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ABSTRACT

MOTIVATION:

Predictions of protein local structure, derived from sequence align-
ment information alone, provide visualization tools for biologists to
evaluate the importance of amino acid residue positions of interest
in the absence of X-ray crystal/NMR structures or homology models.
They are also useful as inputs to sequence analysis and modeling
tools such as hidden Markov models (HMMs), which can be used to
search for homology in databases of known protein structure. In ad-
dition, local structure predictions can be used as a component of cost
functions in genetic algorithms that predict protein tertiary structure.

We have developed a program (PREDICT2ND) that trains multilayer
neural networks and have applied it to numerous local structure al-
phabets, tuning network parameters such as the number of layers, the
number of units in each layer, and the window sizes of each layer. We
have had the most success with four-layer networks, with gradually
increasing window sizes at each layer.

RESULTS:

Because the four-layer neural nets occasionally get trapped in poor
local optima, our training protocol now uses many different random
starts, with short training runs, followed by more training on the best
performing networks from the short runs.

One recent addition to the program is the option to add a guide
sequence to the profile inputs, increasing the number of inputs per
position by 20. We find that use of a guide sequence provides a small
but consistent improvement in the predictions for several different
local-structure alphabets.

AVAILABILITY:

Local structure prediction with the methods described here is avail-
able for use online at http://www.soe.ucsc.edu/compbio/SAM_T08/
TO8-query.html

The source code and example networks for PREDICT2ND are
available at http://www.soe.ucsc.edu/” karplus/predict-2nd/ A required
C++ library is available at http://www.soe.ucsc.edu/” karplus/ultimate/

*to whom correspondence should be addressed email:karplus@soe.ucsc.edu.

Phone: 1-831-459-4250

1 INTRODUCTION
1.1 Protein local structure

The original definition of protein secondary structure was based on
the work of Linus Pauling and Robert Corey (Pauletal., 1951),
who predicted the existence ofhelices and3-sheets. After the
structures of proteins began to be solved with x-ray crystallography
to atomic resolution, more nuanced variants of these two original
patterns emerged, such as particular types of tuifigjlges, and so

on.

As the number of solved structures published in the PDB (Bern-
steinet al, 1977) increased, it became necessary to define such
structures by means of computer algorithms. In these definitions,
each residue of a protein is associated with one lettesetandary
structure alphabetThe most commonly employed algorithms are
DSSR, an eightletter alphabet due to Kabsch and Sander (Kab-
sch and Sander, 1983), as@RIDE, a sevenletter alphabet due to
Frishman and Argos (Frishman and Argos, 1995).

These secondary structure alphabets are often reduced to the three
states ohelix, sheet andcoil. But since the coil category accounts
for approximately 45% of all assigned residues in a protein (Fetrow
etal, 1997), itis likely that such first-order definitions, while easily
interpreted and possessing an intuitive appeal, fail to capture much
of the information available in the atomic coordinates of protein
structures.

Even if one is restricted to assigning one alphabet letter per
residue, it is possible to more broadly defineal structure alpha-
bets which can capture much of this missing information. Among
the properties that can be encoded in such an alphabet are:

e participation in hydrogen bonding with neighboring residues,
which can either collapseb6sP-EHL2) or expand $TR2) the
helix-sheet-coil paradigm,

e torsion angles of the backbone at the residue,
e torsion angles between,Gatoms,

e ad hoc definitions based on unsupervised learning techniques,
such as th@eROTEIN BLOCKSof de Brevern et al. (de Brevern
et al, 2000), and

measures of the exposure of the residue to the solvent.

© Oxford University Press 2008.



Sample et- a;

Among alphabets that capture some of the above properties, we The suite of tools for Sequence Alignment and Modeling (SAM)
have previously (Karchiet al., 2003, 2004) explored the use of, and developed at UCSC (Hughey and Krogh, 1995, 1996; Hughey,
relationships among, numerous local structure alphabets. These c4899) is based on Hidden Markov ModelsyMs). While the orig-
be categorized intbackbone geometiphabets anburial alpha-  inal versions of SAM represented an amino acid profile via the
bets. The definition of the backbone geometry and burial alphabetsmission probabilities of the amino acid types at each position in the
can be found in the Supplementary Materials. sequence, more recent versions have implemented so-called multi-

For this work, we evaluated eight different local structure track HMMs (Karpluset al, 2003). In these models, additional
alphabets—six backbone alphabets:PHA, BYS, DSSR STR2, parameters are added, representing emission probabilities at each
STRIDE, and DSSPEHL2 and two burial alphabetssURIAL-CB- position of one or more local structure alphabet letters.

14-7 andNEAR-BACKBONE-11. Our main interest here is in the ~ Among the uses of thesemms are fold-recognition, pairwise
robustness of the training protocol, as Karchin's work has pre-alignments of sequences, and generation of the fragments to be used
viously examined the usefulness of these alphabets (except fan fragment replacement programs suchua®ERTAKER (Karplus

near-backbone-11) (Karchet al., 2003, 2004). et al, 2003) orROSETTA (Bonneauet al, 2001; Bradleyet al,
2005). When building such amvim for a target protein of unknown

1.2 Inputs and outputs of local structure predictors structure, the emission probabilities for the alphabets other than
the primary amino acid sequence are taken from a local structure

The key attribute of a local structure prediction algorithm is that -
. . ) ) . prediction.
it uses as input sequence information from the protein—no struc*

tural information is assumed. Rather than just a simple sequence, . ) o
however, most algorithms use a profile of the target sequence as3-2 Cost functions for tertiary predictionsWe have developed

the starting point. Such profiles are usually derived from a multipleth® UNDERTAKER program that performs three-dimensional protein
alignment of sequences that share some degree of similarity witfiructure prediction. It employs a genetic algorithm, with numer-
the target protein and presumably represent either close or distaftS tunable cost functions and conformation generation operators,

homologs. It is presumed that conservation of structure is a featurlcluding fragment replacement, as in teSETTAprogram. Cost

of the evolution of homologs, so that the multiple sequence a“g]n_functions based on predicted local structure have been found to be

ment represents a sampling by nature of the sequences that can adgptond the most powerful of the cost functions for determining the
that structure. The more that distant homologs can be included ifu@lity of resulting conformations.
such a profile, the more information we have about what sequences
can adopt the structure, and the more reliably we should be able t6:3.3 Alphabet logos For a protein that appears to contain a
predict the structure. novel structure, having no close homologs in PDB, and for which
On the other hand, too much generality can include noise (Sethe full panoply of 3D structure tools fails to generate a structure
quences adopting different local structures) that may swamp th&ith high confidence, a reasonable prediction of local structure can
signal that is sought. Thus one may need to carefully tune the threst§till be useful. For example, a biologist can derive insight by look-
old used to definsimilarity when including sequences in a multiple ing at the logo representation of the local structure prediction, as in
alignment to be used as input to a local structure prediction. An alFigure 1. These logos are similar to sequence logos (Schneider and
ternative to such tuning however, is to use a fairly loose definitionStephens, 1990), but use the predicted probability of the structure
of similarity, but also use the actual sequence of the target protein s@Phabet letters, rather than observed frequency of amino acids or

an auxiliary input. bases. At each position in the sequence, the total height of all the
We call this theguide sequencand describe below our experience l€tters is proportional to the relative entropy between the predicted
with using it in local structure prediction. probabilities” and the background distribution of the alphabet

The output of a local structure prediction can be just a single letter
from the predicted alphabet, corresponding to each position in the
target sequence. However, a more general output consists of a prob-
ability distribution over the letters of the alphabet at each position.
This form conveys more information, is often more useful for sub-

sequent tools, and if desired, can easily be reduced to a single outp%htThe individual predicted letters at a position are displayed such
per position by choosing the letter with the highest probability. at the total height is distributed according to the predicted proba-

bilities of the letters at that position. For example, if a single letter
) is predicted with absolute certainty (even if the prediction turns out
1.3 Uses of predicted local structure to be wrong!), the logo will show the predicted letter at maximal
In the following subsections, we describe some typical uses of locaheight.
structure predictions. In Figure 1, the prediction consists almost entirely of anti-parallel
(B-strands, separated either by regions of low confidence predic-
1.3.1 Fold-recognition efforts In the community-wide experi- tions, or by more definite short turn regions. Even though no
ment for protein structure prediction known @asp (Moult et al,, high-confidence full structure prediction for this protein could be
1997, 1999; Lawrence Livermore National Laboratory, 2002), ourmade, a biologist looking at the logo can get an immediate feel
group has concentrated on remote fold-recognition with fairly goodfor the likely type of protein this is, and could make a decision on
results (Karpluset al, 1997, 1999, 2001). In 2000, we started in- whether or not to invest significant effort in pursuit of the structure
corporating secondary structure prediction in our fold-recognition(or other properties) of the protein. Similarly, when making detailed
method forcAsM (Karpluset al., 2001). structure predictions, a human analyst can gain insight by looking

H= Y Pla)log, 2@

a€alphabet P()(a)
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TO306.t06 str2 use the,, measure (percentage of correct predictions in the whole
sequence) as the objective function to be optimized during train-
ing. Instead, we focus on the bits-sawednformation-gain measure
(defined in Section 2.1pr an arbitrary local structure alphabet.

One relatively recent addition teREDICT-2ND is the optional
inclusion of a guide sequence (defined above) in the input. This is
4 intended to counteract the possibility of over-generalization of the
input profile due to inclusion of too distantly related sequences.

It is worth noting that like all the other layers, the number of out-
puts fromPREDICT2ND is also easily varied, which enables us to
quickly generate predictions for arbitrary local structure alphabets.
This allows us to evaluate their predictability, as well as to use such
alphabets in our other programs for improved results.

We have also improved our training protocol by using multiple
Figure 1. This is a logo of a prediction of a theTR2 alphabet for &ASF7  random starts. Neural net training often gets trapped in local optima,
protein sequence that had no close PDB homologs, but which was predicted,  ;sing multiple starts with different initial weights helps us find
to consist almost ent!rely of aptl-parallel beta strands and one alpha heI|xa good local optimum.
See text for explanation of heights of letters. The bars below the sequence
positions represent segments of a single contiguous predicted letter of the
full STR2 alphabet. When the structure was solved, it turned out that this

predicted secondary structure was very accurate. 1.5 Other tools for local structure prediction
Neural networks have not been the only methods applied to the

. ) ) local structure prediction problem—others include Bayesian statis-
at such a representation and can then guide machine-based methqgs 4nq various machine-learning methods. For example, the GOR
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towards more likely solutions. V method uses a combination of information theory, Bayesian
statistics, and evolutionary information for local structure predic-
1.4 Neural nets for local structure prediction tions (Klockzkowskiet al, 2002). A recently popular machine-

As soon as there began to be sufficient protein structures in PDEE&MING method for predicting local structure has been support
the preferred implementation of predictions of secondary strucY€ctor machines (SVMs) (Cortes and Vapnik, 1995; Hua and Sun,

ture focused on neural nets. As more and more protein sequenc@QOl)- Both of these methods have been used to predict a three-letter

became available it was recognized that using multiple sequencéduced state alphabet from DSSP and do comparably to neural
alignments as the inputs to the neural nets leads to more accuraf¢tWorks when predicting this kind of local structure alphabet.
results (Rost and Sander, 1993). In thelPREDmMethod (Jones, 2 METHODS
1999) the position-specific scoring matrices that are available fronThe following sections described how we generate, given an amino acid se-
PSI-BLAST (Altschul et al,, 1997) are used directly, rather than the quence for a protein of unknown structure, a residue-by-residue prediction
multiple alignments that are the usual output from that program. for an arbitrary local structure alphabet. See Figure 2.
The architecture of many of the neural net programs currently . .
in widespread use (Jones, 1999: Rost, 1996) is relatively straighg-1 Objective Functions
forward. A window is applied to the input profile, so that a fixed In evaluating the performance of neural nets for prediction of classic sec-
number (say 15, as iRSIPRED of positions in the sequence are ondary structure, most practitioners have concentrated on the so-Galled
examined simultaneously at the input level. For the 20 amino acid§'easure, which is simply the percentage of correct predictions in the entire
(and one additional letter to indicate the ends of the sequence), thigauence. Thus if one is predicting helix, strand, or coil, a choice is made at
requires 315 input units in the network (fesIPRED. There typi- each position and is scored in a b_lnary fashion as being either rlghtorwrong
cally follows a single hidden layepEiPREDuUSed 75 units for that th::Rngpared o the alphabet in use (usually a collapsed versssst
Iayer). Finally, the three output units representing helix, sheet a_ng When o.ne is concerned with fold-prediction, egment overlagSOV)
coil produce the secondary structure sequence. In order to delivgfaasyre (Rogtt al, 1994; Zemlaet al, 1999) is often used. In this mea-
slightly improved accuracy, this first network is usually connectedsyre a pairwise alignment of the predicted sequence and the actual sequence
in tandem to a second network of similar architecture. The secong used to calculate the fraction of segments (runs of one letter in the al-
network differs from the first in that its inputs use the same secphabet) that are correctly found. In Figure 1, the bars that appear below the
ondary structure alphabet as its outputs, and it thus can be termedpasition-by-position letters represent the predicted segments for use in SOV
structure-to-structure predictor (Rost and Sander, 1993). measures. The SOV measure was intended primarily for use with a sim-
As is described in more detail below, tR&EDICT2ND imple- ple 3-state secondary struct_ure alphabet and may have no useful meaning in
mentation differs from the above paradigm in several respects. Fir@/Phabets that do not resuit in long runs of the same letter.

. Because we are interested in examining different local structure alphabets,
of all, rather than rely on a tandem pair of neural networks, we have . 2
we prefer to use a measure that is not intrinsically dependent on the number

|mp!emented afully general schemg that aIIOW_S an arbitrary nu.mbe(gf letters in the alphabet. We also are interested in the confidence of our pre-
of hidden layers. At each layer, a window of units from the previousjctions (the probability assigned to the outputs) rather than just whether the
layer can be used as input, with the window widths, like the numbefost probable output is correct or not, which discards much of the informa-
of hidden layers and the number of units per layer, selected at rufion in the prediction. For these reasonsvesre taken an information-based
time. Another difference from the usual methods is that we do notpproach to prediction. For each alphabet, the information content (entropy)
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Figure 2. Overview of our local structure prediction method. Starting with the target amino acid sequence as input, a single track HMM is constructed and
updated by the SAM program during an iterative search for homologous sequences. After convergence, the SAM HMM is used to generate a multiple sequence

alignment of the homologous sequences that were found. This alignment is inpuP®ReEbec -2ND multi-layer neural network which generates predictions
of the letters of a local structure alphabet for each position in the input alignment.

2.2 Creating multiple alignments

To generate multiple alignments, we use the SAM suite of hidden Markov
models tools to do iterated search, using any of several different protocols
) . . . we have developed (Hughey and Krogh, 1996; Kargiual., 2001, 2005).
where P (z;) 'S the probablllty of a certain letter oceurring b?‘SEd on the The multiple alignments are thinned so that the resulting set has no pair of
backgroun_d dlstnbu_non of the alphabet. An alphabet W'th a h|gher emro_pysequences with more than 90% identity on the aligned columns. For a more
value carries more |nlformat|on, and we can expand the.|.dea Of.mformatlorbetailed discussion about how we generate multiple alignments for use with
for use in our prediction methods. Vilecus on the probability assigned by local structure prediction, see the Supplementary Materials.

our prediction to the correct letter at each position in the sequence, and calcu- '

late the average numberlots-savedper position, relative to the background

can be calculated, which is defined as

H(@) == P(wi)log; P(wi) ,

distribution of the alphabeflhe bits-saved measure can also be considered
theinformation gainfrom predicting letters of the alphabd&ior a sequence
with n positions, ifc; is the correct letter at position) and the background

2.3 Converting multiple alignments to profiles

For input to the neural netBREDICT2ND converts the SAM alignments into
profiles, assigning a probability vector over the amino acids at each position

in the sequence. The probability vector is computed by using a Dirichlet

mixture regularizer ($jlanderet al, 1996) applied to weighted counts of

the amino acids at that position. The relative sequence weights are computed

using a method due to Henikoff and Henikoff (Henikoff and Henikoff, 1994,

Assume one had an alphabet of four letters, and wished to double the sizlegge.s).' hi . lari . h | weiaht of th

of that alphabet by splitting each category in two. If the original prediction Dirichlet mixture regu anzer; are gensmve to the total weig .t ofthe se'-
guences, as well as the relative weights, and we have experimented with

of 4 letters is extended to 8 by randomly assigning each prediction to one o . ; N
. fferen h | ht. In one meth h | h
its two new subclasses, then t§g score would be roughly half of th@4 to different ways to set the total weight. In one method, the total weight is

score. By contrast, even though the entropy of the new alphabet is increas sciInply the number of sequences in the alignment. In the other method, the
- By contrast, 9 Py . P . Ff'otal weight is adjusted so that the average relative entropy of the resulting
by one full bit, since both the background and predicted probability of the

. . . .distribution compared to the background distribution is approximately 1.3
correct letter at every position would be halved, the bits-saved by the orlglnagits As it turns O?J t both weightingg']schemes seem to workpé)qually weI)I/ and
prediction would be nearly unchanged. ) y '

Thus, although we report th@,, and SOV results of our predictions, and the details of the sequence weighting may not be of much importance. See

. . S . . . . h lemental Materials for a mor il ription of th ightin
in fact sometimes use an objective function that is a weighted mixture of alf e Supplemental Materials for a more detailed description of the weighting

. - . methods.
three measures to choose a network, we train our networks by maximizing

the following function (which contains the network-dependent part of bit-
saved):

and predicted probabilities af@ and P;, then our measure is

]51' (ci)
2 Po(e;)

1 n
bits saved= — lo

2.4 Neural net architectural features

The PREDICT2ND implementation is script-driven and has the ability to

write out and read back in a neural net description that comprises a set of
interfaces and layers of essentially arbitrary size. Based on our earlier expe-
rience, we have focused in the current work on neural nets with three hidden

n
> “log Pi(cy) -
i=1




Predict-2nd

layers, varying the number of units in each hidden layer and the windowing IDaaHr IDGaaH13
used in each interface. use guide seq? | no yes
The number of input units is 42 if a guide sequence is used: a one-hot total seq. weight | # of seqs to get 1.3 bits
encoding (this is the guide sequence) of the amino acid in the target sequence input units 22 42
(20), a probability for each amino acid from the multiple alignment (20), and layer 1 window | 5 3
probabilities of insertion and deletion (2). The number of output units is just Layer 1 units 15 13
the number of distinct letters in the local structure alphabet to be predicted. layer 2 window 7 7
To calculate the output of each unit in each layer, we usefemaxfunc- Layer 2 units 15 13
tion so that all of the outputs of a given layer represent a valid probability layer 3 window 9 9
distribution (summing to unity) over that layer’s units. Thus if a ynie- Layer 3 units 15 13
ceives weighted inputsy;;; from the set of units with valuesz; in the Output W'f‘dOW 13 11
previous layer, and has a bias valye then its output is calculated as Output units 11 (forbys) 11 (for bys)
s degrees of freedom 6850 (for bys) 5438 (for bys)
W Table 1. Architectures for the neural nets compared in this paper.

The IDaaHr network uses amino acid probabilities and insert/delete proba-
bilities from a multiple sequence alignment as inputs. The IDGaaH13 uses

wherey; = Z wi i +bj . those inputs plus a one-hot encoding of the amino acid of the target sequence.
g The sequence weighting for computing the probabilities differs between the

In each layer, every unit actually takes as inputs a window of outputs fronf"© Networks, but this is probably irelevant (see Table 4).
the previous layer’s set of units. So in the previous formula, the range of T_he numbe_r of units in each layer and the W|n_d0\_/v of inputs from the pre-
should be taken to includ&’ W values, where\ is the number of unique vious Igyer is shown. The numbgr of output units is equal to the number of
units in the previous layer, arid is the window width used. This window- letters in the output alphabet being predlcte_d. The degrees of freedom rep-
ing feature gives the net the ability to capture local structure information thaf€sents the number of parameters to be_ trained (downward adjusted for the
is not encoded in a single amino acid position. We would normally expectparameters which could be subsumed in other parameters, due to the nor-

the weights to be highest in the center of the window, but there is nothing ir{‘nallzatlon of.the soft-max funcnqn) and is shown for the case othhg
the current neural net training paradigm to enforce this. alphabet, which has 11 output units. The nets for other alphabets will have

Because the number of paths from input positicio output position; slightly different degrees of freedom as the output layer will have different
decreases ds — ;| increases, the influence of residues further away from "UMPers of parameters, based on the number of outputs.
the position being predicted is automatically reduced by the multi-layer win-
dowing. The multi-layer windowing also allows propagation of information
from a fairly large set of inputs with relatively few parameters to train in the
neural net, reducing the dangers of overfitting the training data. 50 epochs of training, we chose the ten best networks and trained these net-
In our work with three hidden layers we usually use between 10 and 1&orks for 100 more epochs. We then trained the top three networks for a
units in each layer, with window widths varying from about 5 at the input final 100 epochs, and chose the best of those.

layer to as high as 13 for the layer before the outputs. All the training and choices were based strictly on the training set. We then
o used the reserved test data to test the finally chosen network. More details
2.5 Training the nets about our training protocol can be found in the Supplementary Materials.

Our training data is a set we calunbrack-30pc-1763which is a set of

1763 nonhomologous chains. It is derived from a culled PDB set of 1875

chains, with resolution of 180r better, maximum R-factor 0.25, and maxi- g RESULTS
mum sequence identity of 30%, using Dunbrack’s PISCES server (Wang an

Dunbrack, Jr., 2003). We removed 112 chains from the set: To date we have explored the space of architectures to a limited extent,
with preliminary experiments (not reported here) indicating that architec-
e 77 chains because length 50 tures with two or three hidden layers outperformed architectures with zero

26 chai h lobular (f ‘ in that h dor one hidden layer, but that the arrangement of window widths and number
e 26 chains that were non-globular (fragments of a protein that ha Lf hidden units was not critical.

bee_n entt_ered n PD_B as separate chains, chains with very long breaks, |, jq paper we focus on two architectures for which we did extensive
chains with topologlcal' proplems such as bad knots, or r_lon-compgc{esﬁng’ described in Table 1. One network is chosen from the class of archi-
monomers from a multimeric co_mplex). Beca‘%se _thg des!red Ia_be“n%ctures using a guide sequence in addition to a profile for input; the other
for burial aIphaber was determined from chains in |solat|0r1, W'thOUtuses the profile only. Each architecture was selected based on preliminary
other parts of multimeric complexes or _crystal contacts, W_e did not Wamtesting of a small number of architectures on one alphabet and one set of mul-
to include too many examples of chains that were not mdependentlyﬁple sequence alignments (data not provided). Note that they have the same

fOIding'_ln retrospect, we probably_should have removed even more o%umber of hidden layers (3), with comparable window sizes and number of
the chains that are unlikely to fold independently to the experlmentallyunits in the hidden layers

observed structure. Due to its smaller windows and number of units, the IDGaaH13 network

e 9 chains that had very bad clashes as determined by the clash detectpas slightly fewer total degrees of freedom (number of parameters to be
in our UNDERTAKER program. trained, downward adjusted for the parameters which could be subsumed
in other parameters because of the normalization by the soft-max function),
We used three-fold cross-validation to test the neural networks, that is, wthan the IDaaHr network, despite having more inputs. If the guide sequence
split the dunbrack-30pc-1763 set into three sets of chains, trained networkdid not matter, one might expect the IDaaHr network to outperform the
on two-thirds of the data, and tested on the remaining third. Results artbGaaH13 network with its fewer degrees of freedom, but the opposite is
reported on the average of three networks, one for each of the three test segpparently true for all alphabets tested, as shown in Table 2.
To train the networks, we started by training 100 networks each with dif- The @Q,, value for thebssrEHL2 alphabet is included in Table 2 to
ferent random values for the weighis; and biash; in each neuron. After ~ show thatPREDICT2ND is comparable to other methods of local structure
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bits saved n Architecture  weighting ~ mean bits saved
alphabet IDaaHR IDGaaH13 IDaaHR IDGaaH13 IDaaHr # of seq 1.05
str2 1.05 1.12 0.54 0.56 IDaaH13 1.3 bits/col 1.05
dssp 0.92 0.98 0.63 0.64 IDGaaHr # of seq 112
stride 0.89 0.94 0.66 0.67 IDGaaH13 1.3 bits/col 1.12
bys 0.70 0.83 0.58 059 Table 4. The IDaaHr and IDGaaH13 neural nets in Table 1 differ in both
dssp-ehl2 0.75 0.79 0.77 0.78 ) S A
architecture and sequence weighting. In this table we compare the effect of

alpha 0.67 0.74 0.46 0.47 . S
burial CB14 055 057 038 035 the architecture change and the weighting change separately ferrtie

una ’ ' ’ ’ alphabet, using the SAM-T06 alignments. IDaaH13 has the same architec-
near-backbone-11] 0.49 0.54 0.24 0.25

ture as IDaaHr, but uses a different sequence weighting. IDGaaHr has the
Table 2. Comparison of results for several alphabets with the two archi-Same architecture as IDGaaH13, but with a different sequence weighting.
tectures specified in Table 1, using SAM-T06 multiple alignments. TheThe choice of weighting method does not seem to have an effect on the
bits-saved measure is the one used for trainingQas (the fraction of  bits-saved measure, while the choice of architecture does.

most-probable letters that are correct) is not really comparable between dif-

ferent alphabets. Note that the backbone alphabets carry more predictable

information than the burial alphabets (CB14 and near-backbone-11). alignment SAM-T2K SAM-T04 SAM-T06
STR2 mean bits saved
IDaaHr 1.07 1.02 1.05
epochs 50 150 250 IDGaaH13 1.10 1.09 1.12
STR2 mean bits saved near-backbone-11 mean bits saved
IDaaHr 0.84 1.02 1.08 IDaaHr 0.51 0.48 0.49
IDGaaH13 0.94 1.10 1.16 IDGaaH13 0.54 0.52 0.55

near-backbone-11 mean bits saved
IDaaHr 0.05 0.47 0.50
IDGaaH13 0.33 0.51 0.56

Table 5. Comparison of results for theTR2 and NEAR-BACKBONE-11
alphabets for two architectures specified in Table 1 trained on multiple
alignments created with three different protocols. The difference between
Table 3. Comparison of the average training results forsh@2 andNEAR- architectures is consistent across the different multiple alignments, with
BACKBONE-11 alphabets for two architectures specified in Table 1 trainedthe IDGaaH13 architecture (which uses a guide sequence) consistently
for 50, 150, and 250 epochs. The architecture with the guide sequenceutperforming the IDaaHr architecture.

(IDGaaH13) is consistently superior at all stages of training.

density function for bits saved

" IDGaaH13

prediction. However, th&),, measure can vary greatly depending on the
training and test data, so this measure does not show He&bICT2ND is
considerably better or worse than other prediction methods.

In Table 3 we show the results in bits saved after each stage of training.
We report the average over all neural nets trained after 50, 150, and 250
epochs of training. Because we do 3-fold cross-validation and select fewer
networks for training in later stages, the number of neural networks used
in the averages are 300, 30, and 9 respectively. These results indicate that
using a guide sequence in our training helps improve the results from the
neural network. For example for theeAR-BACKBONE-11 alphabet, after
fifty epochs, the average without a guide sequence is only 0.05 bits-saved 0.01
while the average with a guide sequence is 0.33 bits-saved. -1 -0.5 0 0.5 1 15 2 25

In Table 4 we show the results for th&TR2 alphabet using differ- Bits saved
ent weighting methods for generating the profiles from the multiple se-
quence alignments. For both architectures, changing the total weight of th
sequences made essentially no difference in the average quality of the resul

In Table 5 we present the results for comparison across three iterate -
search methods for generating the multiple alignments: SAM-T2K, SAM-alphabEt' IDGaaH13 has a mean of 1.14, standard deviation of 0.31, and

T04, and SAM-T06. The differences between the architectures is consister?’tt‘:'lr.]dard error of the mean of 0.007. IDaaHr has a mean of 1.08, standarQ de-
. . : viation of 0.33, and standard error of the mean of 0.008. Most of the outliers
across all the different multiple sequence alignments.

In Figure 3, we plot histograms of the bits saved for each chain of theW|th negative bits saved are short chains that are part of multimeric com-

test sets for thesTR2 alphabet test. The distributions of bits saved for the plexes and which probably do not fold independently to the experimentally

. . . . . rvi nformation.
two architectures are quite similar, and the difference in the means is 0n|)9bse ed conformatio

about 0.2 standard deviations, but is almost 10 times the standard error of
the mean.

0.1F

probability density

igure 3. Histogram of bits saved in cross-validation tests using the two ar-
ﬁﬁtectures, one with and one without guide sequence for predictiomrg

extending the performance of those tools, and that improvements in
local structure prediction result in improvements in fold recognition
4 APPLICATIONS AND DISCUSSION and alignment.
We use the predictions of various local structure alphabets produced A key improvement to the ability of SAM to find remote ho-
by PREDICT2ND in several of our software tools. We find that rea- mologs has come from the extension of thems, first to two
sonably accurate predictions of novel alphabets are important fotracks, and more recently to three tracks. For three-traiaki s




Predict-2nd

our current preferred set of alphabets is amino-asitR2, and  Bonneau, R., Tsai, J., Ruczinski, I., Chivian, D., Rohl, C., Strauss, C. E. M., and Baker,
NEAR-BACKBONE-11. We continue to optimize the weighting of D. (2001). Rosetta in CASP4: progress in ab initio protein structure prediction.

the tracks for various applications including finding templates and_Proteins: Structure, Function, and Genetié§(S5), 119-126. .
Bradley, P., Malmstih, L., Qian, B., Schonbrun, J., Chivian, D., Kim, D. E., Meiler,

mak'ng al'gnments to t_hese templates. o J., Misura, K. M., and Baker, D. (2005). Free modeling with Rosetta in CASP6.
Another use of predicted local structure is in theDERTAKER Proteins: Structure, Function, and Bioinformatj&i(S7), 128—134.

program, which uses local structure predictions in its cost func-Cortes, C. and Vapnik, V. (1995). Support vector networkéachine Learning 20,

tion. There are two distinct uses, one only for backbone alphabets 273-297-

. de Brevern, A., Etchebest, C., and Hazout, S. (2000). Bayesian probabilistic approach
and the other for any alphabet t DERTAKER can assign to a for predicting backbone structures in terms of protein blodReteins: Structure,

conformation. qu backbc_me alphabets (sut_:h_as DSSP, Stride, Str2, gynction and Geneticg1, 271-287.
alpha, ... ), confident helix and strand predictions can be converteBetrow, J., Palumbo, M., and Berg, G. (1997). Patterns, structures, and amino acid
to helix and strand constraints for undertaker. For any alphabet, frequencies in structural building blocks, a protein secondary structure classification

B : e heme Proteins: Structure, Function, and Geneti@g, 249-271.
UNDERTAKER can include a cost function that is just the sum of _ ¢ ' ! ’ )
A~ J Frishman, D. and Argos, P. (1995). Knowledge-based protein secondary structure

the log odds ratioslog(F;(c:)/Fo(c:), for each position of the assignmentProteins: Structure, Function, and Genetie8, 566-579.

conformation. Henikoff, J. G. and Henikoff, S. (1996). Using substitution probabilities to improve
position-specific scoring matriceGomputer Applications in the Biosciencg(2),
135-143.
Henikoff, S. and Henikoff, J. G. (1994). Position-based sequence weidtisnal of
5 CONCLUSION Molecular Biology 2434), 574-578.

From the initial rough predictions of the classically defined sec-Hua, S.and Sun, Z. (2001). A novel method of protein secondary structure prediction

f with high segment overlap measure: support vector machine apprdaamal of
ondary structure of the protein backbone, much progress has been Molecular Biology 308 397407,

ma_de in opnrmzmg neural nets to pr_edl.c.t local St';UCture on aHughey, R. and Krogh, A. (1995). SAM: Sequence alignment and modeling software
residue-by-residue basis. Among the significant previous advances system. Technical Report UCSC-CRL-95-7, University of California, Santa Cruz,
in these efforts were the use of amino acid profiles (or multiple Computer Engineering, UC Santa Cruz, CA 95064.

alignments) as the input to the neural nets, and the cascading bughey, R. and Krogh, A. (1996). Hidden Markov models for sequence anal-

. . . ysis: Extension and analysis of the basic metho@omputer Applications in
two neural nets (eaCh with one hidden layer)’ to prOduce the final the Biosciences12(2), 95-107. Information on obtaining SAM is available at

predictions. http://www.soe.ucsc.edu/research/compbio/sam.html .
Our PREDICT2ND program generalizes these paradigms by al-Hughey, R., Karplus, K., and Krogh, A. (1999). SAM: Sequence alignment
lowing for arbitrary local structure alphabets, and arbitrary numbers and modeling software system, version 3. Technical Report UCSC-CRL-99-

. . . f 11, University of California, Santa Cruz, Computer Engineering, UC Santa
of hidden layers’ units per layer Iayer and window size at each Iayer' Cruz, CA 95064. Available fronhttp://www.soe.ucsc.edu/research/

We have adde_d a gqide sequence as an a_dditional input and found comppio/sam. himi
small but consistent improvements from doing so. Jones, D. (1999). Protein secondary structure prediction based on position-specific
We have developed a multiple-random-start training protocol to scoring matricesJournal of Molecular Biology292, 195-202.

get consistently good results from neural network training, despitéﬂabsch, W. and Sander, C. (1983). Dictionary of protein secondary structure: pattern
recognition of hydrogen-bonded and geometrical featurBmpolymers 22(12),

the tendency for neural nets to get trapped in local optima. 25772637
By optimizing for information gain, rather than fraction correct, karchin, R., Cline, M., Mandel-Gutfreund, Y., and Karplus, K. (2003). Hidden Markov
we have been able to compare alphabets with quite different sizes models that use predicted local structure for fold recognition: alphabets of backbone
and background probabilities. geometry.Proteins: Structure, Function, and Genetiéd(4), 504-514.
Karchin, R., Cline, M., and Karplus, K. (2004). Evaluation of local struc-
ture alphabets based on residue buriaProteins: Structure, Function, and
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