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Increasingly, short proteins have been found to be important functional elements in cellular biology.
Members of this class of molecules have been associated with a diverse set of functions including
the regulation of amino acid metabolism [24], iron-homeostasis [21], spore development [18, 5] and
Despite the recent discoveries of functionally relevant short proteins,
there is still relatively little known about how widespread and critical short proteins are. Further-
more, the advent of next-generation sequencing technologies has enabled transcriptional profiling
of complete genome sequences [4]. In the yeast genome, these efforts have led to the expansion of
the transcriptome [14]. The problem of discriminating short protein-encoding sequences from other

antimicrobial activity [8].
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Abstract

Accurate prediction of genes encoding small proteins (on the order of 50 amino acids or
less) remains an elusive open problem in bioinformatics. Some of the best methods for gene
prediction use either sequence composition analysis or sequence similarity to a known protein
coding sequence. These methods often fail for small proteins, however, either due to a lack of
experimentally verified small protein coding genes or due to the limited statistical significance
of statistics on short sequences.

Our approach is based upon the hypothesis that true short proteins will be under selective
pressure for encoding the particular amino acid sequence, for ease of translation by the ribo-
some, and for structural stability. This stability can be achieved either independently or as
part of a larger protein complex. Given this assumption, it follows that small proteins should
display conserved local protein structure properties much like larger proteins. Our method in-
corporates neural-net predictions for 3 local structure alphabets within a comparative genomic
approach to generate predictions for whether or not a given open reading frame encodes for
a short protein. We have applied this method to the complete genome for E. coli strain K12
and looked at how well our method performed on a set of 60 experimentally verified small
proteins from this organism. Out of a total of 11,467 possible ORFs, we found that 4 of the
top 10 and 24 of the top 100 predictions belonged to the set of 60 experimentally verified short
proteins. We also tested our method against all annotated ncRNAs in F. coli K12 and found
that the best scoring ncRNAs by our method were significantly enriched for regulatory sRNAs
that are complementary to protein-coding ORFs. Overall, our method represents a significant
improvement over the state of the art for predicting true small protein encoding sequences.

Introduction

short RNAs will only increase as transcriptional profiling efforts expand.



Due to the lack of introns and alternative splicing mechanisms, prokaryotic organisms repre-
sent a unique setting for the elucidation of novel short proteins. Within this context, any Open
Reading Frame (ORF) is potentially a protein-encoding gene. For prokaryotic genomes, the most
accurate way to predict a gene is via similarity to a protein in another genome. This technique is
problematic, however, due to limited numbers of experimentally verified short proteins in sequence
databases. Further complicating the problem is a contamination of sequence databases caused by
the propagation of dubious ORF predictions via homology-based annotation efforts [9].

In situations where there is no matching protein, sequence-composition-based methods are tra-
ditionally used. There are several automated genefinders that fall into this category such as GLIM-
MER [19, 6], ORPHEUS [7], GeneMark [13, 1, 2], and EasyGene [12, 15]. GLIMMER uses in-
terpolated Markov models to distinguish coding from non-coding DNA. The program combines
first through eighth-order Markov models and weights them by their predictive power. ORPHEUS
begins by a database similarity search. The genes with matches in the database are then used
to create a statistical profile of protein coding regions and ribosome binding sites. This profile
is then used to make genome-wide predictions for protein-coding genes. The original GeneMark
program used non-homogeneous Markov models to distinguish coding from non-coding sequences.
The newer GeneMark-hmm program embeds the original GeneMark models into a hidden Markov
model framework. EasyGene uses sequences that match a protein in Swiss-Prot to estimate an
HMM for a given genome. The HMM is then used to score putative genes.

Prokaryotic-specific gene prediction algorithms have also been previously described. The Multi-
variate Entropy Distance (MED) algorithm, combines a comprehensive statistical model of protein
coding ORFs with a model of prokaryotic Translation Initiation Sites (TISs). A novel feature
of this algorithm is that the statistical model is based on a linguistic “Entropy Distance Profile”
(EDP) which is inferred from observed amino acid probabilities. This profile is then used to map
a given sequence within a 20-dimensional EDP phase space. Coding and non-coding sequences
are then discriminated in part by how they cluster within this 20-dimensional space. Prior to this
work, Edward Ochman investigated the ability to identify short bacterial proteins via a method
that measured the ratio of nucleotide substitution rates between non-synonymous and synonymous
mutation sites [16]. This method is based on a prior observation that among a set of closely re-
lated protein coding sequences, divergence at synonymous sites is greater than at non-synonymous
sites [22, 11]. Ochman’s study only looked at previously annotated ORFs in bacterial genomes. All
the gene finders described above work on single genomes, taking little advantage of conservation
signals available with comparative genomics.

Short proteins represent a particularly difficult problem for all methods using sequence com-
position. Given that the ORFs are small, sequence composition analysis yields weak statistics,
making it hard to discriminate a protein-encoding ORF from an ORF occurring due to chance.
Genome annotators are often left with a difficult descision: to predict or not to predict. Using a
large minimum size for predictions reduces the false positives but yields severe under-annotation
for short proteins. Conversely, lower minimum sizes lead to over-annotation of prokaryotic genome
sequences for short putative ORFs. An analysis in 2001 by Skovgaard et al. estimated that as
much as 10% of the original annotation for the E. coli genome published in 1997 was a result of
over-annotation, particularly for short ORFs [23].

We have developed a method to discriminate true short protein coding ORFs from an ensemble
of all possible un-annotated ORFs in a given genome. Our method combines traditional gene
annotation techniques with a novel application of local protein structure prediction tools within a
comparative genomic framework. The novel assumptions in our method are that ORFs encoding



short proteins will be selected for structural stability of the protein and for high frequency codons
in a given genome. Just as for larger proteins, we hypothesize that structural stability will be
critical to protein function. Therefore, we should be able to recognize conservation for properties
related to structural stability in multi-genome alignments of closely related organisms. We validated
our method on the complete genome sequence of E. coli strain K12 MG1655. Approximately 60
short proteins have been annotated and experimentally validated for this organism, representing
the largest repertoire of validated short proteins described thus far [9]. Somewhat surprisingly, a
large proportion of these proteins have been found to be associated with membranes.

2 Methods

2.1 Overview

In order to determine whether a given sequence codes for a short protein, we begin with a multiple
genome alignment for our target organism. We then use this alignment to generate scores for each
sequence based on three categories of analysis. The first analysis we perform is to analyze the
observed codon composition for a given sequence according to a log-odds score. We score each
sequence for agreement with its genome’s known codon biases. Second, we analyze each sequence
for protein-like conservation patterns in the multiple sequence alignment. We score an alignment
of a homologous sequence to the target sequence according to a BLOSUM90 substitution matrix.
We then compare this to the score of the target sequence aligned to itself. We expect homologous
sequences that code for proteins to have a score similar to the target self-alignment score. Finally,
we look for prediction strength and consistency among a set of local structure alphabets. For
each sequence we generate three independent predictions for a given local structure alphabet and
measure their overall agreement. We hypothesize that sequences coding for a protein will generate
more consistent predictions than sequences not coding for a protein. We combine these scores, for
a set of positive and negative training examples, to generate a model which we use to predict on
new sequences.

2.2 Data compilation

To take advantage of an existing wealth of prokaryotic comparative genomic data and analysis tools
at UC Santa Cruz, we obtained all sequence data and gene annotation directly from the UCSC
Microbial Genome Browser (http://microbes.ucsc.edu/) [20]. For this analysis we generated a set
of all possible open reading frames,10 amino acids or longer, in the entire genome for E. coli K12 .
This set was then filtered to remove sequences with more than 20% overlap to any annotated genes
in GenBank. We then removed any overlap to an experimentally verified set of 60 short proteins,
previously described by Storz et al [9] so that we could use them for validating the method. The
final set of ORFs contained 12,514 sequences. For a representative set of true protein encoding
genes, we chose all genes annotated in GenBank as protein coding that were 1000 bases or longer.
This list consisted of 1,625 sequences. We also looked at all ncRNAs annotated in GenBank. This
set consisted of 168 sequences.



2.3 DMultiple alignment generation

To make predictions for E. coli K12, we started with a multiple-genome alignment including
15 unique E. coli strains and 7 other Enterobacteriaceae: Blochmannia floridanus, Buchnera
aphidicola, Enterobacter 638, Salmonella enterica ATCC 9150, Salmonella enterica CT18, Shigella
flexneri, and Yersinia pestis. These genomes were selected on the basis of their relationship to
E. coli K12. We wanted to include both closely and more distantly related species in our analysis
as long as the genomes could be easily aligned. The multiple genome alignment file (MA) used in
this study was created using the program Threaded Blockset Aligner (TBA) [3]. A phylogenetic
tree derived from an analysis of 23S rRNA was used as one of the inputs for TBA. One of the
advantages of using TBA is the ability to make any organism in a multiple alignment the reference
genome. This ensures a 1:1 alignment mapping for all regions in the reference genome. Genome
duplication events are not explicitly handled by TBA. For our study, E. coli K12 was the reference
genome.

All sequences that were perfectly conserved in the multiple alignment were omitted from fur-
ther analysis. The lack of any mutations inhibited measurement of protein-like conservation, thus
removing a critical component of our study. This filter reduced the number of ORFs analyzed to
11,244, 1,585, 164, and 59 for all non-annotated ORFs, GenBank annotated ORFs greater than
1000 bases, annotated ncRNAs, and the experimentally validated set of short proteins respectively.

2.4 Codon bias calculations

For each genome, we made two models of codon probabilities: one based on observed counts in all
GenBank-annotated protein genes for that genome, and the other on the GC-richness of the genome
(provided by the genome browser). We then made a log-odds scoring system for each codon c,
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and averaged it over all codons in the ORF and over all aligned genomes. This codon-bias term
measures selection for high expression and common amino acids in each genome, and turned out
to be our strongest single predictor of protein-encoding ORFs. In order to investigate the impact
of MA data on the method’s performance, we also calculated the codon bias in the absence of any
alignment data, using only the data for F. coli K12.

2.5 Amino acid conservation and BLOSUM-loss

To look for protein-like conservation, we converted the nucleotide alignments to amino-acid align-
ments. For each column in the multiple alignment we scored each pairwise target-sequence-to-
homolog-sequence alignment according to a BLOSUM90 substitution matrix. We then computed
a weighted average for this target-to-homolog score across all homologs in the alignment. To mea-
sure protein conservation in a given alignment column, we compared the weighted average for the
target-to-homolog score to the BLOSUMO0 score for the target sequence aligned to itself (1).
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where h = homologs in the alignment, S;; = target-to-homolog BLOSUM90 score, S;; = target-
to-self BLOSUMO90 score. Because we were specifically interested in mutations that are consistent
with protein coding, we averaged these ratios over all codon positions that had at least one base
different in at least one genome.

The homolog-specific weight W), was set to 1 minus the computed sequence identity between
the two genomes. Therefore, sequences that are very closely related had their scores down-weighted
while scores from more distantly related sequences were given a higher weight (See Supplementary
Material for a complete list of weights).

According to this scoring scheme then, positions that are perfectly conserved at the amino-
acid level yield a ratio of 1, conservative mutations will decrease the ratio somewhat, and non-
conservative mutations will decrease it substantially. To simplify plotting, we subtracted this
average ratio from 1.01 to generate a BLOSUM-loss measure. A loss of 0.01 indicates perfect
conservation at the protein level and large losses indicate non-protein-like mutations.

2.6 Local structure predictions

All local structure predictions were generated using Predict-2nd [10], using the amino-acid multiple
alignments derived from the original DNA multiple alignment as inputs. We generated predictions
for a set of 15 local structure alphabets, though only three of the fifteen ended up being used in our
final predictor of protein-coding ORFs. To test the value of the comparative genomics input, we
also made predictions using the same neural nets (NN), but with only the E. coli K12 translated
ORFs as inputs, without the other genomes.

For each alphabet, we generated predictions from three independently trained neural nets. Each
was trained on the same set of proteins, but using different multiple sequence alignments and
different starting conditions for the optimization. The neural nets were not specially built for
finding small proteins—they were available from the structure prediction work done for CASPS8.

We then compared the output probability vectors for each target position to look for agreement
among the three predictions (a, b, and c¢). To measure agreement we calculated the “dot product”
of the resulting probability vectors for each position, ), a;bic;, and took the average across the
entire target sequence. This value is maximized when all three NNs generate strong predictions for
a consistent local structure sequence—a signal we expected to be indicative of protein-like peptides.

2.7 Three-fold cross training

We performed three-fold cross validation experiments using a logistic regression model implemented
in R [17] and two sets of training data. The negative training set was the set of ORFs in E. coli
K12 with no more than 20% overlap to an existing GenBank annotation. The positive training set
was the set of GenBank-annotated E. coli protein genes 1000 bases or longer. Each training set
was split into three parts and two parts were used to train a logistic repression model, which was
then tested on the remaining part. The training and test was repeated three times, once for each
held-out third of the data.

To determine what combination of features to use in the logistic regression model, we used a
simple greedy algorithm. We started by looking at the performance of all 17 features (15 local
structure alphabet agreement scores, 1 codon bias score, and 1 BLOSUM-loss score) independently
of one another. Then we select the best performing single feature where performance was determined



by how many false positives were produced at a threshold that accepted half the real protein ORFs
as true positives. We then repeated the analysis with all possible pairs of features containing the
best individual score, then took the best performing pair of features and looked at all possible three
feature combinations containing this pair. We repeated this process, selecting the best 2-, 3-, 4-, 5-,
6-, and 7-feature combinations. We did not go beyond 7 features because performance saturated
at this point—in fact, we had to look at other thresholds besides TP=half the proteins ORFs in
order to continue the greedy algorithm past 5 features, as no further changes at that threshold were
visible when adding a 6th feature.

2.8 Validation Run

Because our model selection method used all the training data to help select the models, it does
not directly tell us what to expect when applied to new data. Also, we defined all short ORFs as
negatives for training purposes, but we are trying to find short ORFs that do code for proteins. We
used the 5 features selected for the best 5-feature model in cross validation to make a predictor for
validation with the experimentally validated set of small proteins.

The actual predictions were made by taking the average of 20 logistic regression models. Each
model was trained on a data set containing 1000 positive and 1000 negative examples randomly
selected from the training data. After the training, the models were used to predict all training data
not used in building the model as well as the 60 experimentally validated short protein sequences
(which had been excluded from both the negative and the positive training data). As a negative
control, we used the same 20 regression models to make predictions for all 168 GenBank-annotated
ncRNAs.

3 Results

3.1 Distributions of individual scoring features

We plotted the distribution of scores for positive and negative examples for all of our features
(See Supplementary Material), and looked at how well each feature discriminated the two training
populations. It was clear that by all measures the set of true protein coding sequences had a
very distinguishable distribution. This information was very useful during the development and
optimization of our scoring features.

3.2 Cross training results

The results from the systematic analysis of all 17 features was that the codon bias calculation was
the best single feature. We generated true-positive-vs-false-positive curves for each feature. At
800 TPs, roughly half of positive training examples, the codon bias calculation has only 85 FPs
(Table 1). The next best single feature was the BLOSUM-loss score with 425 FPs after the first
800 TPs, a significant drop-off in performance. Figure 2 shows the TP vs. FP curves for the cross-
validation tests of the 7 models. We can clearly see the improved performance as we move from
one to two, three, four and even five features. After this point, however, we seem to have saturated
our performance. The best 7-feature combination included codon bias, CB-burial-14-7, CB8-sep9,
BLOSUM-loss, n-notor2, Bystroff, and n-notor, added in that order. Figure 1 shows the curves
for each individual component of the best 7-feature model. Table 2 shows the coefficients for each



independent feature in the optimal 5-feature logistic regression model, the five features used for the
validation test.

Alphabet NUM FP
Codon bias 85
BLOSUM-loss 425
strd 674
Strand-sep 678
Alpha 714
Bystroff 881
CB-burial-14-7 1005
str2 1051
Protein blocks 1287
n-notor2 2121
n-notor 2207
Near-backbone-11 2684
n-sep 2795
CB8-sep9 3098
o-notor 3197
o-notor?2 3632
o-sep 4162

Table 1: Table of the number of false positives at 800 true positives for each single-feature logistic
regression model. All 17 features are listed in order of performance on the cross-validation test.

Alphabet Coefficient
Codon bias 10.92752
CB-burial-14-7  -105.2917
CB8-sep9 235.8210
BLOSUM-loss  -5.071879
n-notor2 4.028408

Table 2: Regression coefficients for each of the parameters in the optimal 5-feature logistic regression
model. Higher values indicate more emphasis placed on a particular feature. Positive values indicate
a direct correlation between outcome and a given feature. Conversely, negative values indicate an
inverse relationship between outcome and a given feature. The negative value was expected for
BLOSUM-loss, which is minimized for true proteins, but was somewhat surprising for the the local
structure alphabet CB-burial-14-7 (See Supplementary Material).

3.3 Impact of multiple alignment data

We were curious how well we could do if we did not have any comparative genomic data, as would
be the case for a newly-sequenced genome that is not closely related to other bacterial genomes. We
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Figure 1: Average cross-validation results for single feature logistic regression models. These are
all of the metrics included in the optimal 7-feature logistic regression model. The codon-bias score
is clearly the best performing single scoring feature. Note that the order the feature was added
does not correspond to their order as single feature. For example, the BLOSUM-loss measure is the
second best here but carries much of the sane information as codon bias, and so is the 4th feature
added, not the second.

know that our neural-net predictors are less accurate when given only single sequences as inputs,
rather than alignments, so we expected a considerable drop in performance. Figure 3 shows the
cross-validation results for using just the codon bias, and for the best logistic regression model with
and without the multiple alignment data. Surprisingly, in the absence of any multiple alignment
data, we were able to train a seven feature logistic regression model (CB-burial-14-7, single-genome
codon bias score, near-backbone 11, protein blocks, n-notor 2, o-notor, o-notor2) that performed
on par, in terms of the cross validation tests, with the best five-feature model built from multiple
alignment data.

3.4 Validation

The validation experiment showed a surprisingly large number of the experimentally validated set
of short proteins among the top prediction ranks. Using the best 5-feature combination of data
(codon bias, CB-burial-14-7, CB8-sep9, BLOSUM-loss, n-notor2) we observed 4, 18, and 24 out of
the top 10, 50, and 100 respectively were from the experimentally validated set of short proteins.
We found half (30) of all the true short proteins within the top 200 predictions out of 11,467.
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Figure 2: Average cross-validation results for 1-feature through 7-feature logistic regression models.
Features were added in the order codon bias, CB-burial-14-7, CB8-sep9, BLOSUM-loss, n-notor2,
Bystroff, n-notor. Performance improves only slightly after 5 features have been added.

We also weighed how much impact the multiple alignment data had on the validation experiment.
Using only the single-genome-based codon bias data as a single-feature model did not get us any of
the true short proteins within the top 200 predictions. However, if we included multiple alignment
data into the codon bias score, the single-feature model was able to identify 14 of the validated
short proteins among the top 200. Interestingly, the best combination of features generated in the
absence of any multiple alignment data was able to find only 12 out of 60 true short proteins in the
top 200. Overall, the alignment data resulted in a substantial improvement to performance in the
validation experiment.

3.5 ncRNAs

The GenBank-annotated ncRNAs produced both expected and not-so-expected results. Overall, the
set of annotated ncRNAs were correctly identified as not protein coding by the 5-feature predictor
using multiple alignment data—the median rank for all ncRNAs was 3484. However, 7 annotated
ncRNAs ranked among the top 200 predictions, see Table 3. Five of the seven (b4603, b4451,
b4434, b1574, and b4439) were annotated as being in a class of regulatory RNA species that
modulate expression of a target gene by complementary base pairing to the target RNA. Therefore,
the observed strong predictions for these sequences may be explained by their complementarity
to a true protein coding sequence. This species of regulatory RNAs are also known for signature
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Figure 3: The multiple alignment (MA) data improves the codon-bias feature as a predictor enor-
mously, but by adding more features, we can get cross-training results with a single genome that
are almost as good as the comparative genomics results. The best-no-MA model used 7 features:
CB-burial-14-7, single-genome codon bias, near-backbone-11, protein blocks, n-notor2, o-notor,
and o-notor2, while the best-MA model used 5 features:codon bias, CB-burial-14-7, CB8&8-sep9,
BLOSUM-loss, and n-notor2. Note that the BLOSUM-loss feature is not available in the single-
genome case.

ID Annotated Function Probability
b4603 sRNA 0.98996
b4451 sRNA 0.96593
b4434 sRNA 0.91933
b1574 sRNA 0.75449
b1032 Ser tRNA 0.73255
b4439 sRNA 0.70371
b0883 Ser tRNA 0.67118

Table 3: GenBank-annotated ncRNAs appearing within top 200 predictions for the 5-feature predic-
tor using multiple alignment data. The average “probability” (average output from the 20 regression
models) for all GenBank-annotated ncRNAs was 0.08.
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Validation Test
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Figure 4: Validation results on experimentally verified short proteins. The use of multiple alignment
(MA) data improved the performance substantially, but even without multiple alignment data there
are 12 experimentally validated short ORFs in the top 200 hits (out of 11,467 ORFs scored). Using
the best single feature, codon-bias, we found 14 out of the top 200 predictions were experimentally
verified. However, when we calculated the codon bias score without multiple alignment data, we
did not find any of the experimentally validated short proteins in the top 200 hits (Data no shown).

secondary structures which are essential to their activity. We expect to be able to separate such
sRNAs from short protein ORFs by looking for complementary sequence in known protein genes,
expected secondary structure, and the presence or lack of a predicted ribosome binding site.

4 Discussion

We have developed a method that uses traditional measures, protein conservation and codon bias,
as well as local protein structure properties to generate predictions that a short ORF encodes for
a protein. The framework for all our calculations is comparative genomics using whole genome
alignments between closely related species. We have shown that within this context, multiple
alignment information can be very valuable.

As we expected, sequence composition and protein-like conservation alone do not perform as
well as our combined approach. Specifically, we were unable to identify any of the validated short
proteins within the top 200 predictions when we used a single-genome codon bias metric as our
lone data source. This is especially interesting because this approach is one of the standard “off-
the-shelf” tools used to distinguish protein coding sequences. While this approach may work for
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longer sequences, our results show that short proteins will be missed by such efforts. The protein
conservation score was clearly one of the best single features. However, it was the 4th metric added
during our feature selection analysis, suggesting that the codon bias score captured most of the
information in the protein conservation signal.

We were also seeing an enrichment for a specific class of ncRNAs in our top prediction ranks.
We found five very highly predicted sSRNAs within the top 200 predictions. It may be that these
RNA species represent a significant source of false positives for our method. In order to avoid such
contamination we are in the process of incorporating additional signals to our prediction strategy.
Specifically, we are interested in predicted ribosome binding sites, complementary sequences among
known genes, whole genome transcription profiles and other transcription analysis tools. These
additional layers of information should improve our prediction accuracy. Furthermore, if our method
is in fact enriching for regulatory sRNAs then an additional utility for our method could be the
identification of novel regulatory ncRNAs.

For our analysis of the E coli K12 genome, we intentionally omitted all ribosome binding site
data as a possible scoring feature. In several bacterial genomes, there are a large number of
leaderless protein genes, so we created a method that did not rely on strong ribosome binding
sites. Furthermore, a majority of the experimentally validated short proteins in this genome were
identified in large part due to a strong ribosome binding site prediction near the ORF start site.
Therefore, inclusion of this information would have given us a less stringent test of our method.
Recovering the known short proteins without using this signal further demonstrates the validity of
our approach.

Our method has two main criteria that are required in order to generate a set of predictions.
First is a multiple genome alignment of closely related species containing the organism of interest.
Note however, that this is a soft requirement as single-genome predictions are possible though of
substantially lower quality. The second requirement is a set of positive and negative sequence
examples in order to train a logistic regression model. This does not mean however, that we require
a comprehensive annotation set for a given genome. Minimally, we can use the set of all ORFs
longer than 1000 bases as a positive training set. These sequences should be highly enriched for
true protein coding sequences. Conversely, a negative training set could be built from all possible
ORFs below an arbitrary size cutoff, say 30 amino acids, the large majority of which should be
non-protein coding.

As presently constructed our method is highly adaptable to new genome sequences. We are in
the process of adding our method to the UCSC Microbial Browser creation pipeline. This should
enable us to produce predictions for any completed genome in the public databases.

We are extremely encouraged by the performance of our method in-silico. However, we know
that the final validation of our predictions must come from experimental techniques. Therefore,
we are currently designing experiments to validate high confidence predictions in other bacterial
genomes, specifically the human pathogenic species Vibrio cholerae.
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