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Abstract

Motivation

A new hidden Markov model method (SAM-T98) for
�nding remote homologs of protein sequences is de-
scribed and evaluated. The method begins with a single
target sequence and iteratively builds a hidden Markov
model (hmm) from the sequence and homologs found
using the hmm for database search. SAM-T98 is also
used to construct model libraries automatically from se-
quences in structural databases.
We evaluate the SAM-T98 method with four datasets.

Three of the test sets are fold-recognition tests, where the
correct answers are determined by structural similarity.
The fourth uses a curated database. The method is com-
pared against wu-blastp and against double-blast, a
two-step method similar to ISS, but using blast instead
of fasta.

Results

SAM-T98 had the fewest errors in all tests|
dramatically so for the fold-recognition tests. At the
minimum-error point on the SCOP-domains test, SAM-
T98 got 880 true positives and 68 false positives,
double-blast got 533 true positives with 71 false pos-
itives, and wu-blastp got 353 true positives with 24
false positives.
The method is optimized to recognize superfamilies,

and would require parameter adjustment to be used to
�nd family or fold relationships.
One key to the performance of the hmm method is

a new score-normalization technique that compares the
score to the score with a reversed model rather than to
a uniform null model.

Availability

A World Wide Web server, as well as infor-
mation on obtaining the Sequence Alignment and

Modeling (SAM) software suite, can be found at
http://www.cse.ucsc.edu/research/compbio/

Contact

karplus@cse.ucsc.edu

http://www.cse.ucsc.edu/~karplus

1 Introduction

A critical task confronting genome sequencing projects
today, and biology in general, is the functional and struc-
tural characterization of new proteins. Characteriza-
tion is often inferred by similarity to proteins of known
structure or function whose amino acid sequences have
diverged through mutation. Finding these evolution-
ary connections, which can be di�cult to detect in dis-
tantly related proteins, is called remote-homolog detec-

tion. Methods that are reliably able to detect subtler
similarities between sequences are thus able to assign pu-
tative structure and functional characterization to more
new proteins.

The focus of this paper is to present a new hidden
Markov model (hmm) method to detect remote homolo-
gies. The SAM-T98 method creates a hidden Markov
model from a single target sequence by iteratively �nding
homologs in a protein database and re�ning the model.
We compare our results to those using more established
methods.

The results are presented in the context of four tests,
three of which are fold-recognition tests. These three
tests use a set of target sequences whose folds are to
be determined, a fold database of sequences of known
structure, and a de�nition of \correct" target-database
sequence pairings. The fourth uses a curated database
whose protein sequences were grouped according to fam-
ily, primarily using sequence information. For all of the
tests, we used only primary sequence information|the
test was purely one of detecting remote homologs, not of
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protein structure prediction or threading.
For the fold-recognition tests, our hmm-based methods

did extremely well at all levels of acceptable error, �nding
many more remote homologs than the more traditional
sequence-based methods.
A companion paper (Park et al., 1998) compares SAM-

T98 on the SCOP test sets with BLAST (Altshul et al.,
1990) and FASTA (Pearson & Lipman, 1988) and with
two state-of-the-art methods: PSI-BLAST (Altschul
et al., 1997) and ISS (Park et al., 1997). The results there
show SAM-T98 to be superior to PSI-BLAST, which is
superior to ISS, which is superior to BLAST and FASTA.

1.1 Hidden Markov models

Pro�le hidden Markov models (Haussler et al., 1993;
Krogh et al., 1994) or generalized pro�les (Bucher &
Bairoch, 1994) have been demonstrated to be very ef-
fective in detecting conserved patterns in multiple se-
quences (Hughey & Krogh, 1996; Baldi et al., 1994; Eddy
et al., 1995; Eddy, 1995; Bucher et al., 1996; McClure
et al., 1996; Karplus et al., 1997; Grundy et al., 1997;
Karchin & Hughey, 1998). The typical pro�le hidden
Markov model (Figure 1) is a chain of match (square),
insert (diamond), and delete (circle) nodes, with all tran-
sitions between nodes and all character costs in the in-
sert and match nodes trained to speci�c probabilities.
The single best path through an hmm corresponds to a
path from the Start state to the End state in which each
character of the sequence is related to a successive match
or insertion state along that path (delete states indicate
that the sequence has no character corresponding to that
position in the hmm).
For this work we use a local alignment procedure

that relates part of the sequence to one contiguous path
through part of the hmm (Tarnas & Hughey, 1998). If
two sequences are aligned to the model, a multiple align-
ment between those sequences can be inferred from their
alignments to the model, though it must be remembered
that characters modeled by insert states are not aligned
between sequences.
When an hmm is trained on sequences that are mem-

bers of a protein family, the resulting hmm can identify
the positions of amino acids which describe conserved
primary structure of the family. This hmm can then
be used to discriminate between family and non-family
members in a search of a sequence database. A multiple
alignment of sequences to the hmm will reveal the regions
in the primary structure that are conserved and that are
characteristic of the family.

2 Test Sets

The �rst three test sets use databases of sequences of
known structure to provide a measure of relatedness be-
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Fig. 1. An example of an hmm with two sequences
whose characters are generated by the hmm, and the cor-
responding alignment. Positions modeled by the hmm's
match states are indicated with uppercase letters, while
those modeled by unaligned insertion states are indicated
with lowercase letters.

tween the structures. In each case, we had a set of target
sequences whose fold we wanted to determine by match-
ing it against all the sequences in the fold database. We
evaluated how the methods described in the next sec-
tion discriminated between the homologous and nonho-
mologous sequences in the database for all of the target
sequences.

2.1 FSSP

The fssp test set is based on the July 1997 fssp pro-
tein classi�cation tree (Holm & Sander, 1996; Holm &
Sander, 1997). Our fold database contains the sequences
of all 1050 leaves of the fssp tree, and our target list is
a subset of 166 sequences chosen arbitrarily to cover all
major subtrees. The use of the fssp tree ensures that
no two sequences in the database have more than 25%
identical residues in the correct structural alignment.

The fssp test set uses dali structure compari-
son (Holm & Sander, 1993) to determine structural ho-
mology. A soft-threshold classi�cation was made, in
which DALI z-scores higher than 6 were considered to
be homologs, z-scores lower than 2 were non-homologs,
and z-scores between 2 and 6 were counted as partly
homologous and partly non-homologous using a linear
interpolation to get a homology score between 0 and 1.
For the 174,134 non-self pairs, the sum of the homology
scores was 3510.85 (so about 2% of the pairs represent
homologies to be detected), though the best possible clas-
si�er still makes at least 1494.95 errors (Figure 2). At
the minimum-error point for an optimal classi�er, there
are 2449.45 homolog pairs (1.4% of the possible pairs).
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Fig. 2. The best possible number of false positives (top)
and the errors as a function of the number of true posi-
tives for the soft-thresholding done in the fssp test.

2.2 SCOP

We used two test sets (Brenner, 1996; Park et al.,
1997) derived from the Structural Classi�cation of Pro-
teins (scop) hierarchy (Hubbard et al., 1997). For each
test set, we used identical lists for both the target list
and the database of known folds. A pair was labeled
as homologous if both sequences were in the same scop
superfamily, otherwise it was labeled as nonhomologous.
No two sequences in either test set had more than 40% se-
quence similarity. In a related paper (Park et al., 1998),
pairs in the same fold but di�erent superfamilies were not
counted as either correct or incorrect. Doing so would
reduce our number of false positives by only 3 at the
minimum error point (1eit-1tabI, 1lab-1gpr, 1iva-1tabI),
so we did not feel it necessary to add this ambiguity.

The whole-chain test set was composed of 571 single-
domain proteins. Of the 162,735 pairings, only 931
(0.6%) are considered correct homologies. The domain

test set contained the whole-chain test set, plus another
364 domains that were only parts of chains (935 se-
quences in total). Of the 436,645 possible non-self pairs,
only 2605 were considered homologs (0.6%).
The higher rate of homology for the fssp dataset may

be an artifact of our selecting target sequences to cover
the major subtrees|sequences with few true positives
were less likely to be picked as targets.

2.3 Pearson

The fourth test is Pearson's test for sequence-
comparison tools (Pearson, 1995). It is a curated version
of the PIR database (PIR1, release39) (Barker et al.,
1990) augmented with 237 sequences. In total, it con-
tains 12,216 sequences.1 We report results here for the
\e0" set of 67 target sequences chosen by Pearson. Of
the 818,405 possible non-self pairs of the target sequence
with database sequences, 3474 (0.4%) were considered
correct.
Since the PIR families are generally of fairly close ho-

mologs, the Pearson test set is a test of close-homolog
classi�cation, not remote homolog classi�cation.

3 Algorithms

We evaluated three remote-homology detection meth-
ods: two based on wu-blastp and one based on
hmm methods using the SAM software. We used
wu-blastp version 2.0a16MP-WashU (available from
http://blast.wustl.edu) and SAM suite version
2.0 (Hughey & Krogh, 1996), although the latter was
not used with default parameters. For example, di�er-
ent transition regularizers were speci�ed and noise and
model surgery were not used. Additionally, local align-
ments, not global alignments, were used.

3.1 Blast-based methods

Two of the methods used here are based on the blast
search program (Altshul et al., 1990), perhaps the most
widely used bioinformatics tool today. This program is
extremely fast and easy to use, so evaluating it is es-
sential. Tools that fail to outperform blast are rarely
worth their computational cost.

3.1.1 WU-Blast

The simplest approach to remote-homolog detection
is to provide the target sequence to a version of blast,
and collect the top hits in the database. In order to allow
us to sweep the threshold over a wide range, we set the
E parameter (the expected number of false positives) to
10 for each search. We recorded the logarithm of the
reported P-value as the score to threshold. The exact

1There are 12,219 sequences in the database, but three of them

are duplicates of others.
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setting of E is probably unimportant, as the optimum
threshold never corresponded to a P-value greater than
0.005.

3.1.2 Double-Blast

The double-blastmethod was inspired by ISS (Park
et al., 1997). No direct comparison with ISS is included
here, but comparisons have been done on the two scop
datasets (Park et al., 1998), and double-blast appears
to be similar to ISS in the e�ectiveness of its searches.

Instead of trying to �nd the homologs in the database
directly from the target sequence, a two-step approach is
used. First, a set of close homologs to the target sequence
is found in a large database of sequences, then each ho-
molog is used as a query to search the �nal database.
The large database employed is the non-redundant pro-
tein database NRP (NRP, 1998). wu-blastp is used
both for �nding the set of close homologs and for us-
ing each of these homologs to perform the second search.
The �rst search is done with an E-value of 0.00005, and
the second search with an E-value of 0.2. The score re-
ported is the log of the maximum of the reported E-
values for the hits. Each hit found in the �rst search is
treated as a separate homolog, as attempts to combine
the hits resulted in many more false positives. This was
particularly evident for the scop whole-chain test set,
since non-homologous domains may occur between two
homologs in a database sequence.

3.2 The SAM-T98 HMM method

Presented with a single target sequence, the SAM-
T98 method attempts to �nd and multiply align a set
of homologs and then create an hmm from that multiple
alignment. The resulting hmm is then used for database
search. The construction, training, and application of
the hmms is all done with programs from the SAM pack-
age (Hughey & Krogh, 1996).

When the database is small, the SAM-T98 method can
also be used to create an hmm for each sequence in the
database. This database of models can then be searched
with the target sequence, providing a two-pronged ap-
proach to the search problem. Because SAM-T98 itera-
tively creates a model from a single sequence, hand-tuned
seed alignments, such as those used for pfam (Sonnham-
mer et al., 1997), are not needed, though the method
could be applied to such seed alignments.

For the fold-recognition tests, we created hmms for
all of the sequences in the fold database (1050 for fssp
and 931 for scop, 1677 in all, taking the overlap into
account). For the Pearson test, since we were unwill-
ing to build an hmm for each of the 12,216 sequences in
the database, we used SAM-T98 to build hmms only for
the 67 target sequences, and scored with just the target

hmms. Based on the results for the other test sets, using
only target hmms reduces performance only slightly (see
Summing Scores, below).

Since building hmms from weighted multiple align-
ments is a critical aspect of the method, we speci�cally
discuss sequence weighting next, followed by the SAM-
T98 method itself and a discussion on how the hmms
were used to score sequences in the test sets.

3.2.1 Weighting sequences

The SAM-T98 method uses sequence weighting for
building models from alignments, both internally and
when the �nal alignments are used to create the mod-
els for scoring a set of sequences.

The relative weights are set with the Heniko�s'
position-based sequence weights (Heniko� & Heniko�,
1994), but the absolute weight is set to get a speci�c
level of entropy averaged over all columns after a Dirich-
let mixture regularizer (Sj�olander et al., 1996) is ap-
plied to the weighted counts. The entropy is speci�ed
by the number of bits saved relative to the entropy of
the background distribution. This relative entropy mea-
sure has been used previously to characterize substitu-
tion matrices (Altschul, 1991), and the popular BLO-
SUM50 and BLOSUM62 matrices corresponds to sav-
ing about 0.5 and 0.7 bits per column. The savings for
our method varies from 2.5 bits for alignments with only
20 match columns down to about 0.36 bits per column
for alignments with over 600 match columns. More pre-
cisely, the savings requested for an n-column alignment
is 50=min(n; 140(1� e�0:008n)), where n is the length of
the alignment.

The large savings requested for short alignments is
generally not available with any weights, and the rel-
atively poor performance of the SAM-T98 method on
short peptides, noticeable when analyzing the top false
positives for the scop domain test set, may be due to
this weighting problem.

3.2.2 The SAM-T98 method

SAM-T98 starts with a query sequence and searches
the non-redundant protein database usingwu-blastp to
produce two sets of potential homologs: one of very close
homologs (E < 0:00003) and one of possible homologs
(E < 500). The initial wu-blastp cull of NRP is nec-
essary for two reasons: we do not expect an hmm built
from a single sequence to do as well at �nding homologs
as wu-blastp does, and an hmm database search of all
of NRP is too slow for building thousands of alignments.

The SAM-T98 method then uses 4 iterations of a se-
lection, training, and alignment procedure. For each it-
eration it needs an initial alignment, a set of sequences
to search, a threshold value, and a transition regular-
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izer. From the alignment and regularizer, an hmm is
constructed and used to score the set of sequences. All
sequences that score better than the threshold value are
used to estimate a new hmm. Alignment of the training
sequences to the hmm produces the alignment that is the
input for the next iteration.

On the �rst iteration the single sequence passed to
the method is used as the initial (trivial) alignment and
the close homologs found by wu-blastp are used as the
search set. The threshold is set strictly (�40 nats), so
only strong matches to the sequence are considered. The
transition regularizer approximates the gap costs used by
wu-blastp. Requiring both wu-blastp and the initial
hmm to score a sequence well ensures that only close
homologs are included at this stage of the process.

On subsequent iterations the input alignment is the
output from the previous iteration and the search set is
the larger set of possible homologs found by wu-blastp.
The thresholds are gradually loosened (�30 nats, �24
nats, and �16 nats).

For the second and third iteration, we use a regularizer
that encourages long sequences of match states, and for
the �nal iteration a transition regularizer trained on fssp
structural alignments is used.

The above selection, training, and alignment proce-
dures consists of several calls to SAM programs. Models
are created with SAM's modelfromalign program which
uses the alignment, sequence weighting, transition regu-
larizer, and Dirichlet mixture to build an hmm. Scor-
ing the sequence set with an hmm uses SAM's multi-
ple domain scoring procedure, now part of hmmscore,
which selects only the portion of a sequence match-
ing the hmm (local scoring (Smith & Waterman, 1981)
as applied to SAM models (Tarnas & Hughey, 1998)).
From the sequences selected using this procedure, a new
model is estimated using SAM's buildmodel hmm train-
ing program. The alignment of the training sequences
back to the resulting hmm is accomplished with SAM's
align2model program. To ensure that the initial se-
quence to the whole process is not lost, it is added to the
training set at this point, and any duplicate sequences in
the training set are eliminated.

Since this process is involved and requires substantial
computing time, it is only done once for any sequence and
the �nal alignment is kept as an entry in a library. An
hmm can be quickly constructed for the stored alignment
using modelfromalign and sequence weighting.

The quality of the hmm resulting from this method is
critically dependent on the sequences selected for train-
ing, and this sequence selection depends on the scoring
implementation. During the method's development, we
found that many protein families' multiple alignments
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Fig. 3. Incorporating reversed-model scoring into the
SAM-T98 method's iterative procedure results in hmms
that are better homolog discriminators than using a stan-
dard null model. This is illustrated here using the scop
whole-chain test set.

show columns of strict conservation of what are usually
the more rarely seen residues (cysteine, for example).
When scoring databases with an hmm built for these
families, sequences that are compositionally biased to-
ward these residues tend to receive in
ated scores and
become false positives.

Before this observation, scoring involved comparing
the log-probability of a sequence for an hmm with its
log-probability for a null model (Barrett et al., 1997). To
address this problem, we looked at the di�erence of the
log-probability of the sequence and the log-probability
of the sequence with a reversed hmm (equivalently, the
score of the reversed sequence with the hmm). Since the
reversed sequence has the same length and composition
as the sequence, these two sources of error are e�ectively
eliminated. Figure 3 shows the e�ectiveness of this re-
versed model scoring on the scop whole chain test set.
For the remainder of this experiment, we used reversed
model scoring when scoring an hmm against the test sets.

3.2.3 Summing scores

There are two ways to score a target against a
database: one can build an hmm for the target sequence
and score all database sequences using the model, or one
can score the target sequence using hmms built for all of
the database sequences. We experimented using just the
target model score, just the database model score, and
the sum of the two scores.

To gauge the e�ectiveness of score summing, in Fig-
ure 4 we plot the false positives as a function of true
positives using both the scop whole-chain and fssp test
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sets. As can be seen for the former, the added computa-
tional burden of building an hmm for all of the test set
sequences so that score summing can be performed is not
always justi�ed. This changes when one considers the
fssp test set, as summing provides de�nite improvement
beyond the 100 false positives level. This di�erence may
be attributable to the fact that the fssp test set contains
sequences with no more than 25% sequence homology (as
opposed to the scop whole-chain's 40%), and the sum-
ming is necessary to strengthen the weak scores between
a truly homologous pair.

Another possible explanation is that the SCOP test
consisted solely of single domains, while the FSSP
test had to match domains from multiple-domain pro-
teins. When the target and template have very di�erent
lengths, the scoring may well work better in one direction
than the other.

For the structure-based fold-recognition tests, we per-
formed both directions of scoring and summed the scores.

4 Results

Common to each of the test sets was a list of tar-
get (query) sequences and a database that contained ho-
mologs for each of these target sequences. A perfect
homology search would cleanly separate the homologs
in the database from the non-homologs. For any given
threshold, we can identify the true positives (homolog
pairs scoring better than the threshold), the false posi-
tives (non-homolog pairs scoring better than the thresh-
old), and the false negatives (homolog pairs scoring worse
than the threshold). An error is either a false positive
or a false negative. The soft-threshold used in the fssp
test set made perfect separation impossible.

To evaluate the performance of the search methods for
each test set, all pairs of target sequence and database
sequence were sorted from best score to worst score. By
sweeping through this sorted list, we compare the meth-
ods in three fashions. First, to make comparisons based
on one number, in Table I we compare the number of
errors at each method's minimum error point. Next, in
Figures 5{8, discussed below, we plot the number of non-
homolog pairs found versus the number of homolog pairs
found (the false positives as a function of true positives).
Since the number of false positives grows roughly ex-
ponentially with the number of true positives, setting
an optimal threshold is di�cult from the false-positive-
versus-true-positive plot. Thus, we also plot the total
number of errors as a function of true positives to pro-
vide a more detailed look at the tradeo� between preci-
sion (minimizing false positives) and recall (minimizing
false negatives).
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Fig. 4. Summing of scores does not provide much im-
provement for the scop whole-chain test set (top). For
the fssp test set, summing the scores (sum-SAM-T98)
from the model library hmms (db-SAM-T98) and the
target sequence's hmm (targ-SAM-T98) provides an im-
provement beyond about 100 false positives. The sym-
metry of the scop whole-chain test makes db-SAM-T98
and targ-SAM-T98 curves identical.

4.1 FSSP

Figure 5 shows false positives and errors as functions of
true positives. Both curves show the hmm-based meth-
ods doing much better than the blast-based methods.
Because of the soft-threshold classi�cation for this test
set, the fewest errors any method could have achieved
is 1494.95. SAM-T98 came closest to this mark with
3132.50 errors, while double-blast and wu-blastp

had 3281.55 and 3363.35, respectively.
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Fig. 5. Comparison of the methods for the fssp test
set. SAM-T98 distinguishes more true homologs than
wu-blastp or double-blast for any error rate. The
theoretically best possible performance is shown in Fig-
ure 2.

4.2 SCOP

4.2.1 Whole-chain test set

For the whole-chain scop dataset, Figure 6 shows
that the hmm-based methods perform best for all lev-
els of false positives. If no false positives are allowed,
wu-blastp gets 148 true positives, double-blast gets
233, and SAM-T98 gets 256. The minimum-error points
are even more dramatically separated with 740 for
wu-blastp, 665 for double-blast, and only 555 er-
rors for SAM-T98 (see Table I).

4.2.2 Domain test set

On the domain test, if the threshold is set to exclude all
false positives, wu-blastp does best with 268 true pos-
itives, while double-blast gets only 14, and SAM-T98
gets 101. The good performance of wu-blastp does not
extend far, as SAM-T98 beats wu-blastp if even 1 false
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Fig. 6. Results for the methods on the scop whole-chain
test of 571 sequences show that SAM-T98 is a much bet-
ter homolog discriminator than the other methods. The
maximum possible number of true positives is 931.

positive is allowed. This test set probably provides the
most dramatic improvement of the hmm-based methods
over the blast-based ones. This is particularly evident
in Figure 7, where the minimum error points are 2276
for wu-blastp, 2143 for double-blast, and 1793 for
SAM-T98.

4.3 Pearson

The Pearson test set di�ers from the others in that the
database sequences generally do not have known struc-
ture. The hand-classi�cation of the sequences into fami-
lies relies heavily on sequence similarity, resulting in fam-
ilies composed of generally close homologs.
The closeness of the members of the families can be

seen in the excellent performance of wu-blastp on this
dataset. With no false positives, wu-blastp gets 547
true positives, double-blast gets 603 true positives,
and SAM-T98 gets only 350. At 200 false positives
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Fig. 7. Results for the methods on the scop domain
test of 935 sequences. This test set provides the most
dramatic evidence of SAM-T98's superior ability over
wu-blastp and double-blast as a remote homology
detection method. The maximum possible number of
true positives is 2605.

(near wu-blastp's minimum-error point), wu-blastp
gets 2952 true positives, double-blast gets 2760, and
SAM-T98 gets 2584. At 400 false positives (near SAM-
T98's minimum-error point), wu-blastp gets 3121 true
positives, double-blast gets 3099, and SAM-T98 gets
3287. Figure 8 shows this tradeo� in performance clearly.
The SAM-T98 method was optimized for �nding super-
families, not families, and so it merges similar families
together.

Note that we use a single threshold for each method
for all of the targets in a test set, not a separate thresh-
old for each target as done previously for the Pearson
test set (Agarwal & States, 1998; Karchin & Hughey,
1998). Using separate thresholds would provide much
more impressive numbers, but the single-threshold is a
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Fig. 8. Results for the methods on the Pearson
dataset. The maximum number of true positives is 3474.
wu-blastp does best for close homologs, and SAM-T98
does best for more remote ones.

more valuable test. We are not testing how well a partic-
ular library of models can be tuned, but how well a set
of homologs can be found for a protein of unknown char-
acter. If we do not already know the classi�cation, we
cannot choose a classi�cation-speci�c threshold, hence
the insistence on a single threshold. If we had used an
optimal threshold for each family, the SAM-T98 mini-
mum error point would have dropped from 584 to 285
errors. At this point, there were 3274 true positives and
148 false positives.

4.4 Folds, superfamilies, families, or

subfamilies

The SCOP database is a hierarchical classi�cation of
protein domain structures, with classi�cation into class,
fold, superfamily, family, and subfamily. We chose to
consider pairs that were in the same superfamily to be
correct matches, but we could have chosen any level of
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Fig. 9. SAM-T98 results for the SCOP domains test set
with correctness de�ned as matching at di�erent levels
of the SCOP hierarchy. The false-positive curves are
almost identical for folds and superfamilies at low error
rates. (The error plot uses a log scale because of the
huge di�erences in the number of false negatives among
the de�nitions of correctness.)

the hierarchy as our de�nition of correctness. Figure 9
shows how choosing di�erent levels would a�ect our re-
sults for the SAM-T98 method. The almost identical
false-positive rates for folds and superfamilies at low er-
ror rates means that overall error rate is much lower for
superfamilies than for folds since there are many more
false negatives at the fold level.

The SAM-T98 method also seems to do well on fami-
lies in Figure 9, but a closer look at the calibration curve
in Figure 10 shows that the homologs included in the
SAM-T98 alignments are distant enough to contaminate
the method as a family or subfamily recognizer (as was
seen with the Pearson test set). We would have to use
stricter thresholds in building the alignments to create a
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Fig. 10. False positives versus the sum of the two SAM
costs (for target and template model), using local align-
ment and reversed-sequence null model on the SCOP
domains test set. The number of false positives does not
drop to zero for families or subfamilies because more re-
mote homologs are included in the alignments used to
build the HMMs. N = 436645 is the number of homol-
ogy pair tests tried.

family, rather than a superfamily, recognizer.

The calibration curve in Figure 10 can be applied to
a search with one target in a database of N sequences,
the number of false positives from the curve should be
multiplied by N=436; 645 to get the expected number of
false positives.

If one ignores the \fat tail" (the excessive number of
false positives for strong scores), the number of false pos-
itives can be reasonably approximated by 0:1Necost. The
fat tail probably results from two sources of error: small
shared motifs (such as ampipathic helices) that are not
long enough to justify classifying the proteins in the same
superfamily and contamination of the SAM-T98 align-
ment by non-homologous sequences.

5 Discussion

We have introduced the SAM-T98 method for re-
mote protein homolog detection and have compared it
with more popular methods using four test sets. At
the minimum-error points, the best method was always
SAM-T98. If we evaluate the methods according to the
fraction of the possible true homologs found at the mini-
mum error point, SAM-T98 �nds 18.8% for the fssp test
set, 42.6% for the scop whole chains, 33.8% for the scop
domains, and 94.9% for the Pearson test set. Even the
best current remote-homology method �nds only a small
fraction of the evolutionary relationships available.
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scop scop

method fssp whole chain domain Pearson

optimum, true + 2449.45 931 2605 3474
optimum, false + 433.55 0 0 0
optimum, errors 1494.95 0 0 0

wu-blastp, true + 173.75 212 353 2948
wu-blastp, false + 26.25 21 24 195
wu-blastp, errors 3363.35 740 2276 721

double-blast, true + 279.30 288 533 3072
double-blast, false + 50.00 22 71 352
double-blast, errors 3281.55 665 2143 754

target-SAM-T98, true + 421.23 338 869 3296
target-SAM-T98, false + 79.78 15 72 406
target-SAM-T98, errors 3169.40 557 1808 584

SAM-T98, true + 459.68 397 880 {
SAM-T98, false + 81.33 21 68 {
SAM-T98, errors 3132.50 555 1793 {

Table I. Table of minimum-error points for the di�erent test sets and di�erent methods. Each column reports the
number of true positives, false positives, and errors (false positives plus false negatives) for one of the four test sets.
Target-SAM-T98 refers to the direction of scoring in which an hmm is built for the target sequence and used to score
the library of sequences, as opposed to scoring the target sequence with the hmms built for the library sequences.
The SAM-T98 results were generated using the sum of the the scores from both of these directions.

SAM-T98 introduced reversed-model score adjust-
ment. Not only does this scoring method correct for
length and composition biases, but some other, sub-
tler e�ects are also cancelled|for example the periodic
hydrophobicity patterns of amphipathic helices or beta
strands also appear in the reversed sequence, as does
the lower frequency surface-core hydrophobicity pattern.
Because of these subtle e�ects, the reversed sequence is
a much more realistic decoy than a scrambled sequence.

These e�ects can a�ect scoring signifcantly. For exam-
ple, in the scoring for the CASP-2 contest (Karplus et al.,
1997), we had to eliminate by hand some coiled-coil mod-
els that scored any helical protein well|the reversed-
model scoring eliminates these problems. Also, metal-
lothionein (4mt2), with 24 cysteines out of 61 residues,
can align well to almost any sequence with conserved cys-
teines. Since many hmms get a large part of their score
from aligning highly conserved cysteines, 4mt2 often ap-
peared as a false postive for these hmms, but since the
reversal of 4mt2 has the same number of cysteines with
the same distribution of spacings, it also scores well for
these hmms and the di�erence between the model and
reversed-model scores is near zero.

The SAM-T98 method also introduced score summing.
We performed score summing for CASP-2 also|what is
new here is the systematic evaluation of this approach.
Summing entails the added computational expense of

building additional hmms that is not always clearly jus-
ti�ed. For the scop whole-chain and domain test sets,
summing of scores provided neglible gain in performance.
This was not the case for the fssp test set, for which
summing provided a marked improvement for homologs
more remote than the minimum error point.

If score summing is to be used, then models must be
built for both the target sequences and the database se-
quences. If not, then only database hmms or target se-
quence hmms are built. Which hmms to build depends
on the number of sequences to classify and the number
of families to classify into. If only a small number of
sequences are to be identi�ed, then it is probably better
to build an hmm for each. If many are to be classi�ed,
then building a library of models is better.

The SAM-T98 method uses reversed-model scoring
and score thresholds for selecting training sequences in
its iterative procedure. We found that a predecessor
method (SAM-T97) that did not include the reversed-
model scoring and used more liberal threshold values
garnered more remote homologs at the expense of in-
cluding more spurious sequences in the alignments. This
led to the creation of hmms of a slightly di�erent char-
acter; they were often more adept at �nding the remoter
homologies but not as able at �ltering out false positives.
This is illustrated in Figure 11. While we believe that
reversed-model scoring should be retained, we will be in-
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Fig. 11. hmms with di�erent recognition abilities
can be created by adjusting the iterative procedure of
SAM-T98. Here, \SAM-T97" refers to a predecessor
method that lacked the reversed-model scoring and used
more liberal score thresholds.

vestigating the proper threshold settings to �nd the best
balance for building both sensitive and accurate hmms.

The SAM-T98 method and its use as exempli�ed in
this work is available on the World Wide Web from
http://www.cse.ucsc.edu/research/compbio/. One
may search large sequence databases for homologs using
a single query sequence. This makes use of the SAM-T98
method to build an hmm and search a database. Since it
is not feasible to build hmms for all database sequences,
database scoring does not sum any scores. The second
option allows one to search our model library with a se-
quence. This is similar to the �rst option, except that the
database is composed of selected sequences from PDB.
Since we have constructed hmms for each of these se-
quences, score summing is used. Other options allow
access to separate components of the SAM-T98 method.
They allow one to build an alignment from a query se-

quence, generate sequence weights from an alignment, or
build an hmm from a single query sequence or an align-
ment with weights.

Future work is needed in several directions: evaluat-
ing other fold-recognition methods, tuning the param-
eters (such as thresholds and number of iterations) of
SAM-T98, and evaluating the quality of alignments pro-
duced as a by-product of the fold recognition. Other fold-
recognition techniques that need to be evaluated include
other sequence-based methods for �nding relationships,
such as MetaMEME (Grundy et al., 1997) and Search-
Wise (Birney et al., 1996), structure-structure compari-
son techniques, and methods such as threading that use
structure information for the template sequence, but not
the target sequence. Some of the more popular sequence-
based methods, including PSI-BLAST (Altschul et al.,
1997) and ISS (Park et al., 1997), have already been
tested on the SCOP dataset (Park et al., 1998). One
attempt at testing structure-structure aligners has been
made (Gerstein & Levitt, 1998), but that experiment
looked only at pairs known to be in the same superfam-
ily, so no false-positive rate can be determined.
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