Regularizers for Estimating
Distributions of
Amino Acids from Small Samples

Kevin Karplus

UCSC-CRL-95-11
30 March 1995

Baskin Center for
Computer Engineering & Information Sciences
University of California, Santa Cruz

Santa Cruz, CA 95064 USA

ABSTRACT

This paper examines several different methods for estimating the distribution of amino
acids in a specific context, given a very small sample of amino acids from that distribu-
tion. These distribution estimators, sometimes called regularizers, are frequently used when
aligning sequences to each other or to models such as profiles or hidden Markov models.

The distribution estimators considered here are zero-offsets, pseudocounts, substitution
matrices (with several variants), feature alphabets, and Dirichlet mizture regularizers.

A new method 1s presented for setting the parameters of the regularizers to minimize
the encoding cost (also called the entropy) of the training data, for all possible samples from
the training data. The optimal parameter settings depend on the size of the sample, but
the optimization method can also be used to get good performance over a range of sample
sizes. The optimal settings with this method are not the same as the traditional values used
for the parameters.

The regularizers are evaluated based on how well they estimate the distributions of the
columns of a multiple alignment—specifically, the expected encoding cost per amino acid
using the regularizer method and all possible samples from each column.

The differences between the regularizers are fairly small (less than 0.2 bits per column),
but large enough to make a significant difference when many columns are combined as is
done in an an alignment.

In general, the pseudocounts have the lowest encoding costs for samples of size zero,
substitution matrices have the lowest encoding costs for samples of size one, and Dirichlet
mixtures have the lowest for larger samples. One of the substitution matrix variants, which
added pseudocounts and scaled counts, does almost as well as the best Dirichlet mixtures,
but with a lower computation cost.

Keywords: regularizers, pseudocounts, Gribskov average score, substitution matrices,
data-dependent pseudocounts, Dirichlet mixture priors, feature alphabets, entropy, encoding
cost

CONTENTS 1

Contents
Why estimate amino acid distributions?o 1
Quantitative measure for regularizers 2
2.1 Encoding costo 3
2.2 More efficient computation of encoding cost 4
3 Estimation methods L 5
3.1 Zero-offset 6
3.2 Pseudocounts 6
3.3 Gribskov average-score method00 o oL 7
3.4 Substitution matrices oL 8
3.5 Substitution matrices plus pseudocounts 10
3.6 Substitution matrices plus pseudocounts plus scaled counts 10
3.7 Feature alphabets 11
3.8 Dirichlet mixtures L 13
Optimizing parameters of estimation methods 14
5 Experimental method oo 15
6 Results for training and testing on full database 15
6.1 Zero-offset 16
6.2 Pseudocounts 16
6.3 Gribskov average score L. oL oL Lo 16
6.4 Substitution matrices oL 16
6.5 Substitution matrices plus pseudocounts 17
6.6 Feature alphabets 17
6.7 Dirichlet mixtures L 19
7 Results for separate training and testing oL 20
8 Conclusions and future research 00 20
References 21
A Partial derivatives for Dirichlet mixtureso 23
B Bayesian interpretation of pseudocount regularizers 23
C Bayesian interpretation of Dirichlet mixture regularizers 26

1 Why estimate amino acid distributions?

For many search and comparison algorithms involving protein sequences, we need to estimate
the probability of seeing each of the twenty amino acids in a given context. This probability is often
expressed indirectly as a score for each of the amino acids, with positive scores for expected amino
acids and negative scores for unexpected ones.

For example, in sequence-sequence alignment, the traditional scoring matrices assign a positive
score for each amino acid that would be a good match to the one in the reference sequence, and a
negative score to each that would be a poor match.

As Altschul pointed out [Alt91], any alignment scoring system is really making an assertion about
the probability of the test sequences given the reference sequence. The score for an alignment is the
sum of the scores for individual matched positions, plus the costs for insertions and deletions. We’ll
only look at the match positions here; although one could make similar arguments for the amino
acids in insert positions. For sequence-sequence alignment, the only information about a match
position that we can use for alignment is what amino acid was seen in that position in the reference
sequence.

2 2. Quantitative measure for regularizers

For each match position, there are twenty scores—one for each of the possible amino acids in the
test sequence. Each match score can be interpreted as the logarithm of the ratio of two estimated
probabilities: the probability of the test amino acid given the amino acid in the reference sequence
and the probability of the the test amino acid in the background distribution.

Let’s define p](z) as the estimated probability that amino acid ¢ will be seen in the test sequence
aligned with amino acid j in the reference sequence and po(i) as the estimated probability that an
amino acid ¢ will be seen in any position of the test sequence. Then the score for matching test amino
acid 7 to reference amino acid j is logy(P;(i)/ Po(i)) for some arbitrary logarithmic base b. [Alt91]

Any method for estimating the probabilities p](z) and po(i) defines a match scoring system
for sequence-sequence alignment. Rather than looking at the final scoring system, this paper will
concentrate on the methods that can be used for estimating the probabilities themselves.

In more sophisticated models than single sequence alignments, such as multiple alignments,
profiles [GME87], and hidden Markov models [KBM*94, BCHM94], we may have more than one
reference sequence in our training set. Each position of such a model will define a context for which
we to want to estimate the probabilities of the twenty amino acids. The only information we will use
about the context is the sampling of the amino acids we have seen in that position in the reference
sequences. In this paper, I'll use s to refer to a sample of amino acids and s(7) to the number of
times that amino acid ¢ appears in that sample. Our problem, then is to compute the estimated
probabilities ps(z) for the context from which sample s was taken, given only the twenty numbers
s(i).

Note that aligning a test sequence to a single reference sequence is a special case of this problem,
in which the sample consists of just a single amino acid. Similarly, estimating the background po(i)
is a special case in which the sample is empty (Vi, s(¢) = 0).

For alignment and search problems, we usually add scores from many positions, and so fairly small
improvements in computing the individual match scores can add up to significant overall differences.
For example, the small differences between the PAM scoring matrices and the BLOSUM scoring
matrices have been shown to make a significant difference in the quality of search results [HH92].

The differences between regularizers is often fairly small. In this paper we attempt to quantify
these small differences for several different methods for estimating the distributions. Section 2
explains the measure used to quantify the tests, Section 3 lists the different methods tested, Section 4
explains how the parameters of the different methods are set, Section b describes the data used for
training and testing, and Section 6 gives the quantitative comparisons of the different methods.

2 Quantitative measure for regularizers

The traditional way in computational biology to demonstrate that a technique or set of parame-
ters is better is to pick a biologically interesting problem and compare methods for solving it. Many
of the regularizers in Section 3 have been validated in this way [HH92, BHKT93, TAK94].

This sort of anecdotal evidence is very valuable for establishing that techniques are useful in
real biological problems, but is very difficult to quantify. It is difficult to determine how much
improvement is expected on different problems, and whether the improved technique is better in
general, or just on the specific problem it was applied to.

In this paper, the regularizers are compared quantitatively on a rather generic problem—
independently encoding the columns of multiple alignments. This generic problem has some at-
tractive features:

e There are large data sets of multiple alignments available for training, making it easy to

optimize the parameters of methods.

e Many of the search and alignment techniques that will use the regularizers are attempting

to produce multiple alignments, and so finding a good regularizer for the encoding problem
should produce a good regularizer for the search and alignment algorithms.

2. Quantitative measure for regularizers 3

e By using trusted alignments, we have fairly high confidence that each amino acid distribution
we see is for amino acids from a single biological context, and not just an artifact of a particular
search or alignment algorithm.

Throughout this paper, the trusted alignments used are the BLOCKS database [HH91] with the

sequence weighting scheme mentioned in Section 5.

2.1 Encoding cost

The encoding cost (sometimes called conditional entropy) is a good measure of the residual
variation among sequences of the multiple alignment. Since entropy is additive, the encoding cost
for independent columns can be added to get the encoding cost for entire sequences; and strict
significance tests can be applied by looking at the difference in encoding cost between a hypothesized
model and a null model [Mil93].

Fach column ¢ of a multiple alignment will give us a count of amino acids, F3(¢). If we use sequence
weights (such as those suggested in [ACL89] or [HH94]), then Fy(7) is the sum of the sequence weights
for sequences having amino acid ¢ in column ¢. These “counts” need not be integers.

If we write the sum of all the counts for a column as |Fy|, we can estimate the probability of each
amino acid in the column as P;(i) = Fy(i)/|F;|. This is known as the mazimum-likelihood estimate
of the probabilities. Note: throughout this paper the notation |y| will mean 3 y(i) for
any vector of values y.

amino acid ¢

Unfortunately, we have no way to get the true probabilities of the amino acids for a column, and
the maximum-likelihood estimator is the best estimate we can make.

Because we don’t have true probabilities of amino acids for each column, we can’t evaluate
regularizers applied to the whole column in a meaningful way. Instead, we will take a small sample
of amino acids from the column, apply a regularizer to it, and see how well the regularizer estimates
the probabilities for the whole column.

Let’s use s(¢) to be the number of occurrences of amino acid ¢ in the sample, and |s| =)", s(7)
to be the size of the sample. The estimated probability of amino acid ¢ given the sample s will be
written as ps(z) The Shannon entropy or optimal encoding cost of amino acid i given the sample is
—log,]55(1) The encoding cost for column ¢ given sample s 1s the weighted average over all amino
acids in the column of the encoding for that amino acid:

Z |F| Py(i) .

The better the estimation]55(1) is of pt(i), the lower the encoding cost H,(¢) will be. The lowest
possible value would be obtained if the estimate were exact (Shannon’s Theorem):

0
ot = = 3 i lowe 16 = = 3 e T

To make a fair comparison of regularizers, we should not look at a single sample s, but at the
expected value when a sample of size k is chosen at random:

Hy(ty= > P(s|)H.(1) .

sample s,|s|=k

The weighting for each of the encoding costs H,(?) is the probability of obtaining that particular
sample from that column. If the samples of size |s| are drawn by independent selection with
replacement from the density P;, then the probability of each sample can be computed from the

counts Fy:
sl TT 210"/ s(at

— |5|!|Ft|‘|s|HFt(i)s(“/s(i)!.

P(slt)

4 2. Quantitative measure for regularizers

We can do a weighted average of the encoding costs over all columns to get the expected cost
per amino acid for a given sample size:

H _ Zcolumn t |Ft|Hk(t)
k pu—
Zcolumn t |Ff|
Zcolumn t |Ff| Zsample s,|s|=k P(5|t)H5(t)
Zcolumn t |Ff|
Zcolumn t Zsample s,|s|=k (|t) Z Ff()10g2 ()
Zcolumn t |Ft| .

2.2 More efficient computation of encoding cost

The final formula for Hj looks formidable, but we can reduce the CPU time required for
computing it by rearranging the summations and precomputing some of them. If we precompute
the total count 7= %" |Fy|, and summary frequencies for each sample

Tu(i)=) PGE,

column t

column t

then we can simplify the computation to

Hk:—% ST D Tu(i)log, Puli) - (2.1)

sample s,|s|=k ¢

We can see that the average encoding cost Hy would be minimized if ps(z) =T,(9)/|Ts], giving
us a lower bound on how well a regularizer can do for samples of size k:

Hmin,k = Z |T |Z |T | (Z|)

s,|s|=k

(1)
——ZZT 102|T|

s|s|=k i

Table 2.1 shows this lower bound on average encoding cost of the columns of the Blocks multiple
alignment [HHHI1] (see Section 5 for details on how the database is used in this paper), given that
we have sampled |s| amino acids from each column. A large encoding cost means that there is a lot
of variation in which amino acids occur, while a small encoding cost means that a few amino acids
have very high probability, and the rest have very low probability.

The last row of the table is the average encoding cost for the columns if we use the full knowledge
of the probabilities for the column]St, rather than just a random sample. This is the best we can
hope to do with any method that treats the columns independently. It is probably not obtainable
with any finite sample size, but we can approach it if we use information other than just a sample
of amino acids to identify the column.

The relative entropy in the last column of Table 2.1 measures how much information we have
gained by seeing a sample of |s| amino acids (rather than |s| — 1). The larger the sample we take
from a distribution, the better we can estimate the distribution, and the fewer bits 1t takes to encode
a column drawn from the distribution. We get the greatest gain (1.4 bits) from knowing one amino
acid (as in sequence-sequence alignment) rather than zero amino acids. Each additional amino acid
(for example, in a profile based on a multiple alignment) contributes less information: 0.39, 0.22,
0.14, and 0.10 bits for the next four amino acids known.

3. FEstimation methods 5

sample size encoding cost in bits relative encoding cost

[s| H| Hg) 1 = Hjy)
0 4.19666
1 2.78084 1.41582
2 2.38691 0.39393
3 216913 0.21778
4 2.02703 0.14210
5 1.92380 0.10323
full 1.32961

Table 2.1: Encoding cost of columns from the weighted Blocks database, given that a
sample of |s| amino acids is known. The encoding cost is a lower bound on the encoding
cost for any regularizer. The last row (labeled “full”) is the encoding cost if we know the
distribution for each column of the alignment exactly, not just a sample from the column
The relative encoding cost 1s the information gain from seeing one more amino acid.

Number of samples
1

20

210

1540

8855

42504

177100

657800

2220075

>

O =~ O Tk W~ O

Table 2.2: The number of distinct samples of size |s| grows exponentially with [s|, but
remains manageable for |s| < 5.

The extra 0.86 bits from knowing a sample of five amino acids from a column, rather than one
may seem small, but is quite important. Since searching a fairly large database may require a score
difference of only 20 bits to identify a sequence as significant, the small increase of 0.86 bits per
position could make an enormous difference in the quality of the searches, permitting many more
short sequences to be significantly found. This extra information is what makes profiles and linear
hidden Markov models so much more successful than simple sequence alignment for searching.

One disadvantage of the encoding cost computation used in this paper is the cost of pre-computing

the Ty (i) values and computing the]55(1) values for each of the possible samples. The number of
distinct samples to be examined is (20+||:'||_1

manageable for |s| < 5 (see Table 2.2).

), which grows exponentially with |s|, but remains

3 Estimation methods

In Section 2.1, the simplest method for estimating probabilities from counts. was introduced. The
maximum-likelihood method, ps(z) = s(%)/|s| is asymptotically optimal as |s| — oo, but performs
very badly for small sample sizes. Using the maximum-likelihood method, the encoding cost for
any amino acid not seen in the sample is —log, 0 = co. To avoid this infinitely high cost, we will
constrain regularizers to provide non-zero estimates for all probabilities: 0 <]55(1) < 1.

Many of the regularizers make a small adjustment to the sample counts to produce what we at
UCSC refer to as posterior counts. If we use X to refer to the posterior counts produced by some
method from sample s, then the estimated probability is

6 3. Estimation methods

LX)
PO=s=x0

To get legal estimated probabilities, the primary constraint on X, is that the result be positive
X (i) > 0.

Note: there will be several different formulas given for computing X, corresponding to different
regularizers. The symbols X;(¢) < will be used for defining the different methods.

The rest of this section will describe how the posterior counts are determined for each of the
methods we’ll be comparing. The notations Py(i) and Poy(i) refer to the background probabilities
and their estimates (that is, the probabilities given a sample of size zero).

3.1 Zero-offset

The simplest method for ensuring that no probability is estimated as zero is to add a small
positive zero-offset to each count to generate the posterior counts:

X(8) — s(i) + = .

For large sample sizes, the zero-offset has little effect on the probability estimation, and]55(1) —
Py(i) as |s| — 0.

For |s| = 0, the estimated probability distribution will be flat (po(z) = 1/alphabet size = 0.05),
which is generally a poor approximation to the amino acid distribution in an context about which
nothing i1s known yet.

It is fairly traditional to use z = 1 when nothing is known about the distributions being
approximated, but this value is much too large for highly conserved regions like the Blocks database—
the optimal value is between 0.048 and 0.054. Using a zero offset of 1/n for an n-character alphabet
(0.05 for amino acids) works much better than the add-one prior for the blocks database.

3.2 Pseudocounts

Pseudocount methods are a slight variant on the zero-offset, intended to produce more reasonable
distributions when |s| = 0. Instead of adding a constant zero-offset, a different positive constant is
added for each amino acid:

X (4) < s(é) + z(¢) .
These zero-offsets are referred to as pseudocounts, since they are used in a way equivalent to having
counted amino acids.

Again, as |s| — oo the pseudocounts have diminishing influence on the probability estimate and
]55(1) — P;(i). For |s| = 0, we can get po(i) = Py(i), by setting z(¢) = aPy(i), for any positive con-
stant a. This setting of the pseudocounts has been referred to as background pseudocounts [LAB'93]
or the Bayesian prediction method [TAK94] (for the Bayesian interpretation of pseudocounts, see
Appendix B). For the Blocks database and |s| > 0, the optimal value of a is near 1.0.

For non-empty samples, the pseudocounts that minimize the encoding cost of Section 2.1 are
not necessarily multiples of Py() (see Section 4 to see how the pseudocounts are optimized). For
example, Figure 3.1 shows the the probability density implied by the optimal pseudocounts for
different values of |s|. To get the actual pseudocounts, multiply the densities by the weight at the
top of each column.

For |s| = 0, the weight is arbitrary, since no real counts are added to the pseudocounts; and the
normalization of the posterior counts to probabilities will eliminate the overall weight. Since the
weight is arbitrary, the reported weight for |s| = 0 is chosen to get the best performance for |s| = 1,
holding the probabilities fixed so that optimality is not lost for |s| = 0.

Note that four amino acids (G=glycine, P=proline, W=tryptophan, C=cysteine) consistently
have much smaller pseudocounts than would be expected from the background distribution, while
three (M=methionine, Q=glutamine, and S=serine) have consistently higher pseudocounts than
expected.

3. FEstimation methods 7

optimized for |s| =
residue 0 1 2 3 0,1,2,3
weight | 0.989 0.986 1.102 1.150 1.067
A 0.078 0.084 0.085 0.086 0.082
C 0.024 0.017 0.017 0.018 0.020
D 0.052 0.048 0.047 0.046 0.050
E 0.068 0.059 0.058 0.057 0.058
F 0.043 0.042 0.041 0.040 0.042
G 0.083 0.057 0.052 0.049 0.068
H 0.024 0.023 0.025 0.025 0.024
I 0.062 0.071 0.071 0.070 0.066
K 0.065 0.059 0.059 0.059 0.057
L 0.091 0.090 0.087 0.084 0.089
M 0.024 0.030 0.032 0.034 0.028
N 0.042 0.045 0.046 0.047 0.044
P 0.044 0.032 0.029 0.028 0.037
Q 0.034 0.041 0.043 0.045 0.039
R 0.060 0.049 0.049 0.049 0.050
S 0.060 0.070 0.073 0.076 0.066
T 0.055 0.062 0.064 0.065 0.059
Vv 0.073 0.082 0.082 0.081 0.077
w 0.014 0.010 0.009 0.009 0.012
Y 0.034 0.032 0.031 0.030 0.033

Table 3.1: Density functions corresponding to optimal pseudocounts for different sample
sizes |s|. The pseudocounts were optimized for the entire blocks database, with weighted
sequences. To get the actual pseudocounts, multiply the density by the weight for the
pseudocounts given in the first row. Note that G, P, C, and W have smaller optimal
pseudocounts than would be expected from scaling the background distribution (|s| = 0).

The pseudocounts roughly reflect the chances of seeing the amino acid in a context in which
we have not previously seen it. A low pseudocount for an amino acid means that the amino acid
is not often seen in a context in which some other amino acid has already been observed. If the
pseudocount 1s lower than we would expect from the background probabilities, then the amino acid
must be more highly conserved than other amino acids. Using this reasoning, we expect that G, P,
W, and C are often highly conserved. Using symmetric reasoning for pseudocounts that are higher
than expected from the background probabilities, we also expect that M, Q, and S are less conserved
than other amino acids.

3.3 Gribskov average-score method

The Gribskov profile [GMEST] or average-score method [TAK94] computes the weighted average
of scores from a score matriz M. There are several standard scoring matrices in use, most notably
the Dayhoff matrices [DSO78] and the BLOSUM matrices [HH92], which were originally created for
aligning one sequence with another (|s| = 1).

The scores are best interpreted as the logarithm of the ratio of the probability of the amino acid
in the context to the background probability [Alt91]:

M;; = log Py(i)/ Po(i)

where s is a sample containing exactly one amino acid: j.
The averaging of the score matrices is intended to create a new score. With the interpretation
of scores given above, and assuming natural logarithms are used, the posterior counts are

8 3. Estimation methods

> Mz:jS(j))

|s]

X, (4) — Po(i)exp (

We can avoid recording the extra parameters Py(¢) by redefining the score matrix slightly. If we let
Mi/,j = MZ,] + In Po(l), then
2 MZ,]'S(J'))

|s]

X(4) — exp (
The BLOSUM substitution matrices provide a score matrix

P, Jj))

Mij = log (Pou)Po(j)

for matching amino acid ¢ and amino acid j, where P(4,j) is the probability of ¢ and j appearing
as an ordered pair in any column of a correct alignment. Let’s take natural logarithms in creating
the score matrix (to match the exponential in the computation of X;(¢)). If we use j to name the
sample consisting of a single amino acid j, then

> P(Za .7)
P.()=X:(1) = :
]() J () PO (])
This is the optimal value for Pj’ and so the Gribskov average score method is optimal for |s| = 1
(with a properly chosen score matrix).
Although the Gribskov average score method is optimal at |s| = 1, it does not perform well at

the extremes. For |s| = 0, it predicts a completely flat distribution (just as zero-offset methods do).
As [s| — oo, the Gribskov average-score method does not approach a maximum-likelihood estimate
for]55(1)

We can get much better performance for |s| > 1 by optimizing the score matrix as described in
Section 4, but the Gribskov average-score method does not generalize to other values of |s| as well
the substitution matrix method described in Section 3.4.

3.4 Substitution matrices

A substitution matrix computes the posterior counts as a linear combination of the counts:
Xo(i) = > My js(f) -
J

This method is similar to the Gribskov average-score method of Section 3.3, with one major
difference—the matrix M is not a logarithmic score matrix.

Note that for |s| = 0, all the sample counts s(j) are zero, and so the posterior counts Xy(é) are
also zero. This violates the constraints on posterior counts, and so some other method of deriving
posterior counts is needed for |s| = 0. For the experiments in this paper, all-zero count vectors are
replaced by all-one count vectors (s(j) = 1 and Xy(i) = Z]' M; ;). This is equivalent to adding an
infinitesimal zero-offset to the count vectors before multiplying by the substitution matrix M.

Substitution matrices, like score matrices, are designed for use in sequence-sequence alignment,
where the sample always consists of exactly one amino acid (|s| = 1). If we let P; be the distribution
we expect in a column in which amino acid j has been seen, we can can get Pj (1) = P;(4) by setting
M; ; = a; P;(i), for arbitrary positive constants a;.

If we set a; = aPy(j), then Xo(d) = Z]' aPy(j)P; (i) = aPy(i), and we get optimal estimation for
|s| = 0 (Po(i) = Po(i)) as well as |s| = 1.

If we set M; ; = P(i,7)/Po(j) = P(i|j), and choose s to be the sample for which s(m) = 1 and
s(j #m) = 0, then ps(z) = P(i|m). The value P(i,7)/Po(j) is known as the relatedness odds ratio
and has been widely used, for example [JTT92].

3. FEstimation methods 9

eigenvectors
background | frequency subst subst+pseudo | subst+pseudo+scaled
residue density matrix 0-3 2 0-3 2 0-3 2
A 0.078 0.099 0.073 0.072 | 0.063 0.068 | 0.071 0.066
C 0.024 0.011 0.013 0.010 | 0.008 0.009 | 0.009 0.009
D 0.052 0.036 0.063 0.069 | 0.099 0.079 | 0.071 0.076
E 0.058 0.043 0.077 0.090 | 0.117 0.104 | 0.101 0.097
F 0.043 0.031 0.037 0.031 | 0.022 0.024 | 0.028 0.030
G 0.083 0.168 0.071 0.065 | 0.085 0.060 | 0.056 0.067
H 0.024 0.011 0.022 0.021 | 0.020 0.020 | 0.020 0.019
I 0.062 0.072 0.059 0.055 | 0.042 0.053 | 0.054 0.056
K 0.055 0.040 0.070 0.078 | 0.091 0.086 | 0.088 0.083
L 0.091 0.144 0.086 0.081 | 0.061 0.074 | 0.078 0.082
M 0.024 0.021 0.022 0.020 | 0.016 0.019 | 0.020 0.018
N 0.042 0.028 0.044 0.046 | 0.0b1 0.046 | 0.047 0.045
P 0.044 0.027 0.050 0.050 | 0.042 0.050 | 0.041 0.055
Q 0.034 0.022 0.039 0.044 | 0.048 0.046 | 0.048 0.041
R 0.050 0.034 0.057 0.061 | 0.064 0.069 | 0.064 0.062
S 0.060 0.055 0.056 0.056 | 0.052 0.056 | 0.057 0.051
T 0.055 0.048 0.053 0.052 | 0.046 0.049 | 0.052 0.047
v 0.073 0.088 0.068 0.064 | 0.048 0.060 | 0.063 0.063
W 0.014 0.005 0.011 0.009 | 0.007 0.007 | 0.007 0.007
Y 0.034 0.018 0.030 0.026 | 0.019 0.021 | 0.024 0.024

Table 3.2: Principal eigenvectors of substitution matrices for the blocks database, scaled
so that each vector sums to one. Each gives the stationary distribution for a mutation
process modeled by the substitution matrix. The eigenvectors are remarkably consistent,
except for the frequency matrix, which is just P(, j), not an optimal substitution matrix.
The headings “2” and “0-3” indicate that the regularizer was optimized for |s|] = 2 or
simultaneously for |s| = 0,1,2, 3 on the weighted blocks database. See Sections 3.5 and 3.6
for details on the substitution matrices used with pseudocounts and scaled counts.

If we are only interested in samples with a single amino acid, we can even use M; ; = P(i, j),
since the normalization makes dividing by Py(j) irrelevant. Indeed, for |s| = 1 we can multiply each
column by a different arbitrary number without affecting the resulting estimate of the distribution.
The pure frequency matrix sets the column weights to be Py(j), while using the relatedness odd
ratio sets the column weights to 1.0.

Pure frequency matrices do not work well for larger samples, and using the relatedness odds ratio
is not much better. In optimal substitution matrices, the column weights vary over a range of about
2 to 1, not 7 to 1 (as they would be for P(¢, 7)) or uniform (as they would be for P(¢,j)/Po(j)).

Furthermore, the heaviest column weight is not necessarily for the most frequent amino acids—
the most frequent amino acids in the data are L and G, but the heaviest weights in the optimum
substitution matrices are on columns K and E.

For large values of |s|, the substitution matrix does not guarantee that the estimated distribution
approaches the true distribution, unless the count vector s happens to be an eigenvector of the
matrix. If the substitution matrix is interpreted as a mutation process modeled as a Markov chain
with transition probabilities assigned by the substitution matrix, then the principal eigenvector
should be the background distribution.

Eigenvectors were determined for several substitution matrices, and only the eigenvector with
the largest eigenvalue had all positive components. Table 3.2 shows these principal eigenvectors
for several substitution matrices. These principal eigenvectors are very similar to the background
distribution, as one would expect. Eigenvectors have been used to examine distance matrices [TJ93,
Hig92], but T have not yet found a reference to the use of eigenvectors with substitution matrices.

10 3. Estimation methods

Note that each diagonal element of an optimal substitution matrix, divided by the total weight
of the column, reflects how conserved that amino acid is. Based on the observations on the optimal
pseudocounts, we expect the diagonal elements GG, PP, WW, and CC to be large, and the diagonal
elements MM, QQ, and SS to be small. This indeed turns out to be the case.

3.5 Substitution matrices plus pseudocounts

In an attempt to avoid the rather ad hoc approach for handling |s| = 0 with substitution methods,
I created a new method which combines substitution matrices and pseudocount methods:

Xs(z) — Z(Z) =+ ZMi’jS(j) .

If one thinks of a substitution matrix as a mutation model, then the pseudocounts represent
a mutation or substitution that does not depend on what is currently in the sequence. For doing
single alignments, where there is exactly one s(¢) that is non-zero, one could get the same effect by
adding the pseudocounts to each column of the substitution matrix, but for other sample sizes, the
separation of residue-specific and background substitutions turns out to be quite useful.

If z(%) is set to aPy(7) for a very small positive number a, then the method is essentially identical
to the pure substitution matrix method. If M is set to be the identity matrix, then the method 1is
identical to the pure pseudocount method. In practice, the optimal matrix is closer to the identity
matrix than the simple substitution matrix is, but still has significant off-diagonal elements. The
pseudocounts sum to between 0.15 and 0.45 (assuming the matrix M is scaled so that the diagonal
elements sum to 20), rather than around 1.0 as they would in a pure pseudocount method.

As with substitution matrices, substitution matrices plus pseudocounts do not converge to the
optimal distribution as |s| — co. They do a little better than pure substitution matrices, since the
matrix is closer to being an identity matrix.

The eigenvectors of the substitution matrices for this combined approach may be even more
interesting than the ones for the simple substitution matrix, since any “noise” introduced by random
mutation uninfluenced by what was previously in the position is modeled by the pseudocounts, rather
than blurring the substitution matrix.

Eigenvectors were determined for several substitution matrices optimized for use with pseudo-
counts. As with the other substitution matrices; only the dominant eigenvector had all positive
elements. Table 3.2 includes these eigenvectors.

We can apply the same analysis for which amino acids tend to be highly conserved as we did
for straight substitution matrices. Again the diagonal elements GG, PP, WW and CC are large,
indicating that they are more highly conserved, and MM, QQ, and SS are small. The diagonal
elements II and KK are also quite small.

3.6 Substitution matrices plus pseudocounts plus scaled counts

Substitution matrices can be modified to work better for |s| = 0 by adding pseudocounts as
described in Section 3.5, but they still do not converge to the maximum-likelihood estimate as
|s| — oo. This problem can be solved by adding one more term to the posterior counts, proportional
to the counts and growing faster than the vector Ms does. One easy way to accomplish this is to
add the counts scaled by their sum:

X, (4) — |s|s(i) + (i) + Z M; ;s(j) -

The method here is almost equivalent to the data-dependent pseudocount method [TAK94]. The
data-dependent method sets

3, BPo(i)e e s()

|s]

X (1) — s(4) +

bl

3. FEstimation methods 11

for arbitrary parameters B and A and a substitution matrix A. Scaling this by |s| and absorbing
the constants and exponentiation into the matrix gives us

X.(3) — |s|s(i) + ZMi,jS(j) :

which is identical to the method here, if the pseudocounts z(¢) are all zero. However, the construction
of their matrices is rather ad hoc, and probably not optimized for the task.

A similar method was proposed by Claverie [Cla94]. His method is equivalent to setting z(¢) = 0
and scaling the s(i) by max(:/[s, |s|/20), instead of |s|. It might be interesting to try other scaling
functions, besides |s| or /[s|—any positive function such that f(|s|) — oo as |s| — co would give
the correct convergence to the maximum-likelihood estimate. Since there is not yet any theoretical
justification for choosing one scaling function over another, I have chosen the simplest one.

3.7 Feature alphabets

The feature-alphabet method partitions the set of amino acids into disjoint feature sets, then
treats the different feature sets as a reduced alphabet, with all amino acids in a feature set considered
equivalent. This partition of the amino acids into disjoint feature sets is called a feature alphabet.
For a feature alphabet f, let’s call the set to which amino acid ¢ belongs f(7).

A single feature alphabet would not provide very good matches to the amino acid distributions
(since all the amino acids in a particular feature get identical estimates), and so distribution
estimation needs to combine the effects of several different feature alphabets.

Although any of the distribution estimation methods could be used for each feature alphabet,
I’ve chosen to use the simplest method (zero-offsets), since the intent of the method is to capture
the relationships between the amino acids in the feature sets, not in a large set of parameters. To
combine the feature alphabets, I multiply the posterior counts together.

Xs(0) = II X1 (1)
feature alphabet f
Xop(D) = 24+ Y. s(h)

3,F(G)=10)

With four properly chosen feature alphabets and only 4 parameters, this method does better
than pseudocount methods (which require 20 parameters) for |s| = 1,2, 3.

One would not expect feature sets to work well for |s| = 0 since the zero-offset methods always
predict a flat distribution for |s| = 0, and combining the flat predictions still results in a flat
prediction.

For large samples (|s| — o0), we again expect the feature alphabets to do poorly compared to
the pseudocount methods, but are superior to the substitution matrix methods (unless scaled counts
are added to the substitution matrix pseudocounts, as in Section 3.6).

Feature alphabets have been used for creating patterns for searching protein databases [SS90],
and feature sets have been quite popular for describing sets of amino acids (for example, [Tay86]).
The feature alphabets are used in quite a different way by Smith and Smith [SS90] than the ones
presented here, since their scores were computed based only on the set of amino acids previously
seen in a context, not on the frequencies. Their method could be roughly approximated by the
feature alphabet in Table 3.3.

A few feature alphabet sets were created by hand from the Taylor features [Tay86], with from four
to fifty-eight feature alphabets. The largest one consisted of one alphabet for the individual amino
acids and 57 binary alphabets corresponding to the “most relevant” feature sets given in [Tay86,

12 3. Estimation methods

features | zero offsets
AC,D EF G HILV, KL MNP QR,ST W Y 0.168058
DE, FRH, NQ, ST, ILV, FWY, C, M, AG, P 0.764163
DEKRHNQST, ILVFWYCM, AG, P 2.062930

Table 3.3: Feature alphabet set based on the amino acid class hierarchy [SS90]. Zero offsets
were chosen for best performance on |s| = 1,2.

features | zero offsets
AC,D EF G HILV, KL MNP QR,ST W Y 0.102741
FILMPV, ACGHNQSTWY, DEKR 2.348270
DE, HKR, NQSTWY, ACFGILMPV 3.031990
AGS, C, DNPTV, EFHIKLMQRWY 3.624300

Table 3.4: Four-alphabet feature alphabet set based on Taylor’s feature set [Tay86]. Zero
offsets were chosen for best performance on |s| = 1,2.

features zero offsets
AC,D EF G HILV, KL MNP QR,ST W Y 0.172476
AGS, C, P, DE, ILV, KMNQRT, FHWY 1.87884
ACFGILMTVWY, DEHKNPQRS 2.59881
ACDEGIKLMNPQRSTV, FHWY 2.65647
CFILMPV, ADEGHKNQRSTWY 2.91754
ACDEFGILMNPQSTVWY, HKR 5.04085
CEFHIKLMQRVWY, ADGNPST 5.64207
FHILMVWY, ACDEGKNPQRST 6.23212
ACDEGIKLNPQRSTV, FHMWY 6.19452
ACDFGIKLMNSTV, EHPQRWY 7.54467

Table 3.5: Ten-alphabet feature alphabet set based on Taylor’s feature set [Tay86]. Zero
offsets were chosen for best performance on |s| = 1,2.

Figure 5].! The smaller sets attempted to improve performance and reduce the size of the regularizer
by grouping non-overlapping features into the same feature alphabet, and omitting the less useful
feature alphabets. Two of these are shown in Tables 3.4 and 3.5. The ten-alphabet set works well
for |s|] = 1 and |s| = 2, but does poorly for larger values of |s|, and the four-alphabet set works
moderately well for larger |s|. None of these hand-created feature sets did as well as the automatically
created ones, and none of the feature-based techniques worked particularly well.

The automatically generated feature sets used in these experiments were chosen with a simple
greedy algorithm (after months of playing around with fancy search programs!). The algorithm
starts with the empty set (0 alphabets), which predicts a flat distribution, then repeatedly adds an
alphabet to the set, re-optimizing the zero offsets after each addition.

The new alphabet is chosen by starting with the alphabet that assigns each amino acid its own
feature and gradually merging features together. A trial merge is made for every pair of features,
and whichever produces the smallest entropy is chosen, until any merging will increase the entropy.
For efficiency in computing the entropy in the inner loop, the zero offsets are not modified for any
of the existing alphabets, and the entropy is only computed for samples with a single amino acid in
them. Not changing the existing regularizer while doing the merging also makes it possible to apply
the partitioning algorithm to other regularizers, since all that is needed are the X;(¢) values for the
20 samples consisting of a single amino acid each.

1Figure 5 of [Tay86] lists 61 sets, but several of them are complements of others in the list and complementary sets
generate the same feature alphabet, giving only 57 distinct feature alphabets.

3. FEstimation methods 13

zero offsets
features 4 alphabets 8 alphabets
AJCD E F G H IV, KL, M,N P Q R,S, T, W Y | 0.104006 0.179209
ADEGKNPQRSTV, CFHILMWY 0.976318 1.034
ADEFGHIKLMNQRSTVY, CPW 0.892489 0.882162
ACFGILMPSTVWY, DEHKNQR 1.52301 1.77172
ACDEILMNPSTV, FGHKQRWY 3.18251
ACDEGHNQSTWY, FIKLMPRV 3.41063
ACGHIKLMNPQRSTV, DEFWY 3.32751
AEFIKLMPQRSTVWY, CDGHN 2.96088

Table 3.6: Feature alphabet set for the entire blocks database, found by the greedy
algorithm in Section 3.7. Note that the smaller the zero offset, the greater the effect of the
feature alphabet on the estimated probabilities. Zero offsets are given for the four-alphabet
and the eight-alphabet regularizers.

Table 3.6 gives an example of a feature alphabet produced by this algorithm, trained on the
entire blocks database using position-specific weighting for the sequences. The zero offsets have been
optimized to minimize the average entropy for |s| = 1 and |s| = 2 (though the feature alphabets
themselves were selected using just |s| = 1, as explained above). Note, it is not claimed that these
feature alphabets are the best one can do, but they are better than any of the hand-created feature
sets tried, and as good as the ones found by my earlier search programs.

3.8 Dirichlet mixtures

The Dirichlet mixture method [BHK*93] has similarities to the pseudocount methods, but is
somewhat more complex. They have been used quite successfully by several researchers [BHK93,
TAK94, HH95]. In Section 6, we’ll see that Dirichlet mixtures are superior to all the other regularizers
examined, and that there 1s not much room for improvement to better regularizers.

One way to view the posterior counts of Dirichlet mixtures is as a linear combination of pseudo-
count regularizers, where the weights on the combination vary from one sample to another, but the
underlying regularizers are fixed. Each pseudocount regularizer is referred to as a component of the
mixture. The weights for the components are the product of two numbers—a prior weight ¢, called
the muzture coefficient and a weight that is proportional to the likelihood of the sample given the
component.

Fach pseudocount regularizer defines a Dirichlet density function (p; through pi) on the possible
samples, with p. characterized by the pseudocounts z.(¢). Thus a 9-component Dirichlet mixture
for the amino acids will have 168 degrees of freedom: 9 pseudocount vectors with 20-components
each and 9 mixture coefficients (whose sum can be normalized to 1.0).

We need to introduce some notation—the Gamma and Beta functions. The Gamma function is
the continuous generalization of the integer factorial function ?(n + 1) = n! and the Beta function
is a generalization of the binomial coefficients:

With this notation, we can define

X = Y 02 s

1<c<k B(z)

where z. + s should be interpreted as the component-wise sum of the two vectors. The derivation
of this formula using Bayesian statistics can be found in Appendices B and C.

14 4. Optimizing parameters of estimation methods

It is tempting to combine the ¢. and B(z.) terms, since neither depends on s, but the B values
can get quite large and quite small, and so it 1s useful to take the ratio of the two Bs, to keep the
coefficients conveniently scaled. In any case, it 1s a good idea to compute and store log B rather
than B, to avoid range problems with floating-point numbers.

Because each of the pseudocount regularizers approaches the maximum-likelihood estimate as
|s| — oo, the Dirichlet mixture will also have the correct behavior in the limit. For |s| = 0, the Beta
functions cancel, and we have

Xo(i) = > qez(i)

1<e<k

which can easily be made to fit the background distribution.

4 Optimizing parameters of estimation methods

Once we have decided that the goal is to minimize the average encoding cost of the columns,
and chosen a method to try, we can try to optimize the parameters of the method, using Newton’s
method or gradient descent to find parameter values at which all the first derivatives of the encoding
cost are zero, and all the second derivatives are positive.

We can compute the derivatives of the encoding cost H}, (as given in Equation 2.1) with respect
to some parameter p fairly easily from X, and its derivatives:

OH | .
i R

02 Hy log, ¢ X)X, RS
W - ‘%22”’)(?})&(” - (5e)

0X, (i . 0X;(j .
TRAUE WD

_;i%@ D)+ %%M;xm

J

For many of the methods, the second derivative of X is 0 for all the parameters; simplifying the
optimization further.
Newton’s method for optimizing the parameter vector v consists of iterating the assignment

OH;,

. . du(z
o(i) — v(i) — A2
v(7)?

For most of the methods, if the second partial is negative, then the parameter is too large, and
we replace 1t by a smaller value, not using Newton’s method. Some care needs to be taken in
doing the iterations to make sure that the parameters stay within legal range. There are various
techniques that can be tried for accelerating the convergence, such as multiplying the correction
term by a constant that is less than one if the iterations seem to be oscillating, or greater than one
if the iterations seem to be approaching the optimum from one side. These tricks for accelerating
convergence are beyond the scope of this tech report, but can be found in books on non-linear
optimization. None of the tricks are particularly robust, and the optimization problem to be solved
here is often ill-conditioned, with many rather different settings of the parameters giving very similar
results.

Starting off with good estimates of the parameters helps a lot. Zero offsets were started at 0.05
(so that they sum to 1.0 over the alphabet). Pseudocounts were started at the observed probabilities
for the individual amino acids in the entire data set. Substitution matrices were started with each
column being the correct probabilities (from the summary T;) for a sample consisting of the single
amino acid corresponding to the column number. Pseudocounts that were added to substitution
matrices were initialized like other pseudocounts, but scaled to sum to 0.2 instead of 1.0.

5. Experimental method 15

This optimization method works quite well with all the linear methods (zero-offset, pseudocount,
substitution matrix, feature alphabets), but the Dirichlet mixtures cause a problem: the partial
derivatives are difficult to compute for the z.(¢) parameters (see Appendix A). A simpler approach,
that seems to work at least as well, 1s to optimize the mixture coefficients ¢. using the correct
derivatives, but using approximate derivatives for the components of the mixture—pretending that
P(s|p.) is a constant independent of z, but recomputing it when the z, values actually do change.

One also needs good starting estimates for the components of the mixture. After trying several
methods, I settled on using the same partitioning method as was used for finding feature alphabets
(Section 3.7). To add n components to an existing (possibly empty) set of components, T merged
features together until the number of features had been reduced to n. A component was created
for each feature by summing the summary frequencies for all samples in which all elements were in
the feature, and scaling (rather arbitrarily) so that the pseudocounts for the component added to
20. This provided good starting points for the optimization, though the best results were obtained
by adding 1, 2, 3, ...components and optimizing after each addition, rather than adding a lot of
components at once.

The optimized Dirichlet mixtures improve with increasing number of components fairly smoothly,
though with diminishing returns, making the choice of number of components difficult.

5 Experimental method

Two slightly different methods were used for evaluating regularizers. Both involve computing
the average entropy of a multiple alignment given a regularizer (as in Equation 2.1). In one method,
the parameters of the regularizer are adjusted using the same multiple alignment, while in the other
the regularizer is trained on a different multiple alignment.

The first method gives us an estimate of how well we can do with the best tuned regularizer,
while the second method gives us an estimate of how well the regularizer generalizes to other similar
problems.

The multiple alignments chosen are the BLOCKS database [HH91]. The sequences are weighted
using a slight variant of the Henikoffs’ position-specific weighting scheme [HH94], as implemented by
Kimmen Sjolander. Sjolander’s weighting scheme is proportional to the Henikoffs’ position-specific
weights, but instead of having the weights sum to 1.0 for each block, they sum to the number
of sequences in the block, so that blocks with more sequences in them have more influence than
blocks with only a few sequences. Other weighting schemes have been used by other researchers (for
example, tree distances [THG94] or weighting for pairs of alignments [ACL89]), and the position-
specific one used here was chosen rather arbitrarily for its ease of computation.

The experiments that used the same set for training and testing used the entire blocks database,
but separate train-test sets were created as disjoint random subsets. The subsets were created putting
entire blocks randomly into one of the subsets, not by randomly assigning individual columns.

6 Results for training and testing on full database

This section contains the average encoding costs obtained for different sample sizes and different
regularizers. To simplify the presentation, the results for each class of regularizers will be presented
separately. For each regularizer and sample size, the ezcess entropy is reported, that is, the difference
between the average encoding cost per column using the regularizer and the average encoding cost
per column using the best theoretically possible optimizer. For the entire database, the best possible
encoding costs are reported in Table 2.1.

The last row of each table reports the excess entropy if the full column F; is given to the
regularizer, rather than a sample s. Since the entropy for the column is minimized if the X;(¢)
values exactly match the observed counts Fy(¢), this measures how much the regularizer distorts the
data. Because some of the columns have few counts, it is not the same as letting |s| — oo, but offers
a more realistic idea of what can be expected with large sample sizes.

16 6. Results for training and testing on full database

excess entropy

|| z=1 z=0.04851 2z =10.05420 =z =0.05260
0 0.12527 0.12527 0.12527 0.12527

1 1.07961 0.20482 0.20677 0.20585

2 1.17080 0.18636 0.18457 0.18470

3 1.16489 0.16843 0.16587 0.16626

4 1.13144 0.15311 0.15063 0.15105

5 1.09164 0.14203 0.13989 0.14026
full | 0.84541 0.08013 0.08884 0.08653

Table 6.1: Excess entropy for the zero-offset regularizers applied to the full blocks database.
The popular “add-one” regularizer is clearly a poor choice for this database.

excess entropy
optimized for |s| =

0 1 2 3 0,1,2,3
0.00000 0.01910 0.02848 0.03459 0.00610
0.14221 0.13384 0.13643 0.13925 0.13644
0.14499 0.13681 0.13455 0.13497 0.13720
0.13838 0.13127 0.12792 0.12757 0.13097
0.13006 0.12397 0.12060 0.12004 0.12350
5 0.12369 0.11845 0.11543 0.11484 0.11804
full | 0.07966 0.07913 0.08767 0.09129 0.08521

e QO N — O ®

Table 6.2: Excess entropy for pseudocount regularizers applied to the full blocks database.

6.1 Zero-offset

For the blocks database, the optimal zero offset is approximately 0.05. When optimizing for
|s| = 1, the optimum is 0.04851, for |s| = 2 the optimum is 0.05420, and for the average over all
samples of size 0, 1, 2, and 3, the optimum is 0.05260. Table 6.1 presents the excess entropy for each
of these three regularizers, as well as the popular “add-one” regularizer.

6.2 Pseudocounts

The pseudocounts were optimized for |s| = 0 through |s| = 3, both separately, and minimizing
the average entropy for all four sample sizes combined. The pseudocounts themselves are presented
in Table 3.1, and the excess entropy for each is given in Table 6.2. The pseudocount regularizers
do much better than the zero-offset regularizers for |s| = 0 and |s| = 1, but already by |s| = 5, the
difference is only 0.025 bits per column.

6.3 Gribskov average score

Four different score matrices were tested: the BLOSUM62 matrix (appropriately modified to
represent In P(7, j)/ Py(j) for the BLOSUMG62 data), the log-odds matrix In P(¢, j)/ Py(j) for the test
data, a matrix optimized for |s| = 2, and one optimized for |s| = 0,1,2,3. The excess entropies are
presented in Table 6.3.

6.4 Substitution matrices

Four different substitution matrices were tested: the frequency matrix from which the BLO-
SUM62 scoring matrix was derived, a frequency matrix computed from the weighted blocks database,
a substitution matrix optimized for |s| = 2, and one optimized for |s| = 0,1,2,3. Table 6.4 presents
the excess entropies.

6. Results for training and testing on full database 17

excess entropy

blosum62 log-odds | optimized for |s| =
| P 0,1,2,3
0.12527 0.12527 | 0.12527 0.12527
0.13294 0.00000 | 0.19046 0.08408
0.41066 0.13311 | 0.01694 0.03136
0.59404 0.27749 | 0.08442 0.12809
0.71962 0.38475 | 0.15471 0.21261

5 0.81315 0.46765 | 0.21601 0.28223
full | 1.37003 0.98464 | 0.65103 0.74889

B w N = Ol ®

Table 6.3: Excess entropy for Gribskov average score regularizers applied to the full blocks
database.

excess entropy

blosum62 frequency | optimized for |s| =
| matrix 2 0,1,2,3
0.00369 0.00000 | 0.05348 0.05270
0.13294 0.00000 | 0.05723 0.03647
0.35455 0.08581 | 0.02495 0.02708
0.50493 0.17251 | 0.05577 0.06792
0.61172 0.24275 | 0.09300 0.11082

5 0.69341 0.30091 | 0.12933 0.15083
full | 1.20369 0.71452 | 0.44748 0.48373

e QN = Of®»

Table 6.4: Excess entropy for substitution matrix regularizers applied to the full blocks
database.

The pure frequency matrix is optimal for |s| = 0 and |s| = 1, but degrades badly for larger
samples, and is worse than pseudocounts for |s| = 3. The blosum62 matrix does not do well for
any sample size greater than zero, probably because of the difference in weighting schemes used for
building the matrix and for testing.

Optimizing the substitution matrix can preserve its superiority over pseudocounts up to |s| = 4,
but the pseudocounts get closer to the optimum regularizer as the sample size increases, while the
substitution matrices get farther from the optimum.

6.5 Substitution matrices plus pseudocounts

Adding pseudocounts, scaled counts, or both to the substitution matrices improves their perfor-
mance significantly. Table 6.5 presents the excess entropies for these regularizers. The full method,
using scaled counts and pseudocounts as well as the substitution matrix, has the best results of any
of the methods tried so far.

The matrix for the best of these substitution matrix methods is shown in Table 6.6. Note that
use of scaled counts allows the diagonal of the substitution matrix to be negative without risking
negative or zero posterior counts (as long as M; ; > —1), but this matrix has no negative entries.

6.6 Feature alphabets

The feature alphabets used are shown in Table 3.6. Because the feature alphabet sets were
created by adding a new alphabet to an existing feature alphabet set, the n-alphabet set is just the
first n rows of the table. The zero-offsets are given in the table for the 4-alphabet and 8-alphabet
sets.

18 6. Results for training and testing on full database

excess entropy

subst+pseudo subst+scaled subst+pseudo+scaled
optimized for |s| = | optimized for |s| = | optimized for |s| =

2 0,1,2,3 2 0,1,2,3 2 0,1,2,3
0.02555 0.00012 | 1.00651 0.00099 | 0.43012 0.00000
0.02670 0.01080 | 0.01970 0.00734 | 0.02960 0.00080
0.02498 0.02595 | 0.02502 0.03105 | 0.02496 0.02509
0.04969 0.04743 | 0.04099 0.04823 | 0.04157 0.03975
0.07834 0.06937 | 0.05093 0.05753 | 0.05210 0.04849
0.10718 0.09152 | 0.05833 0.06407 | 0.05973 0.05548
full | 0.38692 0.32624 | 0.07968 0.07789 | 0.07492 0.09645

U!A;MI\DHOT

Table 6.5: Excess entropy for substitution matrix regularizers with pseudocounts and
pseudocounts plus scaled counts applied to the full blocks database.

residue A [} D B F G H 1 K L

A 0.7173 0.0638 0.0782 0.1558 0.0433 0.1378 0.0450 0.0859 0.1374 0.0755

C 0.0482 0.1955 0.0065 0.0078 0.0177 0.0098 0.0090 0.0279 0.0120 0.0203

D 0.0408 0.0000 1.2001 0.3464 0.0093 0.0475 0.0542 0.0091 0.1001 0.0148

E 0.0740 0.0000 0.3192 1.4279 0.0109 0.0293 0.0590 0.0231 0.2112 0.0278

F 0.0283 0.0126 0.0144 0.0199 0.6603 0.0102 0.0399 0.0919 0.0244 0.1386

G 0.1670 0.0126 0.0957 0.0766 0.0170 1.1503 0.0346 0.0182 0.0865 0.0173

H 0.0194 0.0031 0.0406 0.0486 0.0253 0.0129 0.4316 0.0118 0.0599 0.0168

I 0.0583 0.0196 0.0135 0.0399 0.1000 0.0079 0.0172 0.6955 0.0473 0.2905

K 0.0618 0.0009 0.0852 0.2037 0.0166 0.0326 0.0640 0.0282 1.2676 0.0343

L 0.0803 0.0166 0.0321 0.0645 0.2321 0.0117 0.0388 0.4441 0.0834 1.0022

M 0.0326 0.0109 0.0108 0.0279 0.0546 0.0068 0.0152 0.1106 0.0335 0.1511

N 0.0435 0.0092 0.1982 0.1090 0.0140 0.0555 0.1038 0.0232 0.1328 0.0180

P 0.0611 0.0009 0.0426 0.0637 0.0175 0.0219 0.0256 0.0189 0.0624 0.0250

Q 0.0498 0.0051 0.0673 0.2092 0.0121 0.0206 0.1006 0.0197 0.1906 0.0337

R 0.0450 0.0048 0.0463 0.1057 0.0167 0.0265 0.0847 0.0240 0.4181 0.0383

=3 0.2358 0.0402 0.1147 0.1288 0.0323 0.0892 0.0650 0.0407 0.1292 0.0348

T 0.1214 0.0318 0.0700 0.0991 0.0302 0.0353 0.0384 0.0869 0.1221 0.0614

v 0.1464 0.0430 0.0260 0.0681 0.0845 0.0198 0.0197 0.5876 0.0733 0.2238

W 0.0040 0.0019 0.0036 0.0074 0.0440 0.0033 0.0095 0.0093 0.0099 0.0171

Y 0.0204 0.0092 0.0209 0.0269 0.2502 0.0084 0.1004 0.0359 0.0372 0.0448

residue M N P Q R s T) W Y pseudocounts

A 0.1040 0.0908 0.1239 0.1502 0.0784 0.2978 0.1729 0.1747 0.0154 0.0423 0.0296
C 0.0277 0.0186 0.0071 0.0162 0.0120 0.0381 0.0357 0.0406 0.0109 0.0155 0.0089
D 0.0173 0.2266 0.0457 0.1085 0.0438 0.0860 0.0562 0.0154 0.0069 0.0256 0.0197
E 0.0372 0.1165 0.0610 0.3041 0.0920 0.0851 0.0706 0.0356 0.0114 0.0283 0.0219
F 0.1030 0.0224 0.0204 0.0279 0.0207 0.0287 0.0292 0.0626 0.1249 0.3584 0.0164
G 0.0295 0.1318 0.0518 0.0731 0.0541 0.1383 0.0613 0.0306 0.0155 0.0213 0.0314
H 0.0209 0.0854 0.0214 0.1138 0.0606 0.0348 0.0249 0.0112 0.0179 0.0938 0.0092
I 0.2345 0.0350 0.0271 0.0489 0.0321 0.0379 0.0881 0.4754 0.0213 0.0536 0.0233
K 0.0467 0.1337 0.0555 0.2642 0.3582 0.0798 0.0836 0.0373 0.0158 0.0379 0.0207
L 0.4788 0.0457 0.0490 0.1110 0.0721 0.0479 0.0884 0.2749 0.0717 0.1012 0.0344
M 0.2250 0.0193 0.0158 0.0543 0.0246 0.0234 0.0396 0.0715 0.0199 0.0279 0.0091
N 0.0308 0.7723 0.0338 0.1235 0.0775 0.1159 0.0877 0.0195 0.0162 0.0392 0.0157
P 0.0285 0.0396 1.3621 0.0588 0.0408 0.0643 0.0446 0.0285 0.0069 0.0185 0.0165
Q 0.0573 0.0901 0.0373 0.7495 0.1174 0.0623 0.0573 0.0259 0.0216 0.0281 0.0131
R 0.0435 0.0917 0.0438 0.1919 0.9917 0.0668 0.0565 0.0276 0.0270 0.0372 0.0191
=3 0.0539 0.1876 0.0916 0.1369 0.0844 0.4823 0.2865 0.0524 0.0191 0.0465 0.0224
T 0.0864 0.1252 0.0600 0.1147 0.0678 0.2594 0.5980 0.1256 0.0129 0.0376 0.0209
v 0.1914 0.0377 0.0478 0.0721 0.0407 0.0581 0.1494 0.6894 0.0254 0.0580 0.0274
W 0.0159 0.0084 0.0033 0.0141 0.0110 0.0061 0.0056 0.0082 0.9543 0.0611 0.0054
Y 0.0397 0.0370 0.0159 0.0375 0.0300 0.0273 0.0240 0.0313 0.1278 0.8340 0.0128

Table 6.6: Substitution matrix and pseudocounts for regularizer using substitution matrix
plus scaled counts plus pseudocounts (trained on |s| = 0,1,2,3).

The feature alphabets have very few tuning parameters (one per alphabet), and so one would
expect them not to do well relative to the pseudocount methods (20 parameters) or the substitution
matrices (400 parameters). The excess entropy reported in Table 6.7 show the feature alphabets
doing surprisingly well for having so few parameters.

The 8-alphabet set does quite well for the the samples sizes it was tuned for (|s| = 1,2), but
degrades rather rapidly for larger sample sizes, doing worse than zero-offsets by |s| = 4. The 4-
alphabet and b-alphabet sets do better than pseudocounts for |s| = 1,2, 3, but, like the substitution
matrix method, the feature alphabets continue to get further from the optimum regularizer as |s|
increases, while the pseudocount methods improve.

The results for hand-created feature alphabet sets is presented in Table 6.8. On the whole, these
hand-created feature sets did not do as well as the automatically generated ones.

Although the tiny number of parameters for the feature alphabets makes them aesthetically
appealing, their performance is not good enough to justify the effort of implementing them. Perhaps

6. Results for training and testing on full database 19

excess entropy for n alphabets
1 2 3 4 5 6 7 8
0.12527 0.12527 0.12527 0.12527 0.12527 0.12527 0.12527 0.12527
0.20207 0.14679 0.12551 0.10224 0.09088 0.08432 0.07842 0.07138
0.19704 0.13503 0.11754 0.09424 0.08240 0.07554 0.07132 0.06506
0.19054 0.13383 0.12353 0.11017 0.10720 0.10868 0.11143 0.11268
0.18429 0.13401 0.12991 0.12637 0.13261 0.14280 0.15241 0.16127
5 | 0.18040 0.13591 0.13682 0.14165 0.15600 0.17392 0.18952 0.20512
full | 0.16902 0.14783 0.17308 0.21292 0.265674 0.32444 0.37478 0.43235

B w N = Ol

Table 6.7: Excess entropy for feature alphabet regularizers optimized for |s| = 1,2, applied
to the full blocks database.

excess entropy

|| Smith Taylor-4 Taylor-10 Taylor Taylor-58
0 0.12527 0.12527 0.12527 0.12527 0.12527
1 0.12893 0.17180 0.10069 0.11627 0.11019
2 0.10643 0.14352 0.08221 0.09621 0.08696
3 0.13251 0.15269 0.13456 0.13175 0.14194
4

5

0.16284 0.16989 0.19322 0.17321 0.21009
0.19128 0.18937 0.24832 0.21299 0.27880
full | 0.29335 0.29341 0.59231 0.44537 1.14868

Table 6.8: Excess entropy for hand-generated feature alphabet regularizers optimized for
|s| = 1,2, applied to the full blocks database. The first three alphabet sets are presented
in Tables 3.3 through 3.5. The “Taylor” column contains an 11-alphabet set consisting of
the fundamental sets in [Tay86], and the “Taylor-58” contains an alphabet for each feature
set in [Tay86, Figure 5].

a different feature-based approach could work better.

6.7 Dirichlet mixtures

Dirichlet mixtures are clearly the luxury choice among regularizers. The need for computing
Gamma functions in order to evaluate the regularizer makes them much more expensive to use than
any of the other regularizers reviewed here. However, the excess entropy results in Tables 6.9 and
6.10 show that the mixtures do perform better than any other regularizer test, and may well be
worth the extra computational cost in creating a profile or hidden Markov model.

The regularizers in the table (except for the 9-component one) were created by adding a single
component to an initially empty mixture or by adding components to a previously created mixture,
optimizing after each addition for |s| = 1,2. The components were added using the greedy strategy
described in Section 3.8. The l-component mixture is just a set of pseudocounts, and so performs
almost identically to the pseudocounts optimized for |s| = 1 or |s| = 2.

The 9-component mixture was provided by Kimmen Sjolander, and was optimized for a different
function on the blocks database with all sequence weights equal. The optimization was to provide
the best Bayesian prior for the set of observed count vectors [BHKT93]. Sjolander’s 9-component
mixture is the best we have for |s| = 5, but it does fairly poorly for |s| = 0,1, 2.

The overall best regularizer is the 21-component Dirichlet mixture, which gets within 0.027 bits
of the best possible regularizer for sample sizes up to b, and probably never takes more than 0.09
bits more than the optimum regularizer.

20 7. Results for separate training and testing

excess entropy for n components

1 3 4 6 7 9 10 10
| 1 1+2 143 14243 14244 9 142+3+4 14346
0.02230 0.02488 0.03134 0.02516 0.02694 0.06123 0.02385 0.01774
0.13437 0.05235 0.04026 0.02336 0.01972 0.05336 0.01115 0.00661
0.13524 0.07353 0.05311 0.03275 0.02678 0.02402 0.02290 0.01610
0.12930 0.08302 0.05933 0.03960 0.03301 0.01970 0.03127 0.02520
0.12206 0.08657 0.06200 0.04367 0.03715 0.02083 0.03620 0.03105

5 0.11676 0.08886 0.06455 0.04762 0.04119 0.02455 0.04066 0.03624
full | 0.08308 0.07986 0.08234 0.08365 0.08837 0.10274 0.08607 0.08992

B w N = Ol ®

Table 6.9: Excess entropy for small Dirichlet mixtures regularizers optimized for |s| = 1,2,
applied to the full blocks database. The mixtures were built by adding new components
to a previous mixture, except for for the nine-component mixture, which was provided by
Kimmen Sjolander.

excess entropy for n components
15 15 20 21 28 31 35
|5| 142434445 1424448 14346410 14243444546 1424344454647 1424448416 14346410415
0 0.01989 0.01040 0.01111 0.00883 0.00832 0.00786 0.00812
1 0.00192 0.00227 0.00169 0.00115 0.00470 0.00198 0.00578
2 0.01137 0.01002 0.01003 0.00757 0.01750 0.00764 0.02100
3 0.01987 0.01958 0.01957 0.01471 0.02740 0.01776 0.03863
4 0.02608 0.02613 0.02653 0.02051 0.03380 0.02479 0.04903
5 0.03186 0.03199 0.03286 0.02636 0.03943 0.03092 0.05650
full | 0.08603 0.09155 0.08715 0.08589 0.09357 0.09474 0.10174

Table 6.10: Excess entropy for larger Dirichlet mixtures regularizers optimized for |s| = 1,2,
applied to the full blocks database. The mixtures were built by adding new components to a
previous mixture, with the history of the additions shown in the name. The 21-component
mixture 14243444546 is the best overall regularizer for the BLOCKS database.

7 Results for separate training and testing

To make sure that the results in Section 6 were not training on noise in the data, but were picking
up phenomena that should generalize, regularizers were created using the same methods on a subset
of the data, and tested on a disjoint subset.

The blocks database was divided into three disjoint sets, with about 10% of the blocks in set 10a,
10% in 10b, and the remaining 80% in 80c. Regularizers were created separately for each of the 3
sets, and tested on the other two. The ordering of the methods produced by these tests was almost
identical to the ordering produced by the self-test presented in Section 6. This separate train-test
evaluation lends some extra confidence to the comparative evaluation of the regularizers, but little
new information, and so will not be presented in detail here.

8 Conclusions and future research

For applications that can afford the computing cost of the Dirichlet mixture regularizers, they
are clearly the best choice. In fact they are so close to the theoretical optimum for regularizers, that
there doesn’t seem to be much point in looking for better regularizers. The evaluations of regularizers
for searches in biological contexts have also found Dirichlet mixtures to be superior [TAK94, HH95],
validating the more information-theoretic approach taken here.

Although most applications (such as training hidden Markov models or building profiles from
multiple alignments) do not require frequent evaluation of regularizers, there are some applications

References 21

(such as Gibbs sampling) that require recomputing the regularizers inside an inner loop. For these
applications, the substitution matrix plus pseudocounts plus scaled counts is probably the best
choice, as it has only about 0.03 bits more excess entropy than the Dirichlet mixtures, but does not
require evaluating Gamma functions.

For applications in which there is little data to train a regularizer, the pseudocounts are probably
the best choice, as they perform reasonably well with few parameters. If you have enough data to
train a substitution matrix technique, then you should have enough data to train a Dirichlet mixture,
as they have comparable numbers of parameters.

One weakness of the empirical analysis done in this report is that all the data was taken from
the BLOCKS database, which contains only highly conserved blocks. While this leads us to have
high confidence in the alignment, it also means that the regularizers do not have to do much work.
The appropriate regularizers for more variable columns may look somewhat different, though one
would expect the pseudocount and substitution matrix methods to degrade more than the Dirichlet
mixtures, which naturally handle high variability. I plan to build regularizers for the HSSP structural
alignments [SS91] to check that Dirichlet mixtures are the most effective in that application as well.

To get significantly better performance than a Dirichlet mixture regularizer, we have to step
away from using a pure regularizer that only knows about the sample of amino acids seen in the
context. There are at least two ways to do this. One uses other information about the column
(such as solvent accessibility or secondary structure) and the other uses other information about the
sequence (such as a phylogenetic tree relating it to other sequences).

Using extra information about a column could improve the performance of a regularizer up to
the “full” row shown in Table 2.1, but no more, since that entropy reflects the best we could do if
the extra information uniquely identified the column. There is about 0.6 bits that could be gained
by using such information (relative to a sample size of 5), far more than difference between the best
regularizer and a crude zero-offset regularizer.

One possible way to use such column information would be to classify each column with one of
a small number of labels, and to tune a different regularizer for each label. For this application,
pseudocount regularizers are probably most appropriate, both because the labeling will reduce the
size of the training set, and because a good labeling should provide fairly pure distributions that
shouldn’t need the ability of Dirichlet mixtures to match a variety of different distributions. I plan
to pursue creating such a collection of regularizers in spring and summer 1995.

Using sequence-specific information may yield even larger gains than using column-specific in-
formation. Preliminary investigations at UCSC indicate that there may be a full bit per column
to be gained by taking into account phylogenetic tree relationships among sequences in a multiple
alignment. Even if phylogenetic tree data is not available, sequence distance information may be
useful.

Another way to use sequence-specific information is to use modified regularizers for residues
that are in contact, adjusting the probabilities for one amino acid based on what is present in the
contacting position. I hope to work on this approach in summer 1995 as well.

Acknowledgements

I’d like to thank Leslie Grate, who wrote an early version of the program used to test regularizers;
Kimmen Sjolander for providing the 9-component Dirichlet mixture; Michael Brown for providing an
implementation of the Dirichlet mixture regularizer (later replaced with a more efficient implemen-
tation); the Henikoffs for providing the BLOCKS database, pre-publication drafts of their papers,
and comments on early drafts of this paper; and everyone in the computational biology group at

UCSC.

References

[ACL89] Stephen F. Altschul, Raymond J. Carroll, and David J. Lipman. Weights for data related
by a tree. JMB, 207:647-653, 1989.

22
[ALt91]
[BCHM94]

[BHK*93]

[Cla94]

[DSOT78]

[GMEST]
[GR65]
[HHO1]
[HHY2]
[HH94]

[HHO5]
[Hig92]

[ITT92]

[KBM+94]

[LAB+93]

[Mil93]
[SS90]
[SS91]

[TAK94]

[Tay86]

[THGY4]

[T193]

References

Stephen F. Altschul. Amino acid substitution matrices from an information theoretic

perspective. JMB, 219:555-565, 1991.

P. Baldi, Y. Chauvin, T. Hunkapillar, and M. McClure. Hidden Markov models of
biological primary sequence information. PNAS, 91:1059-1063, 1994.

M. P. Brown, R. Hughey, A. Krogh, I. S. Mian, K. Sjolander, and D. Haussler. Using
Dirichlet mixture priors to derive hidden Markov models for protein families. In L. Hunter,
D. Searls, and J. Shavlik, editors, ISMB-93, pages 47-55, Menlo Park, CA, July 1993.
AAAT/MIT Press.

Jean-Michael Claverie. Some useful statistical properties of position-weight matrices.
Computers and Chemistry, 18(3):287-294, 1994.

M. O. Dayhoff, R. M. Schwartz, and B. C. Orcutt. A model of evolutionary change in
proteins. In Atlas of Protein Sequence and Structure, chapter 22, pages 345-358. National
Biomedical Research Foundation, Washington, D. C.; 1978.

Michael Gribskov, Andrew D. McLachlan, and David Eisenberg. Profile analysis: Detec-
tion of distantly related proteins. PNAS, 84:4355-4358, July 1987.

I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products. Academic
Press, fourth edition, 1965.

Steven Henikoff and Jorja G. Henikoff. Automated assembly of protein blocks for database
searching. NAR, 19(23):6565-6572, 1991.

Steven Henikoff and Jorja G. Henikoff. Amino acid substitution matrices from protein
blocks. PNAS, 89:10915-10919, November 1992.

Steven Henikoff and Jorja G. Henikoff. Position-based sequence weights. JMB,
243(4):574-578, November 1994.

Steven Henikoff and Jorja GG. Henikoff. Personal communication, January 1995.
Desmond G. Higgins. Sequence ordinations: a multivariate analysis approach to analysing
large sequence data sets. C'ABIOS, 8(1):15-22, 1992.

David T. Jones, William R. Taylor, and Janet M. Thornton. The rapid generation of
mutation data matrices from protein sequences. CABIOS, 8(3):275-282, 1992.

A. Krogh, M. Brown, I. S. Mian, K. Sjolander, and D. Haussler. Hidden Markov models in
computational biology: Applications to protein modeling. JMB, 235:1501-1531, February
1994.

C. E. Lawrence, S. Altschul, M. Boguski, J. Liu, A. Neuwald, and J. Wootton. Detecting
subtle sequence signals: A Gibbs sampling strategy for multiple alignment. Science,

262:208-214, 1993.

Aleksandar Milosavljevi¢. Discovering sequence similarity by the algorithmic significance

method. In ISMB-93, pages 284-291, Menlo Park, 1993.

Randall F. Smith and Temple F. Smith. Automatic generation of primary sequence
patterns form sets of related protein sequences. PNAS, 87:118-122, January 1990.

C. Sander and R. Schneider. Database of homology-derived protein structures and the
structural meaning of sequence alignment. Proteins, 9(1):56-68, 1991.

Roman L. Tatusov, Stephen F. Altschul, and Eugen V. Koonin. Detection of conserved
segments in proteins: Iterative scanning of sequence databases with alignment blocks.

PNAS, 91:12091-12095, December 1994.

William Ramsay Taylor. The classification of amino acid conservation. Journal of
Theoretical Biology, 119:205-218, 1986.

Julie D. Thompson, Desmond G. Higgins, and Toby J. Gibson. Improved sensitivity of
profile searches through the use of sequence weights and gap excision. CABIOS, 10(1):19-
29, 1994.

William R. Taylor and David T. Jones. Deriving an amino acid distance matrix. Journal

of Theoretical Biology, 164:65-83, 1993.

A. Partial derivatives for Dirichlet mixtures 23

A Partial derivatives for Dirichlet mixtures
The derivative of the Beta function is

B _ g (i) D)

T(ze(@) 7]z

If we introduce the variable R to be the expression

(ze(m) +s(n)) 'zt s)) PC(n) | PM(lz)
(7(2c(n))~ Tzt s 2z)

then the derivative of X, () is

9z.(1)

|
|
0Xs(i) B(z.+s) . . .

s ((2o(0) + () B+ 80 =)

B(z)
where 8(i — n) is 1 if i = n and 0 otherwise.

Using Stirling’s approximation
e+ 1)~ V2re(e/e)" (14 1/12e7 4+ O(2™?))
lets us approximate the derivative of In? ()

7’(9:)N —1_1_1 1
7 (x) ™ ne 1222 + 2

Since Stirling’s approximation is not good for small z, we may have to use

T(e+n+1)
x4+ 1)(z+2) - (x+n)

?(x) =

to move the value of the argument up into a region where the approximation is adequate:

V@) 11 1 1 1 1

~N—— — _— .= — 1 — :
?(x) r x+1 x+2 zx+n—1 2(x+n)+n(x+n) 12(r+n)2+z+n

Second partial derivatives are easily computed from the first partials.

B Bayesian interpretation of pseudocount regularizers

We can use Bayesian probability techniques to interpret the pseudocount regularizers. To apply
these methods we have to view amino acids as being generated by a two-stage random process. First,
a 20-dimensional density vector p over the amino acids is chosen randomly, then amino acids are
chosen randomly with probabilities P(¢) = p(¢). The probability of amino acid ¢ given a sample s is
the integral over all possible vectors p of the probability of choosing that vector times the probability
of choosing ¢ given that vector:

R0y = PGl = [Ppls)oti)dp

Computing the probability P(p|s) requires applying Bayes’ rule:

P(pls) = P(p,s)/P(s) = P(s|p)P(p)/ P(s) ,
giving us a new formula for the probability of amino acid 2:

1

P05

[PGP dr

24 B. Bayesian interpretation of pseudocount regularizers

The probability P(s|p) is easily computed for any density vector p, but we need to know the
prior distribution of p in order to compute the integral. The computation for P(s|p) is the same as

in Section 2.1:
p
= s |'H

There is an obvious generalization to non-integer 5(]) values by replacing the factorial function with
the equivalent expression using the Gamma function:

_ .7
P(slp) =7(|+1H7

s(7)

(J)

(J)

In order to compute the integral, we must choose a model for the the prior distribution of p. One
choice that allows us to compute the integral is to model the prior as a Dirichlet distribution, that

o) = TLotar

for some parameter vector z, where C'is a constant chosen so that [P(p) dp =1.

Showing in detail how to compute the integral is beyond the scope of this paper, but the answer
can be derived from the standard definition of the Beta function [GR65, p. 948]

1
B(z,y) = /tx‘l(l—t)y‘ldt
0

?(2)? (y)
T(x+y)

and the combining formula [GR65, p. 285]:

b
/ b —)Y L dt = 5" B(a, y)
0

By writing the integral over all p vectors as a multiple integral over the 20 dimensions of the
vector and doing some rearrangement, we can get the solution

/Hp(j)z(”_1 dp

= B(x(1),2(2) + -+ 2(20))B(2(2), 2(3) + -+ 2(20)) - B(2(19), 2(20)

C

where we have introduced the B(z) notation as an simple generalization of B(x,y) to the vector
argument z.
With this choice of prior distribution for p, we can compute

P(p,s) = (IP)A()
_ |+1HP

.(|5|+1|).(| I)H p()5”)*2(” '
I1; 7)) + D7 (=) '

(])-I-Z(J) 1

B. Bayesian interpretation of pseudocount regularizers 25

We can now compute the estimated probability of the sample
P(s) = /]S(p, s)dp

[PelnP

)

_ (sl e

- Hj?<s<j>+1>?<z<j>>/ [T ety dp
)

T(ls+1p7(e) TL 7 G0) +5G))
Hj7(5(j)+1)7(Z(j)) 7

dp

<|z+s|>
I CEROIED <j>>
(= +) H? (7))
2(Is] + 1)) B<z+s>
76O D BG)

The integral for estimating the conditional probability of amino acid ¢ given sample s is then

PG) = Plls)
= P(li,S)/P(S)
= = P(i,s, p)d
P(ls) (i,5,p)dp

L OBOILIGG D 70l +1) T et
= BT (s T 1) B <>Hﬂ<s<j>+1>/p(”1;[p(”()W v
_ Blz4+s+ &)

o B(z + s)

2|z +s) 1 7(200) + 5() + 6 5)
[[;7(:0) +s() ?(z+sl+1)
z(4) + s(%)

|2 + 5]

Notation: é; is used above to mean the vector consisting of a one in the ¢th position and a zero
elsewhere. ¢; ; is one if ¢ = j and zero otherwise.

This rather involved computation finally ends up with the pseudocount method for estimating
the probability of an amino acid given a sample of amino acids. The regularizer parameters z can
be interpreted as assuming a Dirichlet distribution for the prior probabilities P(p). Previous work
with pseudocounts has relied heavily on this Bayesian interpretation of the parameters, going so far
as to assign z(¢) = aPy(i), which does indeed provide the optimal estimates for po(i), but which we
have seen in Section 3.2 is not the best setting of the parameters for |s| > 0.

The posterior distribution of p after seeing a sample s is P(p|s) = P(s|p)P(p)/P(s). As we can
see from the above computations, this posterior distribution is again a Dirichlet distribution, with
parameters s(j) + z(j), instead of the prior distribution’s parameters z(j). This interpretation of
X (j) as the parameters of the posterior distribution is what inspired naming them the posterior
counts. The scaling of X, does matter for this interpretation, and so not all the posterior counts
produced by regularizers can be automatically interpreted as Dirichlet posterior distributions on p.

We can extend the Bayesian analysis to compute the posterior distribution of p given that we have
seen several independent samples: p(p|51, S2,...,8n). The computation is fairly straightforward.
First we apply Bayes rule:

26 C. Bayesian interpretation of Dirichlet mixture regularizers

p(p|51,52, ceySp) = p(p, s1, 89, . ..,sn)/p(sl,sz, ceeySn)
= P(p)P(s1,82,...,sn|p)/P(s1,82,...,55)

P T (—P;j§i§>)

1<k<n

Repeating the mathematics for a single sample would be tedious, but we can take a shortcut.
Since the posterior distribution after seeing a sample i1s again a Dirichlet distribution, we can treat
it as the prior distribution for adding the next sample. Using this trick, we can see that the
final posterior distribution after seeing all n samples is a Dirichlet distribution with parameters
z(4) + s1(4) + - - + s (7). In other words, we get the same result from observing n independent
samples as we would get from adding all the samples together and using the resulting counts as a
single sample.

C Bayesian interpretation of Dirichlet mixture regularizers

The Dirichlet mixture regularizers can also be interpreted using Bayes rule, in a manner very
similar to that used for interpreting pseudocounts. The main difference comes in how we model the
prior distribution of p. A mixture distribution consists of a number of component distributions. We
can regard the process as adding one more step to the random selection—first we select a component,
then a density vector p from the component, and finally amino acids from the density.

If we use the letter ¢ to designate a component, we can write a mixture distribution as

= Z P(ple)P(c
Simple application of Bayes’ rule to the definition of]5(5) gives us
P(s) = /P(s, p)dp
[PP
S2P) [Pl Pl

If each component of the mixture is modeled as a Dirichlet distribution, we get a Dirichlet mazture
distribution: R ¢ '
P =3 g I
c Zc) i

where the mixture coefficients ¢, must sum to one (¢, = p(c))

Using our general formulas for mixture distributions, we have

P(p,s) = > q:P(slp)P(plo)
_ 7(I(|(+)1J|r)1) Z ch) Hp(j)s<j>+zc<j>—1

I;7 (ze
P(s) = /
I1

2
7(|5|+1) B(zc £ 5)
;T (s() +)Z © B(z)

C. Bayesian interpretation of Dirichlet mixture regularizers 27

PG = [PPl d

1
= G 2t | PGPl by

_ 1 ||+1) B(Zc+5+6i)
P(s) Z 11,7 +1) B(z)

Z q B(zé-(l—zsc-;—él)

B(zc+s)
2 AT
ze(i)+5() Blzets)
24 gl Bl

B(zc+s)
Zc 9 B(z.)

Unfortunately, unlike the single Dirichlet case, the summations preclude easy cancellation of the
7 or Beta functions.

The posterior distribution for p is a Dirichlet mixture with components z. 4+ s, but the mixture
coefficients change in a rather complex way. The posterior mixture coefficient for the z; + s
component 1s

9dB(zq + 5) 1

B(zq) >4 B](;(cz‘l')s) '

Note that if we just need a set of posterior counts without interpreting them as a posterior
Dirichlet mixture distribution (say for computing scores in a profile or hidden Markov model), we
can eliminate the scaling factors, getting

X — ¥ a4)

exactly as used in Section 3.8. The normalization of the counts to make estimated probabilities
takes care of whatever scaling we need.

Because the posterior distribution is again a mixture of Dirichlet distributions, we can combine
multiple observations in the same way as we do for pseudocounts. The effect is again identical to
adding all the observation vectors together, and using the single combined observation vector for
s. This is the correct posterior distribution if we assume that one p was chosen, and all samples
were taken from that p. The more interesting assumption is that a separate p is chosen from the
prior distribution for each sample. With this assumption, the posterior distribution given n samples
$1,...,8, and an m-component Dirichlet mixture prior is an mn-component Dirichlet mixture, with
components z. + s; and mixture coefficients

ch(Zc + 5])
CB(z.)

where (' 1s the appropriate normalizing constant so that the mixture coefficients sum to one.

