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Nanopore sequencing

Thin membrane separating salt-water baths, with a tiny
hole.

Ionic current through hole partially blocked by DNA
translocating.

Exact current depends on which bases currently in
“reading window”.

DNA motors used to get slow step-wise motion of DNA.



Noise

Simplest model of nanopore is as a 10GΩ variable
resistor.

Thermal noise: ithermal =
√

4kBTI∆f
V

Shot noise: ishot =
√

2qI∆f

Amplifier noise is also thermal noise and shot noise, but
based on temperature of resistors and other parts—the
largest contributor to noise in present system.

Tiny currents (10–100 pA), even smaller changes in
current (0.2–10pA), but noise is large (2–5pA).

http://gasstationwithoutpumps.wordpress.com/2013/04/

21/noise-in-nanopores/
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Noise Spectrum

Noise is “white”—equal power at all frequencies, total
power proportional to bandwidth.

Moving DNA infrequently means our signal is mainly low
frequencies.

We improve signal-to-noise ratio with low-pass filter,
removing high-frequency noise.



Segmentation problem

DNA moves stepwise (long pauses between rapid
movements).

Current should change in steps (though obscured by
noise).

We need to re-create stepwise current from noisy data.

Low-pass filters can blur steps into slow ramps (step
signals have high-frequency components).

If we can identify when steps happen, and how big they
are, we can use just summary information about
segments (duration, mean current, amount of noise) in
later processing.



Filtered Derivative

Our first segmentation methods were all variants on
“filtered derivative” techniques: low-pass filter the signal
to remove noise, take the derivative, and look for peaks.

We couldn’t get reliable behavior—either small
transitions or short segments were missed (blurred out
by filter) or noisy regions resulted in over-segmentation.

Can’t just tweak parameters—both missing short
segments and over-segmenting happen in the same
event.



Statistical change detection
Let’s simplify the problem temporarily: look for a single step
in an interval with duration T . Is there one here?
Model 1: Gaussian noise: x(t) ∈ G(µ0,σ0)

Model 2: Step at time τ:

{
x(t) ∈ G(µ1,σ1) , for 0 ≤ t < τ

x(t) ∈ G(µ2,σ2) , for τ≤ t < T



No step



With step



Statistical change detection
Look at log-odds ratio: ln ProbM2(x)

ProbM1(x)

= ∑
0≤t<τ

lnProb1(x(t))+ ∑
τ≤t<T

lnProb2(x(t))

− ∑
0≤t<T

lnProb0(x(t))

Log probability of a single sample from a Gaussian
distribution:

ln

(
1

σ
p

2π
e−

(x−µ)2

2σ2

)
=−0.5ln(2π)− ln(σ)− (x−µ)2

2σ2



Simplifying sums
0.5ln(2π) is constant, so adding T times and subtracting T
times cancels.
We choose µ and σ optimally for each interval:

σ2 = E((x−µ)2)

and so
∑

0≤t<T (x(t)−µ)2/(2σ2) = T/2, which also cancels.
Thus the log-odds ratio simplifies to

T lnσ0 −τ lnσ1 − (T −τ) lnσ2 ,

which is always non-negative.



Choosing best step
Modeling with a step is always better than without, and we
can choose the best τ to maximize the log-odds ratio.
If that is above some threshold, we accept the step.
The threshold is equivalent to having prior odds of there
being a step, and using log posterior odds ratio.



Many steps
For multiple steps, find best step in window, then recursively
apply to both subwindows.
Stop when reaching minimum segment duration or best step
is not good enough to pass threshold.
Efficiency hack: apply to 1-second window past last known
step time, rather than to entire duration of event. If no step
found, advance by half window width and try again.
http://gasstationwithoutpumps.wordpress.com/2013/08/

10/segmenting-noisy-signals-from-nanopores/
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Example on real data



Not limited to steps (1)
The “steps" do not require a change in mean—just that the
split into 2 models fits enough better than a single model.



Introduced steps
But finding a step doesn’t mean that there really was one in
the underlying data.



Filtered signals
The analysis above assumed that samples were independent,
but low-pass filtering ensures that they are not!
Low-pass filtering makes a sample very much like the
preceding one.
We can adjust for the low-pass filtering by scaling the
log-odds score.
Multiplying the score by the filter cutoff frequency over the
Nyquist frequency does a pretty good job of keeping the
scaled score having the same cumulative distribution over a
wide range of filter frequencies.
http://gasstationwithoutpumps.wordpress.com/2014/05/

24/segmenting-filtered-signals/
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Threshold matters

If we set the threshold for the scores too low, we get
over-segmentation, with minor fluctuations in mean
value due to noise causing segments to break up.

If we set the threshold too high, we get
under-segmentation, with multiple DNA bases being
lumped into a single segment.



Setting threshold
Keep the split if

k ln
Probstep

Probno step
> ln

1− s

s
− lnF ,

where k is filter cutoff over Nyquist frequency,
s is expected number of segments per sample, and
F is allowable false positives per sample.

In practice only one of s or F needs to be specified, and we
usually specify in per-second terms, rather than per-sample.)
http://gasstationwithoutpumps.wordpress.com/2014/06/

17/segmenting-noisy-signals-revisited/
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Interpreting sequences
If we have a sequence of segments, how do we convert them
into biologically interpretable results?

We’re at UCSC, so the answer is aligning them to a stochastic
model—most likely a hidden Markov model or some variant.
Each state of an HMM is either a silent state or one that emits
a segment (we may need to generalize to a contiguous
sequence of segments).



Scoring segments
What is emission probability for a segment?

simplest: distribution for mean value of segment
(normal? kernel density estimate from training set?)

more complex: product of independent distributions for
mean value and for duration. (need to merge successive
segments for same state—log-normal distribution)

how can noise level be part of scoring?



HMM structure
Several HMM structures possible:

simple profile for recognizing a single molecule type.

extra states to correspond to under-segmentation

extra states for “blips” (brief excursions in the current
trace)

extra transitions for back slips

profile with branching to recognize molecule with
limited variation (used for initial methylation studies)

complete de Bruijn graph connecting kmers (for base
callers)



Future Work: Theory
We empirically observed that the log-likelihood score Li

applied to a pure Gaussian signal is exponentially distributed:

Prob(Li > x) = e−x ,

but we have no proof.
We observed that Li applied to low-pass filtered Gaussian
with filter cutoff k times the Nyquist frequency is

Prob(Li > x) = e−kx ,

but we have no proof.



Future Work: Theory 2
The log-likelihood score is not distributed purely according to
the exponential distribution on the previous slide for all
interval lengths.

Cutting up a short interval results in slightly higher scores
than cutting up long intervals, so there is a tendency for cut
points to cluster around previously identified cut points.

Better theory could let us compensate and avoid
over-segmenting near transitions.



Future Work: Speed
My code (in Python) is barely fast enough to be useful.
Jacob Schreiber has recoded it in Cython (a minimal change),
for substantial speed up.
We probably want it recoded in c, to run fast enough to do a
lot more computation after segmentation to recognize DNA
sequences in real time on a MinION with 100s of events
happening in parallel.



Future Work: Online implementation
The current code does batch processing, taking an entire
event and subdividing it.
But we want to be able to recognize DNA molecules as they go
through the nanopore, to re-read parts of them or kick them
out if they are uninteresting.
This means segmenting the data with only a few seconds of
delay.
The algorithm is easy to change to being online, but the code
needs to be completely rewritten, particularly the I/O, which
will be a real-time stream from the digitizer, rather than a file.



Future Work: stepwise slanted segments
We can use any model that results in Gaussian distributed
errors around a fitted curve, not just stepwise constants. The
log-likelihood ratio is still based on logs of the standard
deviations of the errors.
For example, we can use linear regression to get stepwise
slanted segments.



Protein trace with steps



Protein trace with slanted segments



Future Work: Testing
The algorithm has been tested on only a few hundred real
examples, but only a handful of synthetic examples where the
correct answer is known.
More extensive testing and comparison with
filtered-derivative algorithms is desirable.



Future Work: HMMs

A base caller that uses Viterbi path (or full
forward-backward) through an HMM.

A sequence recognizer that knows particular DNA
sequences and recognizes where in the sequence the
nanopore is reading.

Sequence recognizer with variants to call DNA
modifications (like 5mC, 5hmC, . . . )

Control techniques to change movement of DNA based
on what is recognized.



Web sites

These slides:
http://users.soe.ucsc.edu/~karplus/

papers/segmentation-2014-nov-6.pdf

Blog posts:
http://gasstationwithoutpumps.

wordpress.com/tag/nanopore/

Textbook: Detection of Abrupt Changes: Theory and
Application Michèle Basseville and Igor
V. Nikiforov
ftp://ftp.irisa.fr/local/as/mb/k11.pdf
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