ROPE: A STATICALLY SCHEDULED SUPERCOMPUTER ARCHITECTURE

Alexandru Nicolau and Kevin Karplus

Computer Science Department
Cornell University, Ithaca NY 14853

Abstract

Supercomputer architectures are not as fast as logic technology
allows because memories are slower than the CPU, conditional
jumps limit the usefulness of pipelining and pre-fetching mech-
anisms, and functional-unit parallelism is limited by the speed
of hardware scheduling. '

We propose a supercomputer architecture called Ring of Pre-
fetch Elements (ROPE) that attempts to solve the problems
of memory latency and conditional jumps without hardware
scheduling. ROPE consists of a pipelined CPU or very-large-
instruction-word data path with a new instruction pre-fetching
mechanism that supports general multi-way conditional jumps.

An optimizing compiler based on a global code transforma-
tion technique (Percolation Scheduling or PS) gives high per-
formance without scheduling hardware.

L._Introduction

Traditional computer designs use resources inefficiently, re-
sulting in machines whose performance is disappointing when
compared to the raw speed of their components. The main
technique for running processors near the limits of a technology
is pipelining. An operation in a pipelined machine may take
several cycles to complete, but a new operation can be started
on each cycle, so the throughput remains high. The benefits of
pipelining, however, have been limited by the difficulty of keep-
ing the pipeline full. The difficulty can be traced to two sources:
data dependencies and the slowness of memory. '

A data dependency is a relationship between two instruc-
tions that use a common register or memory location. The
second operation cannot begin until the first operation is fin-
ished using the register or memory. In many supercomputer
architectures, complex scheduling hardware is used to keep the
almost independent processing units from violating the data de-
pendencies implicit in the code. Although scheduling hardware
allows some overlapping of normally sequential operations, the
final machine is only about twice as fast as a strictly sequen-
tial machine (see section 4). Even with far more sophisticated
scheduling hardware than that in current machines, only an-
other factor of one and a hall is obtained [18] . The scheduling
mechanism is not only expensive to build, but it also slows down
the basic cycle time, since it must operate faster than the pro-
cessing units.

Large memories are slow compared with modern ‘processing
elements, limiting the performance of a machine in two ways.
First, instructions to be executed must be fetched from mem-

ory. Second, data opcrations that need to read from or write
to memory take a long time to complete, delaying other in-
structions. For straight-line code, conventional pre-fetch units
and instruction caches remove most of the instruction:fetch de-
lay, but substantial penalties are incurred for conditional jumps
and cache misses. The smaliness of basic blocks[17], [12} and
corresponding frequency of jumps has usually limited the size
of pipelines to two or three stages [16].

RISC (Reduced Instruction Set Computer) designs try to
gain performance without scheduling hardware by making all
instructions take the same time. The more complex opera-
tions, such as floating-point arithmetic, have been broken into
smaller operations that can be executed quickly. The approach
works well for small machines [8] [15], but is unsuitable for high-
performance scientific computation, where floating-point oper-
ations are common. RISC architectures are designed to take
advantage of mature compiler technology. ELI and ROPE are
designed around more modern, experimental compiler technol-
ogy.
The lack of sufficiently powerful compiler techniques has
forced this choice of reduced performance, scheduling hardware,
or sequences of simple instructions. Pipelined architectures al-
low instructions to overlap, but this overlapping helps only if
the instructions can be ordered so that data dependencies do
not slow execution unnecessarily. Such good execution sched-
ules usually exist, but finding them is difficult.

Until recently, code transformations were limited to source
transformations or to code motion within basic blocks. Al-
though source transformations are often useful {10] [1], they are
not sufficient for dealing with problems arising at the machine
level. Fine-grained, basic-block techniques can be successful on
machines with short pipelines and fixed-length instructions [8],
[15]. Such methods, however, do not take full advantage of the
speed of a given technology, particularly when floating point
units are available. Recently, trace scheduling [6] was proposed
as a global compaction technique for horizontal microcode and
for high-level language compilation for Very-Large-Instruction-
Word (VLIW) machines [7].

Trace scheduling can extract substantial parallelism from
ordinary code, as shown by the ELI project at Yale {3]. For
all its success, however, ELI has left several problems unsolved.
For example, ELI ignores serious memory latency problems and
the conditional-jump mechanism used is not general. The wide
instruction words of ELI, combined with its conditional-jump
mechanism, makes the data path to memory extremely wide.
Simultaneous data fetching requires wide data paths to the data



memory, and significantly increases the chance of bank conflict.

Although ELI can achieve speedups more than tenfold on
some scientific code [3], these speedups are significantly lower
than what is attainable for an idealized statically scheduled
fine-grained architectures [12]. Much of the performance loss
relative to the ideal model can be traced to the inadequacies
of trace scheduling, memory latency, or the conditional-jump
mechanism. The ROPE architecture attempts to solve these
problems.

Our architecture is designed to take maximum advantage
of a new code transformation technique, percolation scheduling
(PS), that schedules operations to avoid data dependency [13].
PS developed from our work and experience with trace schedul-
ing in the ELI project, and attempts to overcome the problems
that limit the effectiveness of trace scheduling.

A novel mechanism for pre-fetching instructions reduces the
memory bottlenecks and the need to flush pipes on conditional
jumps. This approach is used to obtain supercomputer perfor-
mance at relatively moderate cost.

Since PS, like other sophisticated code transformation tech-
niques, is expensive to run, we are examining applications where
the large running time of programs justifies an expensive com-
pilation. We are not trying to create a new micro-processor, but
a supercomputer architecture that supports scientific computa-
tion, simulation and complex signal processing. We believe that
ROPE architectures combined with percolation scheduling will
provide a cost effective alternative to existing supercomputers,
array processors, and in particular could greatly enhance the
performance of Very Large Instruction Word machines {7].

2. The Architecture

Our proposed architecture has two parts: the data path
and the instruction controller. On each clock cycle, one data
path instruction and one control flow instruction are begun.
Instructions need not finish in one cycle, but a functional unit
that takes longer than a cycle must be pipelined or duplicated,
s0 a new operation can begin on every cycle.

Figure 1 shows the block diagram for the ROPE machine.

Data Bus(es)

instruction r
register . fNoating loating memory
polnter | Ay interface
T e point * Lihiad address hash
Tandilion
i | |
Tstruction Decoder ats I
- H}IM'U
i banks
Instruction Buses
ALUOps

Conirol

i i} )
——-)l pre-fetch untt H pre-fetch unit H pre=fetch uoft }»—)

memory bank memory bank memary bank

1 1 1

External bus for reloading program

Figure 1: ROPE block diagram.

2.1 Data Path
The data path is a conventional design, in that it combines RISC
and array processor designs. It has the following features:

e All arithmetic and logic operations are register-to-register
operations. The instructions for controlling the data path
are essentially vertical microcode, as in RISC architec-
tures. The register file must be large enough to reduce
memory traffic significantly. The register file may be bro-
ken into separate banks to allow more register operations
per cycle. Since we are aiming at scientific computation,

we use the registers primarily to reducé memory traffic
during arithmetic operations, rather than to reduce pro-
cedure call overhead. When a procedure call occurs in
an inner loop of a program, the compiler will do in-line
expansion to eliminate the overhead of the call.

o Besides the conventional integer arithmetic unit, pipelined
floating-point hardware is provided. The main require-
ments on the arithmetic units are that an operation may
be started on every cycle, and that each operation take a
fixed time to complete. Pipelined floating-point multipli-
ers and adders are standard on machines intended for sci-
entific computing, since the speed at which floating point
operations can be done is the main performance limitation
for scientific calculation.

As in RISC architectures, addressing modes are not pro-
vided, and all memory operations are explicit loads and
stores. The instruction and data memories are entirely
separate, so no conflicts can occur between data and in-
struction fetching. Ideally, one load or store operation can
be issued each cycle, although an operation may take sev-
eral cycles to complete. The data and instruction memo-
ries are each banked and can accept one request per cycle,
as long as no bank has to process two requests simulta-
neously. When multiple requests are made to the same
bank, the processor freezes until the first request is com-
pleted. For instruction fetches, the pre-fetch mechanism
described in the next section can be used to guarantee that
an instruction is always ready to execute. Various tech-
niques are suggested in section 2.3 below to make freezing
adequately rare.

¢ The system is fully synchronous, in that all operations
finish after some known multiple of the basic clock pe-
riod. Although asynchronous systems can be built, such
systems are difficult to schedule efficiently, and schedules
are diflicult to debug. Scheduling hardware is expensive,
and would slow the basic operations of the machine. Our
design requires no scheduling hardware. It is the respon-
sibility of the compiler to create good fixed schedules for
instruction execution, given the execution times for the
various instructions as parameters.

o No interrupt handling or fast context-switching is pro-
vided in our processor. Rather than slow down our
main processor to handle these rare tasks, we will use
cheaper, slower processors to handle mstruction traps,
page faults, and 1/O. Sometimes, albeit rarely, we may
need to “freeze” the clock on our main processor when
data or instructions are not ready. Because the perco-
lation scheduling technique allows early instruction and
data pre-fetching, we expect clock freezing to be rare
enough not to degrade the performance of the machine
(see section 2.3).



o Different implementations of the architecture can have dif-
ferent numbers of each arithmetic unit, and the speeds of
the units can vary. Programs will need to be recompiled
for different versions of the machine, since the available
parallelism affects the mapping of the percolation sched-
ule to machine resources. ROPE is an attractive control
mechanism for VLIW data paths.

Achieving the potential performance of the architecture is
critically dependent on the quality of the compiler. Based on
our examples and our experience with trace scheduling, we are
confident that percolation scheduling is powerful enough to keep
the data path busy.

2.2 Program Memory

The innovative part of this architecture is not the data path, but
the instruction memory. The program memory must provide an
instruction on each clock cycle even though the read time of the
memory may be 10 clock cycles or more.

Interleaved memory banks and instruction caches are the
two standard approaches for obtaining high-performance pro-
gram memory. Interleaved memory banks are fast for straight-
line code, but impose large delays on each jump. Instruction
caches work well at moderate processor speeds, but are difficult
to design for the short cycle time envisioned for this architec-
ture. Our design has interleaved memory banks, but avoids the
jump penalty by using intelligent pre-fetch units. Caches can be
added between the pre-fetch units and their memory banks, but
are probably too expensive for the small gain in performance.

Multi-way jumps are useful for increasing the ratio of se-
quential operations to jumps, thereby making code transforma-
tions simpler. Furthermore, the core transformations of PS will
cluster conditional jumps, making multi-way jumps particularly
attractive. Merging n completely independent jumps might be
too expensive to consider, as n jumps can have 2n independent
targets, for n of which execution would have to proceed in paral-
lel. Luckily, most conditional jumps occurring in ordinary code
are not independent, and for n conditionals only one out of n+1
targets is chosen. PS will cluster only such conditional jumps.

if X>0 then C
else if Y>0 then B
else A

Figure 2: Related conditional jumps.

An example of dependent conditional jumps is shown in Figure
2. For a more detailed discussion of the semantics of multi-way
jumps, see [13].

A simple multi-way jump scheme was sketched by Fisher
[5]. Unfortunately, his mechanism only supports case-statement
type conditionals and thus could not handle some important
common conditional jumps. We will now describe a more gen-
eral mechanism that can be integrated gracefully with the pre-
fetch mechanism.

Each of the 2" pre-fetch units has its own block of memory,
independent of the other units (see Figure 1). On any given cy-
‘cle, one pre-fetch unit, called the active pre-fetch unit, provides
an instruction to the decoder. The other pre-fetch units may
be either busy fetching words from their memories, or ready to
become active. After an instruction is passed to the decoder,

control passes from the active unit to a different pre-fetch unit.
For normal straight-line code, control passes to the right from
unit s to unit ( + 1) mod 2. For jumps, control can pass to
any pre-fetch unit that is ready.

For the machine to work without delays, instruction pre-
fetches must be started well before the instruction is executed.
Pre-fetches are started automatically for normal straight-line
code. Since straight-line code proceeds from left-to-right across
the pre-fetch units, it suffices for each unit that starts a pre-
fetch to tell its right hand neighbor to start fetching the next
address on the next cycle. Since multiple target addresses must
be ready at jump instructions, some additional mechanism is
needed for starting instruction fetches. Jump targets are started
with explicit pre-fetch instructions.

Figure 3 shows a single pre-fetch unit. The signals on the
left and right sides are passed around the ring, and the signals
on the top communicate with the instruction buses. Note that
in a ROPE with 2" pre-fetch units, the bottom n bits of address
select the pre-fetch unit, and do not have to be passed around
the ring. The high-order part of the address that is passed
around the ring does not need to be changed between units,
except when passed from unit 2" — 1 to unit 0, where it must
be incremented.

Jumi

hbopl instruction condition mask
Jump || condition T treeze address topll start-fetch.top
bits T j,
2 2 $
address left 3 . address.right
stari-fetch. left ! start-fetch.right
=7 Prefetch Unit 7
nlhuhL; activate right
4
ram control row/column |linciryction
address data
NN
RAM

program load data

Figure 3: One pre-fetch unit

A pre-fetch unit has two state bits that determine its be-
bavior: busy and target. A pre-fetch unit is busy if it is in the
middle of a fetch, and ready when it has data to be put on the
instruction bus. A pre-fetch unit is a target if the word fetched
was requested as a result of an explicit PRE-FETCH instruction,
and a non-target if the word was requested from the unit to its
left.

The pre-fetch units can best be understood by examining
what they do with the signals passed to them from the top or
left.

A start-fetch.left signal is ignored by target units, but
starts a fetch of address.left on non-target units. When-
ever a fetch is started, the unit sends a start-fetch.right
signal on the next cycle, passing the address it is fetching to
address.right. The unit becomes busy until the fetch is com-
pleted. Note that a start-fetch. left signal could be received
by a non-target unit that is busy with a previous fetch, in which



case the previous fetch is aborted. There are usually several
start-fetch tokens being passed around the ring at once.

The activate.left signal can be thought of as passing a
unique aclivate token around the ring to execute straight-line
code. A ready unit puts the available instruction onto the in-
struction bus, and signals activate.right on the next cycle.
A busy unit freezes the data path until the fetch is completed,
then puts the available information onto the instruction bus
and signals activate.right. A jump signal inhibits the usual
left-to-right passing of a token.

The start-fetch.top signal makes any unit a target unit.
Fetching is started for the address address.top. The jump la-
bel is saved for comparison with future jumps. Only jumps with
the same label can activate the pre-fetch unit. The condition
mask specifies under what conditions a pre-fetch unit activates.

It is saved for future comparison with the condition bits'. The
condition bits are registers on the data path, set by explicit test
instructions. The usual setting of condition-bits as side-effects
of other instructions is too difficult to control for multi-way
branching.

On the next cycle, start-fetch.right is signalled, with
address.right set to the new address. If a unit receives a
start-fetch.top and start-fetch.left signal on the same
cycle, the start-fetch. top signal has priority, and the start-
fetch.left signal is ignored.

The jump signal is sent with a jump label. Each target with
a pre-fetch for the labeled jump compares the current condition
bits with the condition mask saved from the beginning of the
fetch. If the mask matches, the unit will activate as soon as it is
ready, freezing the processor if the fetch is not yet completed. If
the mask does not match, the unit reverts to being a non-target
unit, and starts fetching the instruction at address.left. It is
the compiler’s responsibility to ensure that exactly one pre-fetch
unit responds to a jump signal.

The instructions for the machine consist of two parts: the
data op, which controls the data path, and the control op, which
controls the pre-fetch units. The data ops are standard instruc-
tions for the data path discussed in section 2.1. The control ops
are:

NEXT: activate the next umit in line. This is the normal
behavior for straight-line code, and requires no action from a
controller outside the pre-fetch ring.

PRE-FETCH address jump-label condition mask: instruct the
appropriate pre-fetch unit to start fetching the specified ad-
dress. Normally the address will be a constant contained in the
instruction, but sometimes will have to come from the data path
(to handle return from procedures and pointers to functions, for
example). The jump label and condition mask are stored by the
pre-fetch unit for later matching.

JUMP jump label: Activate one of the target pre-fetch units
for the specified jump. Jumps are labeled so that pre-fetches
can be moved past jumps while scheduling. Jump labels can be
re-used when there is no danger of a conflict, so two or three
bits probably would suffice. A conditional jump on a ROPE
machine thus has three parts: PRE-FETCH instructions for the
first instruction of each branch; test instructions to set the con-
dition bits; and a JUMP instruction to start executing the desired

'We have devised several different coding schemes for the condition mask,
but not settled on one yet. We will have to examine many multi-way
jumps to determine the relative importance of a short encoding and flex-
ibility in expressing the conditions.

branch. This separation of the functions of a conditional branch
is the main advantage of a ROPE architecture.

not X>0

not 130 AR
A - B [
Conventional fachine ROPE

Figure 4: Combining two conditional jumps into a three-way
jump.

On a conventional machine, jumping to one of three ad-
dresses requires two conditional jumps, as in the left half of
Figure 4. On a ROPE machine, a single three-way jump is used
(right half of Figure 4). Figure 5 shows how this example can be
scheduled onto the multiple pre-fetch units of the ROPE ma-
chine. Each column shows the activity of one unit, each row
representing a single cycle.

Pre-fetch unit
01 234306708 9 10111213141516172181932021 ...

iy
Rhnpihapy

Tine
fetch A(f1; 71, 72) HHRTHTIN
fetch B4 1,71, 2) NN \I,
fetch C(i1; 1)
test 2«¢- (y>0) 1Y Wy R
tost 1<~ (30} SR SR A HHEN
. RE R R R
. - R R SHEN A IRy BHEH
)ump (“) SR REEY B Rt wm e Ruhnhuiing
C Rupahintibay g e vpingap] a e b R S S R
[ ] 191e
I Fetching
[&] Ready

IX] Astive (executing)
Figure 5: Possible execution sequence for a three-way jump.

Although ROPE’s pre-fetch units are fairly cheap, it would
be naive to build a machine with thousands of them. How many
do we need to support multi-way jumps? Let us assume that a
pre-fetch unit becomes ready F cycles after a fetch is requested
for it. On the cycle after a jump each of the targets will need to
be ready, and the F — 1 units to the right of each target must
have started pre-fetching. Thus a k-way jump requires least kF
pre-fetch units. A four-way jump with a six cycle fetch time re-
quires 24 pre-fetch units. If jumps are close together, as they are
in the example shown in section 4, each target branch need only
pre-fetch up to the next jump instruction, and fewer units are
needed. A ROPE machine with 32 or 64 pre-fetch units should
achieve almost all the possible speedup of this architecture. If
not enough pre-fetch units are available, programs will be slowed

down, but only by the number of pre-fetches that do not fit (not
by the time required for each fetch), since pre-fetches have no
data dependencies, just resource availability constraints.

The compiler must schedule the pre-fetches and assign code
addresses to minimize the waiting for instruction fetches. For
tree-structured control flow with infrequent branching, schedul-
ing pre-fetches and assigning code addresses is easy. If the
branching is frequent and not enough pre-fetch units are avail-
able, delays are unavoidable with any schedule. Assigning ad-
dresses is difficult for a code block that has multiple predeces-



sors, such as the entrance to a loop or the statement after an
il-then-else. Such a code block may need to be duplicated to
avoid conflicting requirements on its placement.

We believe that multi-way jumps will prove to be a valuable
part of ROPE. Combining basic blocks and using multi-way
jumps should allow us longer sections of straight-line code than
compilers for conventional machines, which examine only basic
blocks, since basic blocks are usually less than five instructions
[12]. The main cost of a jump instruction on conventional ma-
chines is the fetch time for a non-sequential instruction. With
our architecture, the pre-fetches, tests, and jumps can be sched-
uled independently, and therefore do not slow the machine. Sep-
arating pre-fetches, tests, and jumps may improve performance
significantly, even without multi-way jumps.

2.3 Data Memory

The data memory, like other units on the data path, must ac-
cept requests as often as one per cycle, but may take several
cycles to respond to a request. The compiler schedules memory
operations as if they take a constant time to execute. Mem-
ory operations may not take a fixed time, however, since data
caching can speed memory operations, and page faults can slow
them down. Faster memory operations pose no problems (al-
though the execution schedule chosen by the compiler may no
longer be optimal), but slower memory operations force the pro-
cessor to freeze until the memory operations can be completed.
The compiler can schedule load and store operations for nominal
execution times (for example, assuming cache hits for sequential
array access, and cache misses for random linked lists).

A multi-bank data memory will meet our needs. Each bank
processes only one memory operation at a time, but different
banks can execute memory operations concurrently. The mem-
ory as a whole can accept one operation per cycle, but may have
to freeze the processor if a request is made to a bank that is busy,
or if a bank does not complete an operation in the scheduled
time. Caches are not needed for moderate performance (up to
about 20 Mflops), but a cache may be needed for each bank at
higher speeds.

We can alleviate the data-memory freezing by having the
compiler do most of the work, carefully mapping the data onto
the banks. Based on our experience with ELI, good mappings
should be feasible most of the time, given good memory disam-
biguation techniques [11]. Unlike VLIW’s, the ROPE machine
issues instructions one at a time. The bandwidth of the data
memory is therefore not as critical as in VLIW’s and should not
be a bottleneck.

The memory bank conflicts can be reduced by making the
mapping from address to memory bank number be a hash func-
tion, rather than the usual low-order address bits. Hash func-
tions can be computed quickly in hardware, but.would add an
extra cycle to the data memory access. Studies are needed to
determine if memory bank conflicts are frequent enough to jus-
tify the extra cost of hashing.

Data memory conflicts and the resulting delays can some-
times be reduced by distributing multiple copies of read-only
data into the banks®. Having many registers will enable the
compiler to maintain fast access to heavily used data, further
teducing the problem. Finally, if memory references in the code

_are ambiguous and cannot be guaranteed by the compiler to fall

2Signal processing algorithms make particularly heavy use of read-only
constants.

in different banks, the user could be queried at compile time for
information about the likelihood of a conflict. If the chances
of collision are high, the references can be scheduled with an
interval that will avoid freezing, allowing PS to use the inter-
vening time for other operations. Since PS supports global code
motions, the chances that such operations could be found are
good.

for i=m1 to nl1 by kil do
for j=m2 to n2 by k2 do
clil:=ali]l + b[jl;

Figure 6: Indirect references that may conflict.

Figure 6 shows an example where user-supplied information
can guide the compiler. We would like to issue the fetches from
a[i] and b[j] one immediately after the other, but in the ab-
sence of more information about i and j, we can’t guarantee
that ali] and b[] are in different banks. We can either create
multiple copies of a[] and b{], or, if the user can supply infor-
mation about i and j (for example, that i is always odd and j
is always even), the compiler could try assigning addresses for
afl and b[] to minimize conflicts. Even if the user can guaran-
tee only that conflicts are rare, without specifying exactly when
they will occur, average performance can be improved. TFor ex-
ample, if i = 2x+ 1 and j = 22 +1, for z > 0, a conflict can
still occur, but the code can still be scheduled as if there were
no conflicts, since freezing will occur only once. Alternatively,
the compiler could schedule the memory references apart far
enough that no conflicts can occur, using the intervening cycles
to perform housekeeping tasks like incrementing and testing the
counter.

3. Percolation Scheduling

Percolation scheduling globally rearranges code across basic-
block boundaries. Its core is a small set of primitive program
transformations acting on adjacent nodes in a program graph.
These transformations are easy to understand and implement,
and are independent of any heuristics. They are the lowest level
in a hierarchy of transformations and guidance rules. Higher
levels of this hierarchy direct the core transformations and rear-
range the program graph to allow more code motion by the core
transformations. Aided by the other levels, the core transfor-
mations operate uniformly and can be applied to partially par-
allelized code, allowing PS to improve code produced by other
compilers.

The following is an overview of the PS hierarchy and the
work we have completed. A more detailed discussion can be
found in [13].

3.1 Core Transformations

The four primitive transformations of this level are the core
of PS. They operate on adjacent nodes in a program graph.
Repeatedly applying the transformations allows components to
“percolate” (move towards the top of the program-graph) from
the various parts of the program graph towards the start node,
hence the name Percolation Scheduling.

The details of the transformations deal with maintaining the
integrity of all affected paths. A brief description of each trans-
formation is given below. Rigorous definitions can be found in
[13].




Delete Transformation A node in the program graph can be
removed by the Delete transformation when the node contains
no executable operations. Nodes without any components may
occur as a result of the other transformations or as part of the

x\ D
- —>

El

Figure 7: Delete Transformation

original program graph. Since they do not affect the execution
semantics of the program in any way, such nodes may be deleted,
provided that the outgoing edges of their predecessors are reset
to point to the successor of the deleted node. An illustration is
given in Figure 7.

1"

Figure 8: Move-op Transformation

11

Figure 9: Move-cj Transformation

Move-op Transformation This transformation moves a simple
operation (that is, one that does not affect the control-flow) up
through edge (m, n) from node n to node m, provided no data-
dependency exists between operations in m and the operation
being moved. In performing the movement, care must be taken
not to affect the semantics of paths passing only through n
but not through m. To ensure this, these paths are split and
provided with a copy of the original n. An illustration is given
in Figure 8.

Move-cj Transformation A conditional jump can be moved up
from node n to node m through edge (m, n), provided that no
dependency exists between m and the component being moved.
In performing the movement, care must be taken not to affect
paths passing only through n but not through m. To ensure
this, the paths are split and a copy of n (called n' in Figure
9) is provided. In addition, since we allow an arbitrary tree of
conditional jumps in a node, and the conditional jump being
moved may come from an arbitrary spot in that tree, n will be
split into n and n", to correspond to the true and false branches
of the moving conditional jump (see Figure 9). The details of the
splitting and a proof that the transformation indeed preserves
the semantic correctness of the original program is beyond the
scope of this paper and can be found together with proofs of
correctness and termination in [13]. An illustration is given in
Figure 9.

Unification Transformation This transformation merges identi-
cal operations from a set of nodes {ng,ny,n2,...} to a prede-
cessor node m. This is done only when no dependency exists
between m and the component being moved and when paths
(m, n;) exist for all nodes in the set. In performing the code mo-
tion, care must be taken not to affect paths going only through
the ny’s but not through m and, as usual, splitting and copying
is used. An illustration is given in Figure 10.

n




E1

Figure 10: Unification Transformation
3.2 Beyond the Core Transformations

The core transformations do most of the code motion, and
higher levels direct the core transformations and rearrange the
program graph to allow more code motion by the core transfor-
mations.

General Support: At this level, the data dependencies are
found and recorded. Memory disambiguation and enhanced flow
analysis methods [11] increase the accuracy of data dependen-
cies and permit more code motions. Traditional optimizations,
such as dead code removal, are also used at this level.

Guidance Rules: This level consists of a set of rules that
decide when and where to apply the core transformations. Op-
eration and branch probability, reverse depth-first ordering, de-
pendency chain length and many other heuristics [13] can be
used to direct the primitive transformationsS.

Enabling Transformations: This level provides transforma-
tions of the program graph that cannot be accomplished by the
simple code motions of the core transformations. The program
graph rearrangements are done primarily to allow the core trans-
formations greater freedom to move code. Examples of such
rearrangements are: folding, tree-height reduction [9], and loop
quantization, which is a multiple loop unrolling technique [14].

The computational model and the core transformations are
formally defined in {13]. The semantic correctness and termi-
nation of the transformation process have been proven. We are
also studying the completeness of the transformations. Guid-
ance rules and transformations for the higher levels of our hi-
erarchy have been defined. These topics are all discussed in
[13].

3.3 Mapping Percolation Schedules to Hardware

The transformations given above expose the parallelism avail-
able in the code and provide a partial ordering on the issuing of
the operations. The transformed program graph can be viewed
as the code for an idealized machine, in which no resource con-
flicts ever occur. Obviously this ideal is unrealizable, and can
only serve as a bound on the eflectiveness of the transformations.
To execute the resulting code on realistic architectures, we need
a mechanism to change the ideal schedule into a schedule that
respects resource limitations. Even for our simple architectural

2In trace scheduling this level consists of only one rule (trace picking) and
is inseparable from the code transformations. This rigidity reduces the
potential benefits of trace scheduling.

El

model, finding an optimal schedule is NP-hard, unless every
operation takes only one or two cycles. The greedy algorithm
outlined below, however, appears to be adequate. It is a re-
finement of List Scheduling, which is reportedly very effective
4j.
u The main resource limitation in the ROPE architecture is
that only one instruction can be executed per cycle. To satisfy
this restriction, a total ordering must be derived from the par-
tial ordering of the instructions. The total ordering is built one
instruction at a time. The algorithm keeps two lists of instruc-
tions: the ready list and the busy list. The ready list contains
all instructions that can be scheduled to begin on the current
cycle, and the busy list contains all instructions being executed
during the cycle. Initially, the ready list contains all instructions
that have no predecessors, and the busy list is empty.

For each cycle, the algorithm chooses the instruction from
the ready list that is expected to lengthen the total schedule

length least. Our current heuristic is to choose the instruction
with the longest dependency chain—that is, the least slack. To
break ties, the instruction with the most dependents is chosen.
If the ready list is empty, a no-op is scheduled.

After scheduling an instruction for the cycle, the algorithm
checks the busy list for instructions that were completed during
the cycle. Completed instructions are removed from the busy
list and their immediate dependents are added to the ready
list. Both the ready list and the busy list can be effectively
implemented with priority queues.

The technique above works well for straight-line code. At
each jump the algorithm must decide which branch to continue
scheduling. Other branches are pruned from the graph and
scheduled separately. The result of the greedy rescheduling al-
gorithm is a collection of code fragments joined by jump in-
structions.

Once the rescheduling is completed, a starting must be as-
signed address for each code fragment. Within a code fragment,
instructions are assigned sequential memory locations. The first
code fragment can be assigned an arbitrary address, but the
other fragments cannot be arbitrarily placed. All the targets
of a conditional jump need to be sufficiently separated so the
pre-fetching mechanism can have all the targets ready simulta-
neously. Each codé fragment is placed so that the jumps into
or from already placed fragments are all satisfied. If no such
placement can be found, part of the code fragment may need to
be duplicated.




4. Current Work

We have constructed five simulated architectural models,
two correspond to conventional machine architectures, one is
the ROPE architecture, one is a VLIW architecture, and the

last combines ROPE and VLIW ideas. We are implementing a -

percolation-scheduling compiler for all five architectures, but for
the comparisons in this section percolation scheduling is used
only for the ROPE machines.

The simplest architectural model executes each instruction
in the object program sequentially. The machine contains no
cache, so all jumps require memory accesses. Standard opti-
mizations of the code (such as dead code removal) are assumed,
but code rearrangement, pre-fetching, and hardware scheduling
are all irrelevant for this machine.

The second model is representative of several existing super-
computers (for example, the Cyber 205, Cray-1, and CDC7600).
It has a fully pipelined data path, identical to the ROPE data
path. This machine also has a hardware scheduling mechanism
that guarantees executing dependent operations in the same or-
der as they were issued, but allows independent instructions
to be executed in any order. The machine contains a program
cache, and for fair comparison with our architecture, we assume
100% hit ratios. That is, the machine can fetch and decode any
instruction in one cycle, but instructions cannot be issued be-
yond a conditional jump until the condition has been resolved.

The data memory is banked, and we assume that the data
layout permits memory accesses to start every cycle. This is un-
realistic unless sophisticated tools for memory disambiguation
and layout {2],[11] are used. Although most existing compilers
do not provide such support, we include the assumption so our
comparison is not biased towards the PS and ROPE approach.
We also allow this architecture an optimizer that can perform
code reorganization within basic blocks. For example, jumps
can be moved upwards inside basic blocks when not hindered
by dependencies—as in MIPS [8].

The third simulated machine is our ROPE architecture. It
has the structure described in section 2, and uses PS and the
mapping techniques described in section 3. No cache or runtime
scheduling hardware is provided in this machine; the compiler
is completely responsible for the correct execution and the ef-
ficiency of the machine, including proper data/program bank
accesses.

Both of the architectures with pipelined data paths assume
that the registers read by an instruction are not needed again
by the instruction after they have been read, and that they are
read in a fixed cycle of the instruction. This assumption removes
most read-write dependencies and is realistic for a pipelined
architecture.

The fourth model is an idealized VLIW machine [3]. While
the instruction timings are realistic, we allow as many resources
(such as functional units, buses, memory ports, register ports)
as required for peak performance. The functional units are
pipelined to accept one operation per cycle, and trace schedul-
ing is used to schedule the input program. We assume sufficient
instruction pre-fetching on the on-trace path and on uncondi-
tional jumps so that instructions in that path can be issued
every cycle. Off-trace conditional jumps require a memory ac-
cess and are therefore slower.

The last model combines VLIW functional-unit parallelism
with ROPE instruction pre-fetch and uses a percolation schedul-
ing compiler. The combination of ROPE and PS make the

VLIW architecture much less sensitive to branch probabilities.

For the following example we use the timings shown in Fig-
ure 11. These timings are consistent with current off-the-shelf
components. We have also considered other timings (for exam-
ple, those of the Cray-1). Choosing other times will not affect
the ROPE architecture or the percolation scheduling compiler,
but may of course change the speed of programs.

Despite the greater hardware complexity of the conventional
pipelined architecture and of the VLIW model, our preliminary
results show significant speedups for PS and the ROPE archi-
tecture, even on small problems (binary search, bubble sort,
Livermore Loop 24, and matrix multiplication) over all other
models.* A further speedup is expected in a hardware im-
plementation of ROPE, since the simple, uniform architecture
should allow a shorter cycle time than a machine with hardware
scheduling.

Machine model

Sequential Pipelined VLW ROPE VLIW/ROPE
Instruction Types

Register to register transfers

1 1 1 1 1
integer add, compare 2 2 2 2 2
Floating-point add, compare 4 4 a 4 4
Indexed data-fetch 6 6 6 6 6
Sequential instruction fetch 0 0 0 0% 0
Non-sequential instruction fetch 6 6 ] 6 6
Conditionai-jump compare compare compare 1t 1t

+6 +0 +0/6

Goto 6 0 a 1 1

t+ ROPE compares (tests) are separate instructions. .
tSequential instruction fetches are handled automatically by the ring.

Figure 11: Operation times in cycles

4.1 An Example

The code in Figure 12 (Livermore loop 24) will be used to illus-
trate our approach. Loop 24 finds the location of the minimum
of an array of floating-point numbers. for all the architectures
discussed, the loop has been unwound three times to increase

m=1
DO 24 K= 2,N
IF ( X[K] .LT. X[m]) THEN
m = K
24 CONTINUE

Figure 12: Sample Program Fragment (Livermore Loop 24)

potential pipelining, and traditional optimizations have been
done.

Executing the loop sequentially requires between 70 or 73 cy-
cles depending on which branches of the conditionals are taken
for an average of 71.5 cycles.

The loop body requires between 38 and 41 cycles to execute
on the machine with hardware scheduling, for an average of
39.5. cycles®. This architecture is about 1.8 times as fast as the

4Since our compiler is not fully implemented, the experimenting requires
significant human help, limiting our ability to deal with large programs.
However, the conditional structure of these programs is not amenable to
standard pipelining/vectorization and is representative of a large class
of problems (for example, Monte-Carlo simulation). Inspection of the
resulting schedules makes it obvious that even better performance is to
be expected on larger programs.

%In this discussion we ignore initialization time and the time required to
finish pending operations after the loop exits. For realisticly large arrays,

this time is negligible compared to the execution time of the loop.




PROLOG: Set-up code

VLIEK>N

2:Rg: = X[K|
3:R7:= X[m)
4:1f Rg>Ry

EXIT: Fix-up Code

AN

Ssm:= K “Ra -

8:Ri:=aR+3
9: Ryg: = X[Ry)
10: 1 Ryg>Rq

14:R2: =Ry + 3
15:R12: = X[R3]
16:1f Ry;>Ryy

T

IEtermediate Code

includes some optimizationsn

sequential machine on this example, which is consistent with
the speedups reported in [18]. The actual performance of the
Cray-1 (cycle time 12.5 nanoseconds) for this loop is of about
2.3 Mflops according to the Livermore benchmarks.®

For the VLIW machine, the intermediate (NADDR) code
and the trace scheduled code is shown in Figure 13. On-trace
jumps and unconditional jumps are assumed to be pre-fetched.

. Off-trace jumps are shown explicitly by arrows and take longer

than on-trace jumps. A few optimizations have been performed
to ensure a fair comparison with percolation scheduling and
ROPE. In particular, intermediate exit-tests (resulting from the
unwinding of the loop) have been removed. With the idealized
model, the time required by one loop iteration ranges from 15
to 54 cycles, for an average of 34.5. Even assuming several diffi-
cult post-scheduling optimizations (such as removing redundant
memory fetches from the alternate paths), the time to execute
the loop ranges from 15 to 40 cycles for an average of 27.5.
For the ROPE machine, the original loop in Figure 12 is
first transformed by the enabling transformations (in particu-
lar, the loop is broken at point (a) to minimize dependency
chains). Next, the core transformations are applied. In the pro-
cess, several simple algebraic manipulations are performed to
support the core transformations. For example, operations of
the form m := K are changed to m := K — 3 as a side-effect of
allowing K := K + 3 to percolate upward. Similarly, standard
flow-analysis and peephole optimizations allow the removal of
redundant fetches. Dead-code elimination removes the redun-
dant assignments to m. With no code optimization, the loop
takes 25 cycles per iteration. Standard optimization techniques
do not shorten the dependency chains in this example, yield-

ing a loop that still takes over 20 cycles. Using sophisticated

SLoop 24 is the slowest of the Livermore loops on the Cray.

_ K> N kif Re: w XIKI | Ry m X[m) Re: mK o 1 )Ry mK 02 |

Ripe=X[R1]| RezemX[R2}

EXIT

R 2<R

Fimessj

Xe=K + 3 18"  me=R7

=

3

RiimKel|Ry:wK o2

R~y [{Ry: K 2

Rize—X[Ry|

Loop

Figure"i3:7VLIWV Machine Code and Execution Schedule

transformations that allow code motion past branches mend re-
duces the cycle time to 7 cycles. Unrolling the loop to double its
length allows us to reduce the time to 11/2 cycles per iteration,
but only at the expense of very careful instruction ordering.
Unrolling the loop to triple its length reduces the time to 15/3

xm=x[1];  xki=x[2]; xk2=x[3];

m=1; ak=gx+4; nop-2;
loop:
bl = xki<xm;
b2 = akdn+&x+2;
xk3=*ak; ak++;
b3a = xk2<xm; b3b= xk2<xk1;

b4 = akd>n+&x+2;

if (b2) goto exit

if (b1) {xm=xkl; m=ak-(&x+3)}
bba = xk3<xm; b5b= xk3<xk2;
xki=#*ak; ak++;

if (b4) goto exit

if ('bl&&b3a || b1&4b3b)

{xm=xk2; m=ak-(&x+3)}

b6 = ak>n+&x+2;
xk2=*ak; ak++;
if (b6) goto exit
if ( bl && 'b3b && b5a

Il bl && b3b && bSH

Il 'b1 && tb3a && bb5a

Il !'bl && b3a &k b5bH)

{am=xk3; m=ak-(&x+3))}
goto loop;
exit:

Figure 14: ROPE machine instructions for 3x unrolling.




cycles per iteration. Figure 14 shows the machine instructions
for the loop unrolled three times, and Figure 15 shows a trace
of one iteration. Note that some jumps appear to start before
their pre-fetches are finished, since we are taking advantage of
the pre-fetch units not starting a new fetch when the address is
the same as for the previous fetch.

For this loop, ROPE is 1.8 to 2.3 times faster than the
VLIW machine, 2.6 times faster than the machine with hard-
ware scheduling, and 4.8 times as fast as the sequential machine.
Assuming a conservative 30 nanosecond cycle time, ROPE does
loop 24 at 6.7 Mflops, as compared to 2.2 Mflops for the Cray-1,
a 3-fold speedup, despite the slower clock rate of ROPE. ROPE
is achieving 20% of its peak rate, while the Cray-1 gets about
1% on this loop. With the same clock speed as a Cray, we get
30 Mflops (13 times the Cray’s performance).

The combined VLIW/ROPE architecture (machine model
5), of course, performs better than either the VLIW or the
ROPE models. Its schedule only takes 8 cycles, for a speedup

of 1.9 over pure ROPE and between 3.4 and 4.3 times over the
pure VLIW.

P’m instructions \
T : Legend
H T T - memenesssan
v T B T comu pathansrion
T
[ g o e G 1 ) VoL LTT
[To5. 2 < oy teen amma-aaip 37 mami | | : H ] T
e 1 Yo
\ 1 .
FY 1 'IIJ- -,
e Vi HE =
- [ I
: L]
] 1
I it X : H
T |
II : I +L I|
H - i
ey
1 : Ll s v
1 L TT
i e
[ 1
b 1
1
1
1
]
e

Figure 15: Trace of one execution for 3x unrolled loop.

This tiny example was chosen for ease of explanation. It also
serves to illustrate the multi-way jump mechanism and the rela-
tive insensitivity to unpredictable conditionals of ROPE. While
the density of conditionals in this small piece of code is not
necessarily typical of scientific code, unpredictable conditionals
often occur in scientific programs, as well as in other applica-
tions, such as systems code or Al. Our preliminary results indi-
cate that PS and ROPE can do even better on larger programs.
Counsidering the shortness of the code (only 17 instructions), the
speedup achieved here is surprisingly good.

The ROPE machines have far fewer wasted cycles than the
other approaches. Since the instruction pre-fetches, tests, and
jumps are scheduled independently, we don’t need to lengthen

our schedule to wait for program memory, despite the absence
-of a cache.

5. Future Work

Our next goal is to refine our model into a hardware imple-
mentation. To do so, further study is required:

o Extensive experimentation with our simulated machine is
_needed to evaluate the effectiveness of our approach and

19

to choose the appropriate number of registers, pre-fetch
units, and data memory banks. Experimentation can help
us resolve questions such as:

— How valuable are multi-way jumps?
~ How wide a multi-way jump can be used eflectively?

— How useful is binary branching with multiple pre-
fetching?

The complexity of the mapping algorithm has to be inves-
tigated, and efficient implementations are required.

e Alternative approaches for data and program memory lay-
out (graph coloring algorithms, for example) should be
investigated. '

6. Conclusions

Our preliminary results are encouraging and we believe that
our approach has significant advantages for the development of
a cheap, high performance machine. ROPE can be used by
itself, or combined with VLIW architectures. The ability to
handle complex and unpredictable flow of control could signif-

icantly enlarge the class of applications for which VLIW’s are
attractive.

References

[1] J. R. Allen and K. Kennedy. PFC: a program to convert
Fortran to Parallel form. Rice University Technical Report
MASC TR 82-6, 1982.

[2

—_—

U. Banerjee. Speedup of Ordinary Programs. University
of Illinois Computer Science Technical Report, UIUCDS-
R-79-989, Oct. 1979.

[3

J. A. Fisher, J. R. Ellis, J. C. Ruttenberg, and A. Nicolau.
Parallel Processing: A Smart Compiler and a Dumb Ma-
chine. Proceedings of the ACM Symposium on Compiler
Construction, 1984.

[4] J. A. Fisher. The Optimization of Horizontal Microcode
within and beyond Basic Blocks: an Application of Pro-
cessor Scheduling with Resources. New York University
Ph. D. thesis, New York, 1979.

[5] J. A. Fisher. An Effective Packing Method for Use with 2"-
way Jump Instruction Hardware. 13" Annual Micropro-
gramming Workshop, Colorado Springs, Nov. 1980, SIG-
MICRO Newsletter, 11(3&4), 64-75.

[6] J. A. Fisher. Trace scheduling: A technique for global
microcode compaction. I[EEE Transactions on Computers
C-30(7), July 1981, 478-490.

[7] 3. A. Fisher. Very long instruction word architectures and
the ELI-512. Yale University Department of Computer Sci-
ence, Technical Report 253, 1982.

[8] J. Hennessy, N. Jouppi, S. Przbyski, C. Rowen, T. Gross,
F. Baskett, and J. Gill. MIPS: A Microprocessor Archi-
tecture. 15*" Annual Microprogramming Workshop, Palo
Alto, CA, Oct. 5-7. SIGMICRO Newsletter, 13(4), De-
cember 1982, 17-22.



[l
[10]
(1]

(12]

(18]
[14]

(15]
716]

[17]

(18]

D. J. Kuck. Parallel Processing of Ordinary Programs.
Advances in Computers, vol. 15, 1976, 119-179.

D. Kuck, R. Khun, D. Padua, B. Leasure, and M. Wolfe.
Dependence Graphs and Compiler Optimizations. 8% Ap-
nual ACM Symposium on the Principles of Programming
Languages, Williamsburg, VA, Jan. 26, 1981, 207-218.

A. Nicolau. Parallelism, Memory Anti-Aliasing, and Cor-
rectness for Trace Scheduling Compilers. Yale University
Ph. D. Thesis, New Haven, Connecticut, 1984,

A. Nicolau and J. A. Fisher. Measuring the Parallelism
Available for Very Long Instruction Word Architectures.
IEEE Transactions on Computers, C-33(11), Nov. 1984,
968-976.

A. Nicolau. The design of a Global Parallel Compila-
tion Technique—Percolation Scheduling. Cornell Univer-
sity, Computer Science Technical Report, 1984.

A. Nicolau. Loop Quantization, or Unwinding Done Right.
Cornell University, Computer Science Technical Report,
1984.

D. A. Paterson and C. H. Sequin. 'A VLSI RISC. Computer

R. M. Russell. The CRAY-1 Computer System. Comuni-
cations of the ACM 21(1), Jan. 1978, 63-72.

G. S. Tadjen and M. J. Flynn “Detection and parallel ex-
ecution of independent instructions” IEEE Transaction on
Computers 19:10 (October 1970), 889-895.

S. Weiss and J. E. Smith. Instruction Issue Logic in Pipe-
lined Supercomputers. IEEE Transactions on Computers
C-33(11), Nov. 1984, 1013-1022.




