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Abstract 
Technology mapping i s  the process of taking a fine- 

grain network describing a multiple-output logic func- 
t ion,  and covering i t  wi th cells t o  get a network that is 
legal in  a given iechnology. The  goals of the mapping 
are t o  produce small ,  fas t ,  and testable circuits. 

This  paper introduces X t m a p ,  a new technology map- 
per  f o r  f - i n p u t  table-lookup cells based on a generate- 
and-test paradigm. X t m a p  can opt imize f o r  area and 
delay simultaneously , and produces smaller  circuits 
than previous mappers  that considered delay, while 
matching their  delay values. 

Tables of benchmark results compare X t m a p  with 
X m a p ,  Dagmap,  FlowMap,  chortle-d, and mis-pga. 

Keywords: Combinational logic synthesis, technol- 
ogy mapping, FPGAS, Xilinx 

1 Technology mapping 

Most logic minimizers have two parts: a technology- 
independent minimizer that tries to simplify the logic 
without directly considering what technology will be 
used, and a technology-dependent minimizer that tries 
to find a good implementation in a specific technol- 
ogy. The technology-dependent phase of minimization 
usually consists of a decomposition into a fine-grain 
network, followed by a technology mapper that covers 
the fine-grain network with legal cells. 

This paper will concentrate only on the last part- 
covering the fine-grain network. The logic minimizer 
that the technology mapper Xtmap is embedded in 
(ITEM) uses a fine-grain network representation for the 
higher-level minimization steps, and so further decom- 
position is not needed. To ensure that the technology 
mapping will always complete successfully, the target 
technology must be able to implement each gate of the 
fine-grain network as a single cell. That is, the initial 
network must already be a feasible (if not particularly 
good) mapping to the target technology. 

*This research was funded by NSF grant MIP-8903555. 
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The Xtmap mapper (like Xmap and Xcmap) is a 
faithful mapper, in that it makes no rearrangement of 
the fine-grain network. However, i t  does allow limited 
duplication of nodes in the network, in that cells are 
allowed to overlap. 

Early work in technology mapping concentrated on 
mapping to cell libraries [14, 2,  71, but more recent 
work has focussed on mapping to the uniform cells of 
field-programmable gate arrays (FPGAS) [15, 8, 9, 5, 4,  

Cell-library-based mappers do not work particularly 
well when mapping to the flexible cells of FPGAS. The 
usual technique for using them is to create dummy cell 
libraries, where each library entry is one way to config- 
ure a cell in the gate array. The cell-library approach 
allows older technology mappers to be used, but does 
not scale well as the size of the basic cells increases, 
because the library tends to grow exponentially with 
the size of the basic cell. If only a restricted subset of 
the possible configurations is used, the size of the li- 
brary can be controlled, but the quality of the mapping 
suffers. 

3, 12, 111. 

2 Generate-and-test mapping 

Covering algorithms have generally fallen into three 
groups: input-first greedy algorithms (Xmap [12]) 
output-first greedy algorithms (Amap [l l]), dynamic 
programming (Dagon [14], mis [7], chortle [8], Dag- 
map [5], FlowMap [4], Rmap [IS]). An input-first al- 
gorithm maps the inputs to a gate before choosing the 
gate, while an output-first algorithm chooses a gate be- 
fore mapping its inputs. A greedy algorithm is one 
that enumerates a few alternatives, and commits to 
one on the basis of simple heuristics. A dynamic pro- 
gramming algorithm chooses between several different 
local choices, based on the value of different partial 
implementa.tions (for a good description of dynamic 
programming, see [6, Chapter IS]). 

This paper introduces a mapper using a slightly 
different paradigm: generate-and-test. 

Xtmap is an output-first algorithm based on a 
generate-and-test paradigm. The algorithm starts at  
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an output, and generates many ways for that output 
to  be implemented in a single cell, covering some por- 
tion of the fine-grain network. Each of the candidate 
implementations is evaluated (tested) using a simple 
heuristic, and the best one chosen. The inputs of the 
new cell then are added to the set of functions that need 
to  be mapped. Figure 1 gives simplified pseudocode 
for the algorithm. In the actual implementation, map- 
pings are chosen recursively for the inputs of the new 
cell, and the ToMap set is not explicitly represented. 

To complete the description of a generate-and-test 
mapper, three subroutines have to  be described: 

e the method for choosing which node of the fine- 

e the heuristics for determining the value of a cell 

e the generator for single cells (Section 2.3) .  

Choosing the next node to map 

Xtmap has a top-level loop that iterates over the 
principal outputs, and uses a recursive call to  the map- 
per for each input to  a newly created cell. Because 
the ToMap set is implicitly represented on the recur- 
sion stack, it need not be explicitly represented. No 
attempt is made to  choose the order in which the prin- 
cipal outputs or the inputs to a new cell are mapped. 

2.2 

grain network to  map next (Section 2.1), 

(Section 2.2), and 

2.1 

Value of an FPGA cell 

The basic assumption of Xtmap, as with any greedy 
mapper, is that  a series of locally optimal choices 
(with respect to  the heuristic functions) will result in  
a globally good solution. The heuristic functions need 
to  capture any interaction between cells that is likely 
to  be important in the final solution. 

One of the biggest advantages in mapping to FPGAS, 
rather than to cell library technologies, is that all cells 
cost the same, and so we only need to look at  how well 
we cover the fine-grain network. 

One key simplification of the generate-and-test para- 
digm is that  only the generator needs to  know about 
the function of a cell-the function itself does not mat- 
ter in determining the value of the cell. Instead, the 
cell can be evaluated only on the basis of which nodes 
in the fine-grain networks are inputs to the cell, and 
which are hidden-that is, which nodes are covered by 
the cell but are neither inputs nor outputs of the cell. 

The value of a cell is computed as the sum of weight 
functions computed on the inputs and hidden set, as 
shown in Figure 2. 

One would expect it to  be more useful to use already 
mapped nodes in the input set, than to have to map 
new nodes, particularly new ones with low fanout. 

This means that we would expect to  set the weights 
to meet the constraints a1 > a2, a2 < 0 ,  and a3 < 
0. Fanout appears in a denominator, because the 
difference between a fanout of 1 and 2 is much more 
significant than a difference between 11 and 12, this 
means that a negative value for a3 gives a fairly large 
penalty for a mapping with low-fanout inputs, and a 
much smaller penalty to  ones with high-fanout inputs. 
Furthermore, a mapping for a cell is generally better 
if the size of the portion of the network remaining to 
map is less. If we use the sum of the area estimates for 
the inputs as an estimate of how much remains to be 
mapped, we would expect a4 < 0. 

There seems to be little advantage to  using up part 
of a cell to re-implement already mapped nodes, and so 
we would expect to  have bl < 0. For hidden nodes, one 
would expect it to  be best to hide nodes that haven’t 
been implemented, particularly if they have low fanout. 
Thus one would expect to  have b2 > 0 and b3 > 0. 

To minimize delay in the circuit, the Delayweight 
should be set to a negative number. The expected 
constraints on the weights were usually met by sets of 
parameters found by the learning algorithms described 
i n  Section 3, but all were violated by at  least one of the 
weight sets found by the random neighborhood search 
learning technique. The values used in the results 
section (a1 = 0, a:! = -30, a3 = -14, a4 = -11, bl = 
1, b:! = 5, b3 = 5, Delayweight = -256) were found 
by learning on one network, and discovered to work 
reasonably well on many networks. The only expected 
constraint that is violated is that  bl is positive, instead 
of negative. N o  attempt has been made to  see if the 
results are improved by reducing bl .  

The quality of the delay estimate arrival is impor- 
tant for producing good mappings. At first, the algo- 
rithm just used the longest distance from a principal 
input to the node in the fine-grain network, but this 
did not prove to be a particularly good predictor of de- 
lay, and the circuits produced had larger delays than 
those produced by Chortle and Dagmap. 

An improved delay estimate was obtained by doing 
an initial mapping of the fine-grain network using 
Xcmap (a  re-implementation of the main algorithm 
of Dagmap), and recording the Iulheighl: the height 
in the mapped circuit. By setting the delay weight 
to a sufficiently large negative number, the generate- 
and-test algorithm can be forced to  produce circuits 
whose delay (as measured by lutheight) is as small as 
that produced by Xcmap, as long as the generator for 
the node is guaranteed to try the set of inputs used by 
Xcmap (Xtmap does try that set of inputs, as described 
in Section 2.3). 
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ToMap + Principal outputs 
while ToMap # 8 

Choose node n from ToMap and delete it 
For each generated single-cell implementation of 

Compute value for implementation of n 
Implement highest value cell 
Add inputs of cell ( that  aren’t already mapped) to  ToMaF 

Figure 1: Pseudocode for the generate-and-test technology mapping paradigm. 

Value(inset, hidset)  = inweight(i) + hidweight(h) 
i e  in-set h e  hidset 
+Delayweight max arrival( i) 

i E inset  
a1 
a2 otherwise 

if i is already mapped 
inweight(i) = a4 areaest(i) + as/fanout(i) + 

61 if h is already mapped 
otherwise hidweight(h) = bs/fanout(h) + 

Figure 2: Formula for computing the value of  a cell. Of the many candidates for implementing a particular 
node in the network, the one with the highest value will be selected. T h e  function arrival(i) estimates the 
arrival time for the signal at node i ;  the fanout(i) function counts the number of nodes that  use i as an input 
in the fine-grain network; and the areaest(i) estimates the area needed t o  map the input. Currently, arrival 
is hardwired t o  be lutheight, and areaest is hardwired to be the count metric (an area estimator described 
in [IO]). 

2.3 Generator for table-lookup cells 

The generator needs to  produce a number of feasible 
single-cell implementations for a node in the fine-grain 
network. The approach I have taken is to  write a 
simple generator for each different FPGA technology, 
rather than a general-purpose generator to use with a 
variety of technologies. However, this is not essential 
to the concept, and a general-purpose generator could 
be written, perhaps along the lines of Proserpine [I]. 
A generator has been written for f-input table-lookup 
functions, and other generators are being written for 
other target FPGA technologies. 

For table-lookup cells, the generator can be fairly 
simple, as the function of the cell is irrelevant-all that 
matters is how many inputs are needed. The genera.tor 
for Xtmap tries to produce all possible vertex cut sets 
of size f or less separating the node being mapped from 
the primary inputs using a simple depth-first search 
algorithm. 

Simplified pseudocode for the generator is given in 
Figure 3. The recursive procedure takes two parame- 
ters: a set of nodes to  consider as inputs to  the cell and 

a set of nodes that are not to  be expanded in the search. 
The nodes in the input set are replaced one at  a time 
by their own inputs, until the complete input set gets 
too large. After a node has been expanded in this way, 
it is marked so that it will not be expanded again, to 
avoid repeated enumeration of the same cut sets. The 
set of hidden nodes (hidset)  keeps track of the nodes 
that have been removed from the input set, for use in 
determining the value of the cell (see Section 2.2). 

The actual algorithm used in Xtmap is slightly more 
complicated. One simple but important modification 
is that unnecessary inputs are removed from inse t ,  
before inset  is counted and the cell is evaluated. An 
input i is considered to be unnecessary if inputs(i) C 
i n se t .  This optimization is inefficiently implemented, 
and accounts for a large part of Xtmap’s running time. 

Note that not all vertex cut sets with ( in se t (  5 f are 
enumerated by this simple algorithm, as some vertex 
cut sets may require intermediate cut sets with more 
than f nodes, and these would be missed. 

Another, more important improvement can be made 
to the generator by adding an alternative definition 
of the inputs of a node. Both the Xmap and Xcmap 
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'RyExpansions(set inset ,  set noexpand, set hidset)  
if linsetl > f then return 
Evaluatecell( inset  , hid-set) 
for each input i in in-set-noexpand 

TryExpansions(inset - { i }  U inputs(i), noexpand, hidset U { i } )  

Figure 3: Simplified pseudocode for generating trial cells for f-input lookup tables. The generator is called 
initially with TryExpansions(inputs(n), 0, 0). EvaluateCell is called t o  test each trial cell. 

greedy mappers compute legal (linset I 5 f) vertex cut 
sets for every node in the fine-grain network. These 
cut sets can be used as alternatives to inputs(i) both 
in the TryExpansions algorithm and in defining the 
unnecessary nodes of inset .  Updating the set of hidden 
nodes requires a little more work than before, as all the 
nodes between i and the stored vertex cut are hidden, 
not just i. 

Even with the improvements,the algorithm misses 
some f-cuts, and these missed cuts are often the most 
interesting ones for high-quality mapping, since they 
are generally lower in the network than the cuts that 
are enumerated. The algorithm could be improved by 
using the techniques of FlowMap [4] or Rmap [18] to 
ensure that all f-cuts are enumerated. 

The pseudocode for the version of Try Expansions 
used to produce numbers for the benchmarks is shown 
in Figure 4.  The function lutinputs(i) looks up a legal 
cut set for i found by the algorithm for Xcmap (unless 
Xmap found a smaller delay for the node, in which case 
the cut set found by Xmap is used). 

Because the Xcmap (Dagmap) algorithm guarantees 
minimum delay implementation for tree circuits and 
for nodes that can be implemented in a single cell 
directly from the principal inputs, adding the lutinputs 
expansions causes the generator to catch many of the 
interesting possible cells that i t  otherwise would have 
missed. 

3 Learning the weights for the 
heuristics 

My original hope was that a good set of weights 
could be chosen and fixed for all circuits, but I was 
unsuccessful in finding a good set of weights manually, 
and so I implemented learning algorithms to try to find 
good weights. Two different learning algorithms have 
been implemented: random neighborhood search and 
learning from an existing mapping. 

The random neighborhood search algorithm is slow, 
but effective. Xtmap is run repeatedly with different 

values for the weights, and the goodness of each map- 
ping determined. New values are generated by per- 
turbing the values that produced the best mapping so 
far. 

Goodness may be number of cells, delay, or area- 
delay product, or any similar function-I usually use 
the number of Xilinx cells multiplied by the delay 
of the circuit with a unit-delay model. Other area 
measures, such as the number of lookup tables before 
merging or the pin count, are available in ITEM, as are 
other delay measures (such as the measure proposed 
in [17]). The goodness measures availablein the Xtmap 
implementation are any of the area or delay measures 
a.vailable in ITEM, or the product of any two measures. 

After tuning the weights on a few circuits, I added 
a further feature that kept a list of good settings for 
weights. For each new circuit, all the settings already 
recorded were tried first, and then some number of 
random searches were made, adding a new setting to 
the list if a better was found by the random search. I 
had hoped that pruning the list would leave me with 
a few good settings that would work for many circuits. 
Unfortunately, running 45 benchmark circuits resulted 
in 25 different weight settings, each of which was better 
than any of the others for at  least one circuit. 

The second learning approach was based on a very 
different philosophy. Instead of blindly searching for a 
setting by looking at  the results of the mapping, I tried 
to derive a setting from a good mapping. I started with 
an area-efficient mapping from Xmap, then ran the 
cell-generation procedure for each node that was used 
in that mapping. Instead of evaluating each potential 
cell, it was compared with the cell found by Xmap. 
Weights were increased or decreased so as to favor 
the cell found by Xmap over the candidate one. For 
example, if the generated cell had more hidden nodes 
that were already mapped, then bl would be decreased, 
but if it had fewer, 61 would be increased. 

Running Xtmap with the parameters learned in this 
way produced circuits similar to those found by Xmap 
(small, but not fast), but was, of course, much more 
expensive to run. Similarly, running Xtmap with the 
delay weight set to a large negative number duplicated 
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the 

TryExpansions(set in-set, set noexpand, set hid-set) 
remove unnecessary nodes from in-set 
if linset I > f then return 
EvaluateCell(inset, hidset)  
for each input i in inset-noexpand 

TryExpansions(inset - { i} U inputs(i), noexpand, hidset U {i}) 
TryExpansions(inset - { i }  U lutinputs(i), noexpand, hid-set U hidden(i, lutinputs(i))) 
noexpand t noexpand U { i }  

Figure 4: Pseudocode for generating trial cells for f-input lookup tables. I t  is  called initially with 
TryExpansions(inputs(n), 8, 8) and TryExpansions(lutinputs(n), 0. 8). T h e  function lutinputs(i) looks up 
a legal cut set for i found by a greedy mapper (such as Xcmap or Xmap).  

mapping found by Xcmap (fast, but not small). 
The advantage of Xtmap is that  the delay weight can 
be set to intermediate values, getting circuits that are 
both small and fast. 

In order to create repeatable results, the benchmark 
results in this paper did not use learning. Instead, 
a single parameter set was used, and the penalty for 
delay increased by factors of two until the unit-delay 
from Xtmap was as small as from the Xcmap mapping 
(see Table 1). This single parameter set seems to 
produce results very similar to (but slightly better 
than) doing the deterministic learning procedure for 
each benchmark. Based on earlier benchmark runs, 
following this with 10 repetitions of random search 
would probably have improved the results slightly, but 
increased the running time substantially. 

One interesting observation was that running Xtmap 
twice for the des benchmark with the same parameters 
produced different results. The explanation is that the 
arrival time estimate lutheight is not just the result 
of running the Xcmap algorithm, but is updated after 
every mapping, so that it represents the lowest known 
height. For some nodes in des,  Xtmap finds a better 
mapping, and updating the lutheight for these nodes 
results in an improved mapping when Xtmap is re-run. 

4 Conclusions and Future Work 

Table 1 gives some benchmark results for some of 
the recently published technology mappers, all being 
run on identical networks. Xtmap was run with the 
parameters a1 = 0, a2 = -30, a3 = -14, a4 = -11. 
bl = 1, b2  = 5, b S  = 5, Delayweight = -258. For each 
mapper, the number of 5-input lookup tables and the 
unit delay are given. Although Xtmap appears to be 
about as good as the best previously published mapper 
(FlowMap), the unpublished results from FlowMap-r 
seem to be better. 

For delay minimization, the best previous results 
were reported for FlowMap [4], and for area minimiza- 
tion mis-pga [15], but mis-pga gets much of its area 
optimization from high-level optimization and decom- 
position, rather than from mapping per se. Although 
the Xcmap (Dagmap) algorithm produces optimal de- 
lay for trees, on one highly reconvergent example (not 
in the table) Xmap produces a circuit with fewer levels 
of lookup tables. FlowMap produces optimal delay on 
arbitrary networks. 

Xtmap usually gets delay values as good as Flow- 
Map, and with about the same area penalty. 

The CPU time reported in Table 1 is for reading the 
BLIF or EQN input file and doing all three mappings on 
a Sparcstation SLC. The slowest operation is Xtmap 
itself, which is much slower than simple greedy map- 
pers, primarily because of the cost of evaluating all 
the potential cells that a.re not used. Xtmap is sig- 
nificantly slower than Xcmap or Xmap, but not as 
slow as chortle-d. (I do not have timing informa- 
tion for FlowMap, and so cannot compare execution 
times of Xtmap and FlowMap with it.) Improving 
Xtinap’s cut-enumeration algorithm should improve 
both Xtmap’s speed and performance. Improving the 
arrival time estimates (perhaps using FlowMap to com- 
pute lutheight) would also improve performance. 

I believe that technology mapping efforts should 
focus on producing faster mappers, rather than better 
mappers, because it is probably more useful to spend 
the CPU time on improving higher-level optimization. 

To illustrate this, some results are reported for tech- 
niques that high-level optimization before (or during) 
mapping. Table 2 reports results for the same bench- 
marks as Table 1. The cputime reported in Table 2 
does not include the Optimization time, just the map- 
ping time. The three “X” mappers were run on net- 
works created by running two iterations of the ITEM 
script shown in Figure 5 on the benchmark files used 
for the FlowMap results, which is a better starting 
point than used for the comparisons in Table 1. Those 
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30:3 25:4 25:3 

9sy”l 66:5 62:9 65:5 
c499 252:5 136:7 186:5 220.5 
C880 263:8 181:13 231:8 64.9 
alu2 181:8 136:14 154:8 63.0 

9sym 75:5 66:9 74:5 

20:3 12:4 16:3 1.2 

334:lO 238:17 270:lO 216.3 1 319:4 238:7 267:4 32.5 
apex7 114:4 80:6 88:4 6.5 

100:4 65:5 71 :3 5.1 1 
.. . .~ ~ ~- 

1690:6 1054:lO 1212:6 458.9 

18:3 19:2 
rd84 48:4 45:7 49:4 
rot 325:6 233:ll 2695 17.9 

54:4 43:5 49:4 

FlowMapr FlowMap Dagmap chortle-d 
[9] 

26:3 23:3 25:3 28:3 
61:5 61:s  63:5 6 3 5  
58: 5 5d:5 61:5 59:5 

151:5 154:5 2045 382:6 
2 l l : d  232:s 246:8 329:8 
1 4 ~  162:8 199:9 227:9 

245:lO 268:lO 303:lO 500:lO 
232:4 257:4 284:5 308:4 
80:4 89:4 95:4 108:4 
73:4 76:3 87:3 91:4 

[ 31 (41 [51 

1 Od7:5 1308:5 1480:6 2086:6 
1 d7:4 ld7:4 195:4 241:4 
1 5 2  1 5 2  17:2 19:2 
4 3:4 4 3:4 48:4 61:4 
243:6 268:6 328:6 326:6 

1313 13:s 17:3 25:3 
38:4 45:4 42:J 55:4 

Table 1: T h e  columns headed with mapper names report the number of 5-input lookup tables and unit- 
delay estimate o f  delay for that  mapper. The  CPU time (on a Sparcstation SLC) is  the total t ime for the all 
three mappings. Xcmap is a re-implementation of the main algorithm of Dagmap, while the Dagmap column 
has the numbers from the original paper [5]-the numbers differ because Xcmap is not allowed t o  rearrange 
associative operators. X tmap was set to choose the minimum product of unit-delay and the number of tables, 
while sweeping the delay penalty. All the algorithms were run on the same initial network. Italics are used t o  
mark the best area-delay product in each row. 

benchmarks had been created by optimizing the bench- 
marks for delay, then decomposing with the DMIG al- 
gorithm [5 ] .  

The ITEM optimization script. does not have any no- 
tion of critical paths, and attempts to reduce delay 
on all outputs, even non-critical ones. An optimiza- 
tion technique that concentrated on area reduction off 
the critical paths, and delay reduction near the crit- 
ical path would probably produce better area-delay 
products-even so, this technique did produce better 
mappings for several benchmarks than any previously 
reported results. 

Although simple greedy algorithms have been get- 
ting fairly good results, other paradigms for technol- 
ogy mapping remain to be examined. I have a student 
now investigating using ratio-cut partitioning to map 
to f-input lookup tables, so that more global informa- 
tion can be used in deciding which nodes in the fine- 
grain network are worth implementing as cell outputs. 
We hope to get more area-efficient mappings with this 
technique. 

4.1 Mapping for routability 

Most mapper research has focussed on area or de- 
lay minimization, but on the Xilinx chips, the rout- 
ing resources are usually the limiting factor on any de- 
sign. There has been some previous work on mapping 
for routability (notably Rmap [IS]), but the available 

pla.ce-and-route tools have random enough behavior 
that it is difficult to compare the qualities of different 
mappers just by placing and routing the circuits. One 
measure that I believe will be useful is the total pin 
count (number of connections to cells) of a mapping 
(after merging into two-output cells). Table 3 reports 
this measure, and a few other potentially useful ones 
for the Xtmap mappings reported in Table 1.  Place- 
ment and routing experiments have not yet been’done, 
but I believe that using Xtmap to optimize for pin 
count and fanout-weighted delay will produce faster, 
more routable circuits than available mappers (other 
than Rmap). 

Pak Chan believes that pins per CLB is a more 
important measure, and that the mappings produced 
by my mappers and most other published mappers are 
too dense to be routed consistently on Xilinx 3000 chips 
[personal communication]. Using the information from 
Table 3,  Xtmap averages 6.1  pins per CLB (the pin 
count column includes primary inputs and outputs, 
which must be subtracted out before dividing by the 
CLB columns). According to  Dr. Chan, mappings 
with more than 6 pins per CLB are nearly always 
unroutable, but ones with 5 or fewer are nearly always 
routable. If further experimentation bears out his 
observation, then Xtmap will modified to control the 
pin per CLB ratio as well, Some simple controls 
are already possible, such as lying to ITEM about the 
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# use best variable ordering heuristic (expensive) 
order split -c count 

# use local factor to minimize edge count* height 
transform -m local -a edges -d height 

# do block covering to minimize delay (lutheight of ite DAG) 
bcov -m tox -f lutheight bcdelay -s bcvalue bcares 

# redo local factor this time minimizing edge count*lutheight 
transform -m local -a edges -d lutheight 

file 

5xpl 
9sym 
9symml 
tC499 
C880 
alu2 
alu4 
apex6 

count 
apex7 

Figure 5: Opt imizat ion script used w i t h  ITEM to create the networks mapped by the “X” mappers in  Table 2. 
T w o  iterat ions of this opt imizat ion script were run on each network. T h e  block-covering technique is  described 
in [19], and a rough description o f  local factor is in  [13], bu t  the variable ordering heuristic has n o t  been 
published yet [20]. 

Xcmap Xmap Xtmap CPU FlowMap mis-pga 

21:3 20:4 20:3 1.2 22:3 21:2 
8:3 8:3 8:3 0.6 60:5 7:3 
8:3 8:3 8:3 0.6 55:5 7: 3 
90:4 78:6 84:4 9.7 6d:4 199:s 
151:9 112:15 143:9 10.3 l24:8 259:9 
58:4 61:7 56:4 3.0 155:9 122:6 
182:7 156:s 167r7 8.1 253:9 155:ll 
263:4 194:7 234:4 12.8 238:5 274:5 

48:3 33:4 4 5:3 1.9 31:5 81:4 

141 [161 

94:4 64:6 87:4 4.1 79:4 95:4 

tdes I 1494:6 909:ll 1 U2U:S 149.7 1310:5 1397:ll 

1 4 : ~  15:2 17:2 
rd84 16:3 14:3 16:3 13:3 

309:6 223:ll 275:6 234:7 322:7 
33:4 23:6 32:4 &9:3 39:4 
5:P 5:2 5:2 10:2 

2899:84 3182:90 

Table 2: Th is  table reports the results of mapping after high-level opt imizat ion for  delay. T h e  Xcmap, Xmap,  
and X t m a p  results are from opt imiz ing the same start ing points as used for the F lowMap results using an 
ITEM script t h a t  optimizes for  the product of edge count and lutheight. Results for  des are for running the 
opt imizat ion script o n  the same start ing point  as Table 1,  because the minimizer ran o u t  of memory min imiz ing 
on  the DMIG-optimized network. Results for C499 are f r o m  a less expensive script t h a t  did no t  require canonical 
forms, because the script of Figure 5 was unable to complete on  C499. The CPU t ime column (seconds on  
a Sparcstation SLC) counts only the mapping, no t  the optimization, which took anywhere f r o m  seconds to 2 
hours. F lowMap and mis-pga were run w i th  different start ing points, and so the quali ty of the opt imizat ion 
is really being compared, rather than the quality o f  the mappers. Italics are used to mark the best area-delay 
product i n  each row. Note t h a t  for rot the best result in  Table 1 is better. T h e  result for count can be 
improved to 39:3 and C880 to 145:7 by running the opt imizat ion script on  the original benchmark network, 
rather than an already optimized and decomposed one; apex7 t o  100:3 by opt imiz ing the  network used i n  
Table 1; and vg2 to 28.3 by using the cheap opt imizat ion script used for C499, rather than the expensive one. 
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from Table 1 
file inputs outputs tables CLBs depth delay pin count 

5xpl 7 10 25 19 3 73.50 134 

9symml 9 1 65 52 5 132.90 324 
c499 41 32 186 158 5 121.15 1019 

estimate 

9sym 9 1 74 52 5 120.90 332 

C880 60 26 I 231 173 8 140.15 1147 I 143 107 9 144.65 742 
alu2 10 6 I 154 119 8 215.60 743 I 56 49 4 131.70 303 

from Table 2 
tables CLBs depth delay pincount 

20 14 3 64.50 103 
8 8 3 61.70 58 
8 8 3 61.70 58 

84 74 4 87.90 492 

estimate 

alu4 14 8 
apex6 135 99 
apex7 49 37 
count 35 16 
des 256 245 
duke2 22 29 

270 211 10 276.65 1302 167 116 7 231.00 740 
267 210 4 292.10 1502 234 193 4 304.20 1375 
88 61 4 127.30 460 87 58 4 119.70 442 
71 52 3 121.20 367 45 33 3 92.20 249 

1212 964 6 1131.20 6403 1020 716 5 749.00 4915 
187 134 4 127.80 877 166 127 4 146.40 825 

Table 3: More metrics for the mappings produced by X t m a p  for Tables 1 and 2 T h e  second and third columns 
are the number o f  inputs and outputs from the circuit. Within each section the first column is the number of 
lookup tables used in the mapping. T h e  second column is the number of 2-output Xilinx 3000 cells needed 
after merging tables. T h e  third is the longest path from an input t o  an output. T h e  fourth is a fanout-weighted 
delay estimate [17]. T h e  final column is the total number of inputs and outputs used on all CLBs, plus the 
inputs and outputs. Averaged over all the examples, the X tmap mappings use 1.33 outputs per cell, and 4.77 
inputs per cell. 

misexl 8 7 
rd84 8 4 
rot 135 107 
VI32 25 8 
z4ml 7 4 
total 830 640 

number of inputs allowed to a CLB, or having Xtmap 
searches minimize the pin count (ignoring the number 
of CLBs). 

Another direction for future research is to explore 
simultaneous technology mapping and pla.cement, so 
that routable circuits are produced. 

19 13 2 57.30 93 15 12 2 57.30 87 
49 38 4 91.60 240 16 12 3 62.70 83 

269 183 6 144.50 1388 275 189 6 142.05 1412 
44 29 4 72.75 205 32 22 4 70.00 166 
16 11 3 62.20 71 5 4 2 48.60 34 

3227 2479 84 3308.80 16607 2381 1742 70 2575.30 12084 

4.2 Mapping to other  cells 

I plan to implement generators for generate-and-test 
mapping to Actel’s Act1 and Act2 cells. A preliminary 
version was written over a year ago, and looked quite 
promising, but has not yet been translated into C++ 
for inclusion in the new system. 

When mapping to cells other than table-lookup cells, 
the input set becomes a multiset (since inputs may 
need to be duplicated). I’ve also added a few more 
weights to the heuristics, to account for constant in- 
puts, duplicate inputs, and inputs whose complements 
are mapped, even though the inputs themselves are 
not. That is, the definition of inweight has been mod- 
ified as shown in Figure 6 .  

Other generators are planned, including one for 
Quicklogic’s multiple-output cell. For multiple output 
cells, I will probably add three more weights for the 
output nodes of the cell, similar to the weights for the 
hidden nodes. 
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