delay measures (such as the measure proposed
in [17]). The goodness measures availablein the Xtmap
implementation are any of the area or delay measures
a.vailable in ITEM, or the product of any two measures.

After tuning the weights on a few circuits, I added
a further feature that kept a list of good settings for
weights. For each new circuit, all the settings already
recorded were tried first, and then some number of
random searches were made, adding a new setting to
the list if a better was found by the random search. I
had hoped that pruning the list would leave me with
a few good settings that would work for many circuits.
Unfortunately, running 45 benchmark circuits resulted
in 25 different weight settings, each of which was better
than any of the others for at least one circuit.

The second learning approach was based on a very
different philosophy. Instead of blindly searching for a
setting by looking at the results of the mapping, I tried
to derive a setting from a good mapping. I started with
an area-efficient mapping from Xmap, then ran the
cell-generation procedure for each node that was used
in that mapping. Instead of evaluating each potential
cell, it was compared with the cell found by Xmap.
Weights were increased or decreased so as to favor
the cell found by Xmap over the candidate one. For
example, if the generated cell had more hidden nodes
that were already mapped, then bl would be decreased,
but if it had fewer, 61 would be increased.

Running Xtmap with the parameters learned in this
way produced circuits similar to those found by Xmap
(small, but not fast), but was, of course, much more
expensive to run. Similarly, running Xtmap with the
delay weight set to a large negative number duplicated

394

the

TryExpansions(set in-set, set noexpand, set hid-set)
remove unnecessary nodes from in-set
if linset I > f then return
EvaluateCell(inset, hidset)
for each input i in inset-noexpand

TryExpansions(inset - { i} U inputs(i), noexpand, hidset U {i})
TryExpansions(inset - { i } U lutinputs(i), noexpand, hid-set U hidden(i, lutinputs(i)))
noexpand t noexpand U { i }

Figure 4: Pseudocode for generating trial cells for f-input lookup tables. I t is called initially with
TryExpansions(inputs(n), 8, 8) and TryExpansions(lutinputs(n), 0. 8). T h e function lutinputs(i) looks up
a legal cut set for i found by a greedy mapper (such as Xcmap or Xmap).

mapping found by Xcmap (fast, but not small).
The advantage of Xtmap is that the delay weight can
be set to intermediate values, getting circuits that are
both small and fast.

In order to create repeatable results, the benchmark
results in this paper did not use learning. Instead,
a single parameter set was used, and the penalty for
delay increased by factors of two until the unit-delay
from Xtmap was as small as from the Xcmap mapping
(see Table 1). This single parameter set seems to
produce results very similar to (but slightly better
than) doing the deterministic learning procedure for
each benchmark. Based on earlier benchmark runs,
following this with 10 repetitions of random search
would probably have improved the results slightly, but
increased the running time substantially.

One interesting observation was that running Xtmap
twice for the des benchmark with the same parameters
produced different results. The explanation is that the
arrival time estimate lutheight is not just the result
of running the Xcmap algorithm, but is updated after
every mapping, so that it represents the lowest known
height. For some nodes in des, Xtmap finds a better
mapping, and updating the lutheight for these nodes
results in an improved mapping when Xtmap is re-run.

4 Conclusions and Future Work

Table 1 gives some benchmark results for some of
the recently published technology mappers, all being
run on identical networks. Xtmap was run with the
parameters a1 = 0, a2 = -30, a3 = -14, a4 = -11.
bl = 1, b2 = 5, b S = 5, Delayweight = -258. For each
mapper, the number of 5-input lookup tables and the
unit delay are given. Although Xtmap appears to be
about as good as the best previously published mapper
(FlowMap), the unpublished results from FlowMap-r
seem to be better.

For delay minimization, the best previous results
were reported for FlowMap [4], and for area minimiza-
tion mis-pga [15], but mis-pga gets much of its area
optimization from high-level optimization and decom-
position, rather than from mapping per se. Although
the Xcmap (Dagmap) algorithm produces optimal de-
lay for trees, on one highly reconvergent example (not
in the table) Xmap produces a circuit with fewer levels
of lookup tables. FlowMap produces optimal delay on
arbitrary networks.

Xtmap usually gets delay values as good as Flow-
Map, and with about the same area penalty.

The CPU time reported in Table 1 is for reading the
BLIF or EQN input file and doing all three mappings on
a Sparcstation SLC. The slowest operation is Xtmap
itself, which is much slower than simple greedy map-
pers, primarily because of the cost of evaluating all
the potential cells that a.re not used. Xtmap is sig-
nificantly slower than Xcmap or Xmap, but not as
slow as chortle-d. (I do not have timing informa-
tion for FlowMap, and so cannot compare execution
times of Xtmap and FlowMap with it.) Improving
Xtinap’s cut-enumeration algorithm should improve
both Xtmap’s speed and performance. Improving the
arrival time estimates (perhaps using FlowMap to com-
pute lutheight) would also improve performance.

I believe that technology mapping efforts should
focus on producing faster mappers, rather than better
mappers, because it is probably more useful to spend
the CPU time on improving higher-level optimization.

To illustrate this, some results are reported for tech-
niques that high-level optimization before (or during)
mapping. Table 2 reports results for the same bench-
marks as Table 1. The cputime reported in Table 2
does not include the Optimization time, just the map-
ping time. The three “X” mappers were run on net-
works created by running two iterations of the ITEM
script shown in Figure 5 on the benchmark files used
for the FlowMap results, which is a better starting
point than used for the comparisons in Table 1. Those

395

30:3 25:4 25:3

9sy”l 66:5 62:9 65:5
c499 252:5 136:7 186:5 220.5
C880 263:8 181:13 231:8 64.9
alu2 181:8 136:14 154:8 63.0

9sym 75:5 66:9 74:5

20:3 12:4 16:3 1.2

334:lO 238:17 270:lO 216.3 1 319:4 238:7 267:4 32.5
apex7 114:4 80:6 88:4 6.5

100:4 65:5 71 :3 5.1 1
.. . .~ ~ ~-

1690:6 1054:lO 1212:6 458.9

18:3 19:2
rd84 48:4 45:7 49:4
rot 325:6 233:ll 2695 17.9

54:4 43:5 49:4

FlowMapr FlowMap Dagmap chortle-d
[9]

26:3 23:3 25:3 28:3
61:5 61:s 63:5 6 3 5
58: 5 5d:5 61:5 59:5

151:5 154:5 2045 382:6
2 l l : d 232:s 246:8 329:8
1 4 ~ 162:8 199:9 227:9

245:lO 268:lO 303:lO 500:lO
232:4 257:4 284:5 308:4
80:4 89:4 95:4 108:4
73:4 76:3 87:3 91:4

[31 (41 [51

1 Od7:5 1308:5 1480:6 2086:6
1 d7:4 ld7:4 195:4 241:4
1 5 2 1 5 2 17:2 19:2
4 3:4 4 3:4 48:4 61:4
243:6 268:6 328:6 326:6

1313 13:s 17:3 25:3
38:4 45:4 42:J 55:4

Table 1: T h e columns headed with mapper names report the number of 5-input lookup tables and unit-
delay estimate o f delay for that mapper. The CPU time (on a Sparcstation SLC) is the total t ime for the all
three mappings. Xcmap is a re-implementation of the main algorithm of Dagmap, while the Dagmap column
has the numbers from the original paper [5]-the numbers differ because Xcmap is not allowed t o rearrange
associative operators. X tmap was set to choose the minimum product of unit-delay and the number of tables,
while sweeping the delay penalty. All the algorithms were run on the same initial network. Italics are used t o
mark the best area-delay product in each row.

benchmarks had been created by optimizing the bench-
marks for delay, then decomposing with the DMIG al-
gorithm [5] .

The ITEM optimization script. does not have any no-
tion of critical paths, and attempts to reduce delay
on all outputs, even non-critical ones. An optimiza-
tion technique that concentrated on area reduction off
the critical paths, and delay reduction near the crit-
ical path would probably produce better area-delay
products-even so, this technique did produce better
mappings for several benchmarks than any previously
reported results.

Although simple greedy algorithms have been get-
ting fairly good results, other paradigms for technol-
ogy mapping remain to be examined. I have a student
now investigating using ratio-cut partitioning to map
to f-input lookup tables, so that more global informa-
tion can be used in deciding which nodes in the fine-
grain network are worth implementing as cell outputs.
We hope to get more area-efficient mappings with this
technique.

4.1 Mapping for routability

Most mapper research has focussed on area or de-
lay minimization, but on the Xilinx chips, the rout-
ing resources are usually the limiting factor on any de-
sign. There has been some previous work on mapping
for routability (notably Rmap [IS]), but the available

pla.ce-and-route tools have random enough behavior
that it is difficult to compare the qualities of different
mappers just by placing and routing the circuits. One
measure that I believe will be useful is the total pin
count (number of connections to cells) of a mapping
(after merging into two-output cells). Table 3 reports
this measure, and a few other potentially useful ones
for the Xtmap mappings reported in Table 1. Place-
ment and routing experiments have not yet been’done,
but I believe that using Xtmap to optimize for pin
count and fanout-weighted delay will produce faster,
more routable circuits than available mappers (other
than Rmap).

Pak Chan believes that pins per CLB is a more
important measure, and that the mappings produced
by my mappers and most other published mappers are
too dense to be routed consistently on Xilinx 3000 chips
[personal communication]. Using the information from
Table 3, Xtmap averages 6.1 pins per CLB (the pin
count column includes primary inputs and outputs,
which must be subtracted out before dividing by the
CLB columns). According to Dr. Chan, mappings
with more than 6 pins per CLB are nearly always
unroutable, but ones with 5 or fewer are nearly always
routable. If further experimentation bears out his
observation, then Xtmap will modified to control the
pin per CLB ratio as well, Some simple controls
are already possible, such as lying to ITEM about the

396

use best variable ordering heuristic (expensive)
order split -c count

use local factor to minimize edge count* height
transform -m local -a edges -d height

do block covering to minimize delay (lutheight of ite DAG)
bcov -m tox -f lutheight bcdelay -s bcvalue bcares

redo local factor this time minimizing edge count*lutheight
transform -m local -a edges -d lutheight

file

5xpl
9sym
9symml
tC499
C880
alu2
alu4
apex6

count
apex7

Figure 5: Opt imizat ion script used w i t h ITEM to create the networks mapped by the “X” mappers in Table 2.
T w o iterat ions of this opt imizat ion script were run on each network. T h e block-covering technique is described
in [19], and a rough description o f local factor is in [13], bu t the variable ordering heuristic has n o t been
published yet [20].

Xcmap Xmap Xtmap CPU FlowMap mis-pga

21:3 20:4 20:3 1.2 22:3 21:2
8:3 8:3 8:3 0.6 60:5 7:3
8:3 8:3 8:3 0.6 55:5 7: 3
90:4 78:6 84:4 9.7 6d:4 199:s
151:9 112:15 143:9 10.3 l24:8 259:9
58:4 61:7 56:4 3.0 155:9 122:6
182:7 156:s 167r7 8.1 253:9 155:ll
263:4 194:7 234:4 12.8 238:5 274:5

48:3 33:4 4 5:3 1.9 31:5 81:4

141 [161

94:4 64:6 87:4 4.1 79:4 95:4

tdes I 1494:6 909:ll 1 U2U:S 149.7 1310:5 1397:ll

1 4 : ~ 15:2 17:2
rd84 16:3 14:3 16:3 13:3

309:6 223:ll 275:6 234:7 322:7
33:4 23:6 32:4 &9:3 39:4
5:P 5:2 5:2 10:2

2899:84 3182:90

Table 2: Th is table reports the results of mapping after high-level opt imizat ion for delay. T h e Xcmap, Xmap,
and X t m a p results are from opt imiz ing the same start ing points as used for the F lowMap results using an
ITEM script t h a t optimizes for the product of edge count and lutheight. Results for des are for running the
opt imizat ion script o n the same start ing point as Table 1, because the minimizer ran o u t of memory min imiz ing
on the DMIG-optimized network. Results for C499 are f r o m a less expensive script t h a t did no t require canonical
forms, because the script of Figure 5 was unable to complete on C499. The CPU t ime column (seconds on
a Sparcstation SLC) counts only the mapping, no t the optimization, which took anywhere f r o m seconds to 2
hours. F lowMap and mis-pga were run w i th different start ing points, and so the quali ty of the opt imizat ion
is really being compared, rather than the quality o f the mappers. Italics are used to mark the best area-delay
product i n each row. Note t h a t for rot the best result in Table 1 is better. T h e result for count can be
improved to 39:3 and C880 to 145:7 by running the opt imizat ion script on the original benchmark network,
rather than an already optimized and decomposed one; apex7 t o 100:3 by opt imiz ing the network used i n
Table 1; and vg2 to 28.3 by using the cheap opt imizat ion script used for C499, rather than the expensive one.

397

I’

from Table 1
file inputs outputs tables CLBs depth delay pin count

5xpl 7 10 25 19 3 73.50 134

9symml 9 1 65 52 5 132.90 324
c499 41 32 186 158 5 121.15 1019

estimate

9sym 9 1 74 52 5 120.90 332

C880 60 26 I 231 173 8 140.15 1147 I 143 107 9 144.65 742
alu2 10 6 I 154 119 8 215.60 743 I 56 49 4 131.70 303

from Table 2
tables CLBs depth delay pincount

20 14 3 64.50 103
8 8 3 61.70 58
8 8 3 61.70 58

84 74 4 87.90 492

estimate

alu4 14 8
apex6 135 99
apex7 49 37
count 35 16
des 256 245
duke2 22 29

270 211 10 276.65 1302 167 116 7 231.00 740
267 210 4 292.10 1502 234 193 4 304.20 1375
88 61 4 127.30 460 87 58 4 119.70 442
71 52 3 121.20 367 45 33 3 92.20 249

1212 964 6 1131.20 6403 1020 716 5 749.00 4915
187 134 4 127.80 877 166 127 4 146.40 825

Table 3: More metrics for the mappings produced by X t m a p for Tables 1 and 2 T h e second and third columns
are the number o f inputs and outputs from the circuit. Within each section the first column is the number of
lookup tables used in the mapping. T h e second column is the number of 2-output Xilinx 3000 cells needed
after merging tables. T h e third is the longest path from an input t o an output. T h e fourth is a fanout-weighted
delay estimate [17]. T h e final column is the total number of inputs and outputs used on all CLBs, plus the
inputs and outputs. Averaged over all the examples, the X tmap mappings use 1.33 outputs per cell, and 4.77
inputs per cell.

misexl 8 7
rd84 8 4
rot 135 107
VI32 25 8
z4ml 7 4
total 830 640

number of inputs allowed to a CLB, or having Xtmap
searches minimize the pin count (ignoring the number
of CLBs).

Another direction for future research is to explore
simultaneous technology mapping and pla.cement, so
that routable circuits are produced.

19 13 2 57.30 93 15 12 2 57.30 87
49 38 4 91.60 240 16 12 3 62.70 83

269 183 6 144.50 1388 275 189 6 142.05 1412
44 29 4 72.75 205 32 22 4 70.00 166
16 11 3 62.20 71 5 4 2 48.60 34

3227 2479 84 3308.80 16607 2381 1742 70 2575.30 12084

4.2 Mapping to other cells

I plan to implement generators for generate-and-test
mapping to Actel’s Act1 and Act2 cells. A preliminary
version was written over a year ago, and looked quite
promising, but has not yet been translated into C++
for inclusion in the new system.

When mapping to cells other than table-lookup cells,
the input set becomes a multiset (since inputs may
need to be duplicated). I’ve also added a few more
weights to the heuristics, to account for constant in-
puts, duplicate inputs, and inputs whose complements
are mapped, even though the inputs themselves are
not. That is, the definition of inweight has been mod-
ified as shown in Figure 6 .

Other generators are planned, including one for
Quicklogic’s multiple-output cell. For multiple output
cells, I will probably add three more weights for the
output nodes of the cell, similar to the weights for the
hidden nodes.

Acknowledgements

I would like to thanks the students who have helped
create ITEM, the logic minimization system in which
Xtinap is embedded, especially SGren S0e and Mehrdad
Parsa. I would also like to thank Jason Cong and
Eugene Ding for sharing their starting networks and
unpublished results.

References

Alessandro Bedarida, Silvia Ercolani, and Giovanni
De Micheli. A new technology mapping algorithm for
the design and evaluation of fuse/antifuse-based field-
programmable gate arrays. In FPGA ’92: First Interna-
tional A CM/SIGDA Workshop on Field-Programmable
Gate Arrays, pages 103-108, Berkeley, CA, 16-18
February 1992.

M. R. C. M. Berkelaar and J. A. G. Jess. Technology
mapping for standard-cell generators. In IEEE Interna-
tional Conference on Computer-Aided Design ICCA D-
88, pages 470-473, Santa Clara, CA, 7-10 November
1988.

Jason Cong and Yuzheng Ding. On area/depth trade-
off in LUT-based FPGA technology mapping. UCLA
unpublished, 23 October 1992.

Jason Cong and Yuzheng Ding. An optimal technology
mapping algorithm for delay optimization in lookup-
table based FPGA designs. In IEEE International Con-

a5
U 6

a1
a7
a2 otherwise

if i is constant 0 or 1
if i is a duplicate input

if i' is already mapped
inweight(i) = a4areaest(i) + as/fanout(i) + if i is already mapped

Figure 6: Parametric value of an input t o a cell for mapping t o cells other than table-lookup ones. T h e values
of all inputs are added together, as in Figure 2.

ference on Computer-Aided Design ICCA D-92, pages
48-53, Santa Clara, CA, 8-12 November 1992.

[5] Jason Cong, Andrew Kahng, Peter Trajmar, and
Kuang-Chien Chen. Graph based FPGA technol-
ogy mapping for delay optimization. In FPGA'92:
First International A CM/SIGDA Workshop on Field-
Programmable Gate Arrays, pages 77-82, Berkeley, CA,
16-18 February 1992.

[6] Thomas H. Cormen, Charles E. Leiserson, and Ron-
ald L. Rivest. Introduction to Algorithms. McGraw-Hill
and MIT Press, 1990.

[7] Ewald Detjens, Gary Gannot, Richard Rudell, Alberto
Sangiovanni-Vincentelli, and Albert Wang. Technol-
ogy mapping in MIS. In IEEE Internationalconference
on Computer-Aided Design ICCAD-87, pages 116-119,
Santa Clara, CA, 9-12 November 1987. IEEE Computer
Society Press.

[8] Robert J. Francis, Jonathan Rose, and Kevin Chung.
Chortle: a technology mapping program for lookup
table-based field programmable gate arrays. In ACM
IEEE 27th Design Automation Conference Proceedings,
pages 613-619, Orlando, FL, 24-28 June 1990.

[9] Robert J. Francis, Jonathan Rose, and Zvonko Vra-
nesic. Technology mapping of lookup table-based FP-
GAS for performance. In IEEE International Confer-
ence on Computer-AidedDesign ICCA D-91, pages 568-
571, Santa Clara, CA, 11-14 November 1991.

[lo] Kevin Karplus. Using if-then-else DAGS for multi-level
logic minimization. In Charles L. Seitz, editor, Ad-
vanced Research in VLSI: Proceedings of the Decennial
Caltech Conference on VLSI, pages 101-118, Pasadena,
CA, 20-22 March 1989.

[ll] Kevin Karplus. Amap: a technology mapper for
selector-based field-programmable gate arrays. In
ACM IEEE 28'h Design Automation Conference Pro-
ceedings, pages 244-247, San Francisco, CA, 17-21 June
1991.

[12] Kevin Karplus. Xmap: a technology mapper for table-
lookup field-programmable gate arrays. In A CM IEEE
2gth Design Automation Conference Proceedings, pages
240-243, San Francisco, CA, 17-21 June 1991.

[13] Kevin Karplus. Item: an if-then-else minimizer for logic
synthesis. In EuroASIC92, pages 2-7, 1-5 June 1992.

[14] Kurt Keutzer. DAGON: Technology binding and local
optimization by DAG matching. In ACM IEEE 24'h
Design Automation Conference Proceedings, pages 341-
347, Miami Beach, FL, 28 June-1 July 1987.

[15] Rajeev Murgai, Yoshihito Nishizaki, Narendra Shenoy,
Robert K. Brayton, and Alberto Sangiovanni-Vincen-
telli. Logic synthesis for programmable gate arrays.
In ACM IEEE 27th Design Automation Conference
Proceedings, pages 620-625, Orlando, FL, 24-28 June
1990.

[16] Rajeev Murgai, Narendra Shenoy, Robert K. Brayton,
and Alberto Sangiovanni-Vincentelli. Performance di-
rected synthesis for table look up programmable gate
arrays. In IEEE International Conference on Com-
puter-Aided Design ICCAD-91, pages 572-575, Santa
Clara, CA, 11-14 November 1991.

[17] Martine Schlag, Pak Chan, and Jackson Kong. Empiri-
cal evaluation of multilevel logic minimization tools for
a field programmable gate array technology. In Pro-
ceedings of the First International Workshop on Field
Programmable Logic and Applications, pages 201-213,
September 1991.

[18] Martine Schlag, Jackson Kong, and Pak K. Chan.
Routability-driven technology mapping for lookup-
table-based FPGAs. In 1992 IEEE International Con-
ference on Computer Design, pages 86-90, October
1992.

[19] S ~ r e n S0e and Kevin Karplus. Logic minimization using
two-column rectangle replacement. In ACM IEEE
28th Design Automation Conference Proceedings, pages
470-473, San Francisco, CA, 17-21 June 1991.

[20] S ~ r e n S0e and Kevin Karplus. A new variable-ordering
heuristic for binary decision diagrams and if-then-else
dags. In ACM IEEE 30th Design Automation Confer-
ence Proceedings, Dallas, Texas, June 1993. submitted.

399

