
Logic Minimization using

Two-column Rectangle Replacement*

S@ren S@e and Kevin Karplus

Board of Studies in Computer Engineering

University of California, Santa Crttz

ABSTRACT

This paper describes a technique for multi-level logic

minimization on functions represented as if-then-else DAGS.

We define the concept of Boolean matrices, and give formal

definitions of blocks and rectangles and their meanings. We

introduce a new heuristic two-column rectangle replacement

for finding rectangle coverings of Boolean matrices. This
heuristic is well suited for optimizing circuits for area, while
controlling the delay. A slight variation of the heuristic opti-

mizes with respect to delay. The results of using two-column
rectangle replacement on if-then-else DAGS are reported for
several benchmark examples.

1 Introduction

This paper is concerned with factoring and recognizing

shared subexpressions in Boolean functions. Boolean func-

tions are represented as Boolean matrices, and rectangles
of these matrices represent either a factor of a function or

a subexpression that can be shared among several func-
tions. We use a technique we call two-column rectang/e re-

placement. The rectangle replacement problem is a variant

of Brayton’s rectangle covering problem [1,2]. In both we

find sets of rectangles that cover all the 1’s of the Boolean

matrix—rectangle replacement differs from rectangle cover-

ing in the way rectangles are replaced. In Brayton’s rectan-

gle covering, rectangles are replaced in parallel. In rectan-

gle replacement and two-column rectangle replacement, we

replace rectangles in sequence. Because the Boolean ma-

trix changes after each replacement, the solution to the two

problems may differ significantly.

Section 2 shows how to represent Boolean functions as

if-then-else DAGS [3,4]. Two-column rectangle replacement

does not rely on the if-then-else DAG representation—it could
be applied any time that rectangle covering is useful.

In Section 3 the semantics of blocks and rectangles are

given, and we show how to replace rectangles of a matrix

with simpler rectangles. We finally define the rectangle re-

placement problem, which consist of finding and replacing

rectangles in the right order. In Section 4, we use two-

column rectangle replacement t on a multi-level logic mini-

mization system where functions are represented as if-then-

else DAGS [3,4]. Two-column rectangle replacement consist

of finding rectangles with exactly two columns in the ma-

trix. These two columns have associated Boolean expres-

sions, which will be combined into a new expression using

an associative and commutative logic operator. We present

two heuristic methods for selecting the order of replacement:

one optimizes for area, and one optimizes for delay. Section 5

presents some results.

● This research supported by NSF grant MIP-8903555.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice n given that copying is by permission of the
Association for Computing Machinery. To copy otherwse, or to republmh,
requires a fee and/or specific penmssion.

ak ‘a@
(a) (b)

Figure 2.1: (a) If-then-eke DAG for alsc+ aad+=bd.

The left branch from a node points to the if-part,

the center to the then-part, and the right to the

else-part. (b) Multiply-rooted DAG. The three

expressions represented are ~1 = a+ b, fz = a+ b+ c

and fs=a+ls+c+d.

2 If-then-else DAGs

Representing Boolean functions with if-then-else DAGS is

described in detail in earlier reports [3,4]. The if-then-else

operator is the basic operator underlying if-then-else DAGS,
with (if a then b else c) defined as ab+ =ac or, equivalently,

(a+ c)(=a + b). We can define all Boolean functions of two

variables using one if-then-else-operator and negation.

Definition 1: An if-then-else DAG is a ternary directed

acyclic graph in which each leaf is labeled with TRUE, FALSE,

or a literal and each internal node has three out-edges point-

ing to the if-, then-, and else-parts. The meaning of a leaf

node is the label on the node, and the meaning of an inter-

nal node is defined recursively as (if meaning(if-part) then

meaning(then-part) else meaning(else-part)).

If we eliminate trivial triples that have constants in the if-
part or have identical then- and else-parts, we have four
types of triples: AND-triples, where one of the then- and

else-parts is FALSE, OR-triples, where one of the then- and

else-parts is TRUE, XO R-triples, where the then-part is the

negated of the else-part, and finally IF-triples.

In Figure 2.1(a) an if-then-else DAG for the expression

abc + mad + -bd is shown. A network of functions is rep-

resent ed as a multiply-rooted DAG, where each function is

associated with one root, Figure 2.l(b).

Local factoring methods can factor if-then-else DAGS [4],

but the methods fail to give the global view needed to
identify that two expressions can be identical even though
they are represented differently. For instance, a+bk and a-+-c
might not be recognized as having a common subexpression,
unless they happen to be transformed to a common form.

In this paper we explore rectangle replacement, a variant

of rectangle covering [1,2], which has been useful for finding

common subexpressions in sum-of-products minimizers, and

see how it can be applied to if-then-else DAGS.

3 Boolean matrices, blocks and rectangles

A Boo2ean matrix is a t we-dimensional matrix represent-

ing a logic expression or a set of logic expressions. Each row

and each column in the matrix is associated with its own

28th ACM/l EEE Design AutomatIon Conference”

Paper 27.3

01991 ACM 0-89791-395-7/91/0006/0470 $1.50470

I Ult-matrix I a b de c(f+g) ci cg

~l=a+b+de Ill 1 1 0 0 0

fz=b+de+c(f+g) 011100

f3 = Cf .+ Cg 000011

Figure 3.1: Boolean OR-matrix for three functions

fl, fz, and f3. Note that the columns are not

limited to simple AND-terms.

matrix type: XOR AND OR

row from columns 6
block from rows

Table 3.1: Operators for determining the meanings

of rows and blocks in matrices of different types.

expression. The row expressions are built out of some com-

bination of the column expressions, using any associative,

commutative operation to combine the column expressions

into rows. An entry B,= in the Boolean matrix takes the val-

ues 1, 0, and d depending on whether the expression for row

r contains column c (l), doesn’t contain it (0), or we don’t

care whether it cent ains it or not (d). Figure 3.1 shows a

Boolean matrix for three functions—the matrix is referred

to as an OR-matrix, since each row is the OR of the corre-

sponding columns. We need to be able to talk about parts

of the matrix as single entities, and so we define a block:

Definition 2: A block of a Boolean matrix B is any subset

R of rows and any subset C of columns in B.

The meaning of a row or a block depends on the operation

that relates the row and column expressions in the matrix.

Definition 3: Afier setting each d independently to either o

or 1, the meaning of a row in an OR-matrix is the expression

obtained by or-ing together all the column expressions for

columns that have a 1 in the row. That is,

meaning.row(r, c, B) =
v c

CEC, L7.C=l

Definition 4: The meaning of a block in an OR-matrix is

the expression obtained by and-ing together the meanings of

each row in the block. The operator should be a true Boolean

operator, so that abab = ab. That is,

meaning-block((l?, C), B) = ~ meaning.row(r, C, B) .

rER

The definitions for the meaning of rows and blocks in AND

and XO R mat rices are similar-we just change the operators

according to Table 3.1. We require that both operators be

commutative and associative.

In order to handle the don’t-cares correctly when we define

replacement of blocks, we define acceptable row expressions:

Definition 5: Row TZ is cm acceptable replacement for row

T1 if for every setting sz of the d‘s in TZ there exists a setting

sl of the d‘s in T1, such that the meaning of TI based on the

setting S1 is the same as the meaning of T2 based on the

settzng s~. Note that the rows do not have to use the same

columns.

In Figure 3.1 the first two rows of the matrix have two

columns that have 1‘s in both rows. We call such combi-

nations of rows and columns a rectangle

OR-matrix II a b de c(f+g) cf cg b+de

fl=a+b+de 11 (id o 0 0 1
z~-b+de+c(f+g) Odd 1 0 0 1

f3=cf+c9 000 0 1 1 0

Figure 3.2: Boolean matrix for the functions ~1, fz,

and fs, after the new column b + de has replaced

the columns b and de.

Definition 6: We say that a block (R, C) of a Boolean

matrix B is a rectangle if for every r 6 R and c c C, we

have Brc # O.

3.1 Replacing rectangles in a Boolean matrix

Replacing a rectangle means adding a new column to a

matrix corresponding to some rectangle of the matrix, and

replacing 1‘s in the original rectangle with the 1‘s in the new

coiumn,-while preserving the me;ning of important blocks

of the Boolean matrix.

Lemma 1 (Replacement): A rectangie of a matrix can

be replaced by adding to the matrix a new column CneW,

whose associated expression is the meaning of the rectang2e,

Putting a 1 in CneW in each row contained in the rectangle

and changing the 1‘s in the rectangle to d‘s makes any row

in the new matrix an acceptable replacement for the same

row in the old matrix.

The proof follows immediately from the definition of the

meaning of a block and the definition of acceptable replace-

ment, by setting d’s in the rectangle before replacement

equal to 1, and setting other d’s to match the setting in

the new block. Note that the lemma is essentially the cor-

rectness proof for MISII’S cube extraction algorithm.

Replacing a rectangle reduces the number of 1‘s in the

matrix by an amount we call the value of a rectangle:

Definition 7: The value of a rectangie is the difference in

the number of 1‘s in the matrix before and after replacement

of the rectangle.

As an example, consider the Boolean matrix shown in Fig-

ure 3.1. If we replace the rectangle consisting of the first

and second row and the second and third column (value= 2),

we end up with the matrix shown in Figure 3.2. Rectangles

that span more than one row and more than one column are

particularly useful to replace, as the new column, in this case

b + de, will then be explicitly used as a shared subexpression

for the rows of the rectangle. Note that this technique un-

fortunately does not recognize the commonality of c(~ + g)

and cf + cg. We are still looking for methods to find such

common sub expressions at an acceptable cost.

3.2 The rectangle replacement problem

We define the rectangle ‘replacement problem to be the

problem of sequentially replacing rectangles of a Boolean

matrix until all the rectangles have value zero or less. This

termination condition guarantees that each row has at most

one 1 in it, and rows that start out with 1’s end up with

exactly one 1. The order in which we replace rectangles af-

fects the quality of the resulting representation for the func-

tions. The rectangle replacement problem is to choose an

ordering for the replacement of rectangles that minimizes

the predicted area or delay for the circuit. Solving the rect-

angle replacement problem also solves the rectangle covering

problem as we have covered all the 1‘s in the Boolean matrix.

Paper 27.3

471

After solving the replacement problem, we replace each

row expression by the colnmn expression for which the row

has a 1. A column expression may cent tin a row expression

as a subexpression, in which further substitution is done.

4 Two-column rectangle replacement

In this section we will show how we apply the rectangle re-

placement problem to minimization using if-then-else DAGS.

The technique that will be described corresponds roughly to

cube extraction in MISII.

Of the four different types of if-then-else triples three,

the AND-, OR-, and XOR-triples, can be used for building

Boolean matrices. Using De Morgan’s laws we merge AND-

and OR-expressions, and create two Boolean matrices: the

OR-matrix for the combined AND- and OR-expressions, and

the XOR-matrix for XOR-expressions.

The OR- and the XOR-matrix are built by traversing the

if-then-else DAG from each root and looking for AN D-, OR-,

and XOR-triples. Whenever we find one, create a new row.

If any of the children of the triple (its inputs) are triples of

the same type, we recursively include them in the same row.

The inputs to the expression become columns of the matrix.

4.1 Rectangle replacement algorithm

After creating a matrix we apply the rectangle replace-

ment algorithm to it. The algorithm replaces rectangles of a

Boolean matrix B sequentially by using two sub-procedures:

select ~ect angle, which selects a rectangle based on a

heuristic method described in Section 4.2,

replace-rectangle, which replaces a rectangle according to

the replacement strategy presented in Section 3.1.

The algorithm itself is fairly simple:

replace_v-ectangles(B) =

while (3 rectangles with value>O in B) do

{.
rect = select_rectangle(B)

rep[ace.rectangie(rect, B)

}

When the algorithm terminates, each row contains exactly

one 1. We create a new multiply-rooted if-then-else DAG by

traversing the old one from the roots, replacing each sub-

DAG that corresponds to a row with the column expression

for which that row has a 1. We continue the traversal with

the children of the column expression, so that all necessary

replacements are done in one traversal.

4.2 Selecting rectangles

Because the if-then-else DAG representation forces n-ary

associative operators to be represented as binary trees, we

create new columns from exactly two existing columns. The

two-column rectangle replacement heuristic is formulated as:

Two-column rectangle replacement: As long as there

are rectangles containing exactly .2 columns with value> O,

replace the rectangle of greatest value. If two or more rect-

angles have the same value, choose the one in which the new

column would have the earliest arrival time.

By considering only two-column rectangles and only one

rectangle at a time, we have reduced the problem of finding

rectangles. In a matrix with n columns there are (~) possible

two-column rectangles and 2“ possible multi-column (prime

[1,2]) rectangles. Hence, we can afford to enumerate all two-

column rectangles and choose the best, whereas choosing a

prime rectangle must resort to a limited enumeration.

As was noted in Section 3.1, rectangles spanning more

than one row are particularly useful to replace. This is

reflected in the two-column rectangle replacement method

by choosing the rectangle with the highest value (the value
of a two-column rectangle of all 1‘s equals the number of

rows in the rectangle).

The primary goal of two-column rectangle replacement is

to o@imize with resDect to area. but if two or more rectan-

gles ‘have the same &lue, we choose the one that results in

the earliest arrival time of the new column expression. We

have previously seen that the height of a DAG is a usable

delay estimate for the final circuit [4], and so we use height

as our arrival time estimator. Using the height of DAGS to

break ties results in a primitive form of tree balancing.

Tree balancing can be carried a little further. By changing
the two-column rectangle replacement method only slightly,
we optimize for delay instead of area:

Two-column rectangle replacement, optimizing for

delay: As long as there are rectangles containing exactly

.2 columns with value> O, replace the rectangle in which the

new column would have the earliest arrival time. If two or

more rectangles result in the same arrival time, choose the

one with the greatest vaiue.

If we use the height of the DAGS as our delay estimate, this

replacement method will balance the DAG. It is possible to

use a weighted sum of height and value to sacrifice area for

delay, or delay for area.

4.3 Expanding IF-expressions

In our main algorithm for minimizing a multiply-rooted

if-then-else DAG, we first apply rectangle replacement to

the XOR-matrix. then we create the OR-matrix and armlv

rectangle replacement to it. In creating the OR-matri~ ‘w~

have found that it exposes more sharing if we expand IF- and

XOR-trides that are inrmts to OR- or AND-exmessions. An

IF-expre&ion is expan~ed to either ab+ =ac o; (a+ c)(=a +

b) depending on whether it is input to an OR- or AND-

expression. However, if the expressions resulting from the

expansion are used only for the original IF- or XOR-triple,

we have lost the compact IF-expression without exposing

sharing, and we should recover the original IF-expression [6].

5 Results

This section gives a summary of the benchmark results;

a full tabulation has been printed in a technical report [6].

Forty benchmark circuits for the 1989 International Work-

shop on Logic Synthesis [5] were optimized using our two-

column rectangle replacement heuristic. The results are re-

ported after local factoring, two-column rectangle replace-

ment, and technology mapping have been applied. Each in-

put BLIF gate is factored, and each output DAG is factored

after composing the gates.

Two-column rectangle replacement is done after all local

factoring is finished. The resulting DAGS were first mapped

with a crude mapper to AND, OR, XOR, and IF gates, using

essentially the same traversaI algorithm used to generate the

rows of the Boolean matrices. but making sure that shared

subexpressions were always represented by gate outputs in

the output BLIF file. Then the resulting Boolean networks

were mapped to the lib2 library of the benchmark set by

MISI1. The mapping was done with map; gp. Each network

had a standard input drive and output load equivalent to

the inv% cell, as specified in the benchmark. The area and

delay are as reported by MISII after mapping.

Paper 27.3

472

1.4
❑

2ce wins
❑

12g wins

❑

0.6 i 1 1
0.8 1.0 1.2 1.4 1.6

local area/2ce area

Figure 5.1: Comparison of the areas and delays of

circuits minimized by local factoring (local) and by

local factoring plus two-column rectangle replace-

ment with expansion of IF-expressions (2ce).

Figure 5.1 compares the mapped circuits produced by

two-column rectangle replacement using expansion of IF-

expressions with those produced by local factoring alone.

We plot the ratios of the area on the z-axis, and the ratio

of the delays on the y-axis. On the average we achieved a

10.6% reduction in area, and a 2.5% reduction in delay by

using two-column rectangle replacement.

When optimizing for delay, the results show a 6.5% in-

creaae in area and a 6.370 reduction in delay when compared

to the two-column rectangle replacement optimizing for area.

When we optimize for delay, we change the order of rectan-

gle replacement by choosing the two-column rectangle with

the earliest arrival time. Unfortunately this may increase

the total number of replacements needed in order to cover

the Boolean matrix, which can increase the height of the

DAG. Of the 40 benchmark examples we tried optimizing for

delay, 9 resulted in an increase in delay and 3 even had an

increase in height (up to 14.3% more).

Not expanding- IF-expressions results in a 2.3% increase

in area and a 0.5% reduction in delay as compared to the

results achieved by expanding IF-expressions.

We have also implemented a prime rectangle replacement

heuristic [6], which differs from Brayton’s prime rectangle

covering only in the way the rectangles are replaced—we

do it sequentially whereas Brayton does it in parallel. The

result shows that t we-column replacement uses 1.2% less

area, and produces circuits that are O.8% slower than those

achieved wit h prime rectangle replacement. In our imple-

ment ation, the t we-column replacement method is several

hundred times as fast as prime rectangle replacement.

Finally Figure 5.2 compares the mapped circuits produced

by two-column rectangle replacement using expansion of IF-

expressions with those produced by running the standard

MISII script with Release Version 2 of MISII. On the average

we achieved a 3. 5~0 reduction in area, and a 12. 7y0 reduction

in delay when compared to MISII.

6 Conclusions and future work

Our new heuristic for solving the rectangle replacement

problem appears to be effective in finding common subex-

pressions. Two-column rectangle replacement, which was

II 2ce wins

D
[El

❑# ,

‘n
❑

II
❑

n

❑

misll wins
t’

n

.6 .8 1 2 34

misll area/2ce area

Figure 5.2: Comparison of the areas and delays

of circuits minimized by local factoring plus two-

column rectangle replacement with expansion of

IF-expressions (2ce) and by MISII.

inspired by the structure of if-then-else DAGS, is particularly
interesting as it combines finding common subexpressions

wit h balancing operator trees.

We are still looking for better ways to select rectangles for

replacement. When optimizing for area the highest value
rectangle is not always the best one to replace next [6]. The

optimal replacement when optimizing for area may be the

one that covers all one’s in the Boolean matrix with the

fewest replacements. When optimizing for delay we have two

problems: the height of the DAG is not a very good delay

estimate, and the heuristic we are using does not always

balance the DAG.

We hope to have a release of our system available for other

researchers to experiment with by third quarter 1991.

References

[1]

[2]

[3]

[4]

[5]

[6]

R. K. Bray ton. Algorithms for multi-level logic synthesis

and optimization. In G. De Micheli, A. Sangiovanni-Vin-

centelli, and P. Antognetti, editors, Design Systems for
VLSI Circuits—Logic Synthesis and Silicon Compilation,

pages 197–247. Martinus Nijhoff Publishers, 1987.

R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli,

and A. Wang. Multi-level logic optimization and the

rectangle covering problem. In ICCAD-87, pages 66–69,

Santa Clara, CA, November 1987.

K. Karplus. Representing Boolean functions with If-

Then-Else DAGs. Technical Report UCSC-CRL-88-28,

Computer Engineering, Univ. of Calif., Santa Cruz, Santa

Cruz, CA 95064, December 1988.

K. Karplus. Using if-then-else DAGs for multi-level logic

minimization. In Advanced Research in VLSI: Proceedings

of the Decennial Ca2tech Conference on VLSI, pages 101–

118, March 1989.

R. Lisanke. Logic synthesis and optimization bench-

marks. Technical report, Microelectronics Center of
North Carolina, P.O. Box 12889, Research Triangle Park,

NC 27709, 16 December 1988.

S. S@e and K. Karplus. Logic minimization using block

covering. Technical report, Computer Engineering, Univ.

of Calif., Santa Cruz, Santa Cruz, CA 95064, 1991.

Paper 27.3
473

