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ABSTRACT
MOTIVATION:
Predictions of protein local structure, derived from sequence align-

ment information alone, provide visualization tools for biologists to
evaluate the importance of amino acid residue positions of interest
in the absence of X-ray crystal/NMR structures or homology models.
They are also useful as inputs to sequence analysis and modeling
tools such as hidden Markov models (HMMs), which can be used to
search for homology in databases of known protein structure. In ad-
dition, local structure predictions can be used as a component of cost
functions in genetic algorithms that predict protein tertiary structure.

We have developed a program (PREDICT-2ND) that trains multilayer
neural networks and have applied it to numerous local structure al-
phabets, tuning network parameters such as the number of layers, the
number of units in each layer, and the window sizes of each layer. We
have had the most success with four-layer networks, with gradually
increasing window sizes at each layer.

RESULTS:
Because the four-layer neural nets occasionally get trapped in poor

local optima, our training protocol now uses many different random
starts, with short training runs, followed by more training on the best
performing networks from the short runs.

One recent addition to the program is the option to add a guide
sequence to the profile inputs, increasing the number of inputs per
position by 20. We find that use of a guide sequence provides a small
but consistent improvement in the predictions for several different
local-structure alphabets.

AVAILABILITY:
Local structure prediction with the methods described here is avail-

able for use online at http://www.soe.ucsc.edu/compbio/SAM T08/
T08-query.html

The source code and example networks for PREDICT-2ND are
available at http://www.soe.ucsc.edu/˜ karplus/predict-2nd/ A required
C++ library is available at http://www.soe.ucsc.edu/˜ karplus/ultimate/

∗to whom correspondence should be addressed email:karplus@soe.ucsc.edu
Phone: 1-831-459-4250

1 INTRODUCTION

1.1 Protein local structure
The original definition of protein secondary structure was based on
the work of Linus Pauling and Robert Corey (Paulinget al., 1951),
who predicted the existence ofα-helices andβ-sheets. After the
structures of proteins began to be solved with x-ray crystallography
to atomic resolution, more nuanced variants of these two original
patterns emerged, such as particular types of turns,β-bulges, and so
on.

As the number of solved structures published in the PDB (Bern-
stein et al., 1977) increased, it became necessary to define such
structures by means of computer algorithms. In these definitions,
each residue of a protein is associated with one letter of asecondary
structure alphabet. The most commonly employed algorithms are
DSSP, an eight-letter alphabet due to Kabsch and Sander (Kab-
sch and Sander, 1983), andSTRIDE, a seven-letter alphabet due to
Frishman and Argos (Frishman and Argos, 1995).

These secondary structure alphabets are often reduced to the three
states ofhelix, sheet, andcoil. But since the coil category accounts
for approximately 45% of all assigned residues in a protein (Fetrow
et al., 1997), it is likely that such first-order definitions, while easily
interpreted and possessing an intuitive appeal, fail to capture much
of the information available in the atomic coordinates of protein
structures.

Even if one is restricted to assigning one alphabet letter per
residue, it is possible to more broadly definelocal structure alpha-
bets, which can capture much of this missing information. Among
the properties that can be encoded in such an alphabet are:

• participation in hydrogen bonding with neighboring residues,
which can either collapse (DSSP-EHL2) or expand (STR2) the
helix-sheet-coil paradigm,

• torsion angles of the backbone at the residue,

• torsion angles between Cα atoms,

• ad hoc definitions based on unsupervised learning techniques,
such as thePROTEIN BLOCKSof de Brevern et al. (de Brevern
et al., 2000), and

• measures of the exposure of the residue to the solvent.
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Among alphabets that capture some of the above properties, we
have previously (Karchinet al., 2003, 2004) explored the use of, and
relationships among, numerous local structure alphabets. These can
be categorized intobackbone geometryalphabets andburial alpha-
bets. The definition of the backbone geometry and burial alphabets
can be found in the Supplementary Materials.

For this work, we evaluated eight different local structure
alphabets—six backbone alphabets:ALPHA, BYS, DSSP, STR2,
STRIDE, and DSSP-EHL2 and two burial alphabets:BURIAL -CB-
14-7 andNEAR-BACKBONE-11. Our main interest here is in the
robustness of the training protocol, as Karchin’s work has pre-
viously examined the usefulness of these alphabets (except for
near-backbone-11) (Karchinet al., 2003, 2004).

1.2 Inputs and outputs of local structure predictors
The key attribute of a local structure prediction algorithm is that
it uses as input sequence information from the protein—no struc-
tural information is assumed. Rather than just a simple sequence,
however, most algorithms use a profile of the target sequence as
the starting point. Such profiles are usually derived from a multiple
alignment of sequences that share some degree of similarity with
the target protein and presumably represent either close or distant
homologs. It is presumed that conservation of structure is a feature
of the evolution of homologs, so that the multiple sequence align-
ment represents a sampling by nature of the sequences that can adopt
that structure. The more that distant homologs can be included in
such a profile, the more information we have about what sequences
can adopt the structure, and the more reliably we should be able to
predict the structure.

On the other hand, too much generality can include noise (se-
quences adopting different local structures) that may swamp the
signal that is sought. Thus one may need to carefully tune the thresh-
old used to definesimilarity when including sequences in a multiple
alignment to be used as input to a local structure prediction. An al-
ternative to such tuning however, is to use a fairly loose definition
of similarity, but also use the actual sequence of the target protein as
an auxiliary input.

We call this theguide sequenceand describe below our experience
with using it in local structure prediction.

The output of a local structure prediction can be just a single letter
from the predicted alphabet, corresponding to each position in the
target sequence. However, a more general output consists of a prob-
ability distribution over the letters of the alphabet at each position.
This form conveys more information, is often more useful for sub-
sequent tools, and if desired, can easily be reduced to a single output
per position by choosing the letter with the highest probability.

1.3 Uses of predicted local structure
In the following subsections, we describe some typical uses of local
structure predictions.

1.3.1 Fold-recognition efforts In the community-wide experi-
ment for protein structure prediction known asCASP (Moult et al.,
1997, 1999; Lawrence Livermore National Laboratory, 2002), our
group has concentrated on remote fold-recognition with fairly good
results (Karpluset al., 1997, 1999, 2001). In 2000, we started in-
corporating secondary structure prediction in our fold-recognition
method forCASP4 (Karpluset al., 2001).

The suite of tools for Sequence Alignment and Modeling (SAM)
developed at UCSC (Hughey and Krogh, 1995, 1996; Hugheyet al.,
1999) is based on Hidden Markov Models (HMMs). While the orig-
inal versions of SAM represented an amino acid profile via the
emission probabilities of the amino acid types at each position in the
sequence, more recent versions have implemented so-called multi-
track HMMs (Karpluset al., 2003). In these models, additional
parameters are added, representing emission probabilities at each
position of one or more local structure alphabet letters.

Among the uses of theseHMMs are fold-recognition, pairwise
alignments of sequences, and generation of the fragments to be used
in fragment replacement programs such asUNDERTAKER (Karplus
et al., 2003) or ROSETTA (Bonneauet al., 2001; Bradleyet al.,
2005). When building such anHMM for a target protein of unknown
structure, the emission probabilities for the alphabets other than
the primary amino acid sequence are taken from a local structure
prediction.

1.3.2 Cost functions for tertiary predictionsWe have developed
theUNDERTAKER program that performs three-dimensional protein
structure prediction. It employs a genetic algorithm, with numer-
ous tunable cost functions and conformation generation operators,
including fragment replacement, as in theROSETTAprogram. Cost
functions based on predicted local structure have been found to be
among the most powerful of the cost functions for determining the
quality of resulting conformations.

1.3.3 Alphabet logos For a protein that appears to contain a
novel structure, having no close homologs in PDB, and for which
the full panoply of 3D structure tools fails to generate a structure
with high confidence, a reasonable prediction of local structure can
still be useful. For example, a biologist can derive insight by look-
ing at the logo representation of the local structure prediction, as in
Figure 1. These logos are similar to sequence logos (Schneider and
Stephens, 1990), but use the predicted probability of the structure
alphabet letters, rather than observed frequency of amino acids or
bases. At each position in the sequence, the total height of all the
letters is proportional to the relative entropy between the predicted
probabilitiesP̂ and the background distribution of the alphabetP0:

H =
X

a∈alphabet

P̂ (a) log2

P̂ (a)

P0(a)

The individual predicted letters at a position are displayed such
that the total height is distributed according to the predicted proba-
bilities of the letters at that position. For example, if a single letter
is predicted with absolute certainty (even if the prediction turns out
to be wrong!), the logo will show the predicted letter at maximal
height.

In Figure 1, the prediction consists almost entirely of anti-parallel
β-strands, separated either by regions of low confidence predic-
tions, or by more definite short turn regions. Even though no
high-confidence full structure prediction for this protein could be
made, a biologist looking at the logo can get an immediate feel
for the likely type of protein this is, and could make a decision on
whether or not to invest significant effort in pursuit of the structure
(or other properties) of the protein. Similarly, when making detailed
structure predictions, a human analyst can gain insight by looking
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Figure 1. This is a logo of a prediction of a theSTR2 alphabet for aCASP7
protein sequence that had no close PDB homologs, but which was predicted
to consist almost entirely of anti-parallel beta strands and one alpha helix.
See text for explanation of heights of letters. The bars below the sequence
positions represent segments of a single contiguous predicted letter of the
full STR2 alphabet. When the structure was solved, it turned out that this
predicted secondary structure was very accurate.

at such a representation and can then guide machine-based methods
towards more likely solutions.

1.4 Neural nets for local structure prediction
As soon as there began to be sufficient protein structures in PDB,
the preferred implementation of predictions of secondary struc-
ture focused on neural nets. As more and more protein sequences
became available it was recognized that using multiple sequence
alignments as the inputs to the neural nets leads to more accurate
results (Rost and Sander, 1993). In thePSIPREDmethod (Jones,
1999) the position-specific scoring matrices that are available from
PSI-BLAST (Altschul et al., 1997) are used directly, rather than the
multiple alignments that are the usual output from that program.

The architecture of many of the neural net programs currently
in widespread use (Jones, 1999; Rost, 1996) is relatively straight-
forward. A window is applied to the input profile, so that a fixed
number (say 15, as inPSIPRED) of positions in the sequence are
examined simultaneously at the input level. For the 20 amino acids
(and one additional letter to indicate the ends of the sequence), this
requires 315 input units in the network (forPSIPRED). There typi-
cally follows a single hidden layer (PSIPREDused 75 units for that
layer). Finally, the three output units representing helix, sheet and
coil produce the secondary structure sequence. In order to deliver
slightly improved accuracy, this first network is usually connected
in tandem to a second network of similar architecture. The second
network differs from the first in that its inputs use the same sec-
ondary structure alphabet as its outputs, and it thus can be termed a
structure-to-structure predictor (Rost and Sander, 1993).

As is described in more detail below, thePREDICT-2ND imple-
mentation differs from the above paradigm in several respects. First
of all, rather than rely on a tandem pair of neural networks, we have
implemented a fully general scheme that allows an arbitrary number
of hidden layers. At each layer, a window of units from the previous
layer can be used as input, with the window widths, like the number
of hidden layers and the number of units per layer, selected at run
time. Another difference from the usual methods is that we do not

use theQn measure (percentage of correct predictions in the whole
sequence) as the objective function to be optimized during train-
ing. Instead, we focus on the bits-savedor information-gain measure
(defined in Section 2.1)for an arbitrary local structure alphabet.

One relatively recent addition toPREDICT-2ND is the optional
inclusion of a guide sequence (defined above) in the input. This is
intended to counteract the possibility of over-generalization of the
input profile due to inclusion of too distantly related sequences.

It is worth noting that like all the other layers, the number of out-
puts fromPREDICT-2ND is also easily varied, which enables us to
quickly generate predictions for arbitrary local structure alphabets.
This allows us to evaluate their predictability, as well as to use such
alphabets in our other programs for improved results.

We have also improved our training protocol by using multiple
random starts. Neural net training often gets trapped in local optima,
and using multiple starts with different initial weights helps us find
a good local optimum.

1.5 Other tools for local structure prediction
Neural networks have not been the only methods applied to the

local structure prediction problem—others include Bayesian statis-
tics and various machine-learning methods. For example, the GOR
V method uses a combination of information theory, Bayesian
statistics, and evolutionary information for local structure predic-
tions (Klockzkowski et al., 2002). A recently popular machine-
learning method for predicting local structure has been support
vector machines (SVMs) (Cortes and Vapnik, 1995; Hua and Sun,
2001). Both of these methods have been used to predict a three-letter
reduced state alphabet from DSSP and do comparably to neural
networks when predicting this kind of local structure alphabet.
2 METHODS
The following sections described how we generate, given an amino acid se-
quence for a protein of unknown structure, a residue-by-residue prediction
for an arbitrary local structure alphabet. See Figure 2.

2.1 Objective Functions
In evaluating the performance of neural nets for prediction of classic sec-
ondary structure, most practitioners have concentrated on the so-calledQn

measure, which is simply the percentage of correct predictions in the entire
sequence. Thus if one is predicting helix, strand, or coil, a choice is made at
each position and is scored in a binary fashion as being either right or wrong
when compared to the alphabet in use (usually a collapsed version ofDSSP

or STRIDE).
When one is concerned with fold-prediction, thesegment overlap(SOV)

measure (Rostet al., 1994; Zemlaet al., 1999) is often used. In this mea-
sure a pairwise alignment of the predicted sequence and the actual sequence
is used to calculate the fraction of segments (runs of one letter in the al-
phabet) that are correctly found. In Figure 1, the bars that appear below the
position-by-position letters represent the predicted segments for use in SOV
measures. The SOV measure was intended primarily for use with a sim-
ple 3-state secondary structure alphabet and may have no useful meaning in
alphabets that do not result in long runs of the same letter.

Because we are interested in examining different local structure alphabets,
we prefer to use a measure that is not intrinsically dependent on the number
of letters in the alphabet. We also are interested in the confidence of our pre-
dictions (the probability assigned to the outputs) rather than just whether the
most probable output is correct or not, which discards much of the informa-
tion in the prediction. For these reasons wehave taken an information-based
approach to prediction. For each alphabet, the information content (entropy)
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Figure 2. Overview of our local structure prediction method. Starting with the target amino acid sequence as input, a single track HMM is constructed and
updated by the SAM program during an iterative search for homologous sequences. After convergence, the SAM HMM is used to generate a multiple sequence
alignment of the homologous sequences that were found. This alignment is input to thePREDICT-2ND multi-layer neural network which generates predictions
of the letters of a local structure alphabet for each position in the input alignment.

can be calculated, which is defined as

H(x) = −
X

i

P (xi) log2 P (xi) ,

whereP (xi) is the probability of a certain letter occurring based on the
background distribution of the alphabet. An alphabet with a higher entropy
value carries more information, and we can expand the idea of information
for use in our prediction methods. Wefocus on the probability assigned by
our prediction to the correct letter at each position in the sequence, and calcu-
late the average number ofbits-savedper position, relative to the background
distribution of the alphabet.The bits-saved measure can also be considered
the information gainfrom predicting letters of the alphabet.For a sequence
with n positions, ifci is the correct letter at positioni, and the background
and predicted probabilities areP0 andP̂i, then our measure is

bits saved=
1

n

nX

i=1

log2

P̂i(ci)

P0(ci)

Assume one had an alphabet of four letters, and wished to double the size
of that alphabet by splitting each category in two. If the original prediction
of 4 letters is extended to 8 by randomly assigning each prediction to one of
its two new subclasses, then theQ8 score would be roughly half of theQ4

score. By contrast, even though the entropy of the new alphabet is increased
by one full bit, since both the background and predicted probability of the
correct letter at every position would be halved, the bits-saved by the original
prediction would be nearly unchanged.

Thus, although we report theQn and SOV results of our predictions, and
in fact sometimes use an objective function that is a weighted mixture of all
three measures to choose a network, we train our networks by maximizing
the following function (which contains the network-dependent part of bit-
saved):

nX

i=1

log P̂i(ci) .

2.2 Creating multiple alignments
To generate multiple alignments, we use the SAM suite of hidden Markov
models tools to do iterated search, using any of several different protocols
we have developed (Hughey and Krogh, 1996; Karpluset al., 2001, 2005).
The multiple alignments are thinned so that the resulting set has no pair of
sequences with more than 90% identity on the aligned columns. For a more
detailed discussion about how we generate multiple alignments for use with
local structure prediction, see the Supplementary Materials.

2.3 Converting multiple alignments to profiles
For input to the neural nets,PREDICT-2ND converts the SAM alignments into
profiles, assigning a probability vector over the amino acids at each position
in the sequence. The probability vector is computed by using a Dirichlet
mixture regularizer (Sj¨olanderet al., 1996) applied to weighted counts of
the amino acids at that position. The relative sequence weights are computed
using a method due to Henikoff and Henikoff (Henikoff and Henikoff, 1994,
1996).

Dirichlet mixture regularizers are sensitive to the total weight of the se-
quences, as well as the relative weights, and we have experimented with
two different ways to set the total weight. In one method, the total weight is
simply the number of sequences in the alignment. In the other method, the
total weight is adjusted so that the average relative entropy of the resulting
distribution compared to the background distribution is approximately 1.3
bits. As it turns out, both weighting schemes seem to work equally well, and
the details of the sequence weighting may not be of much importance. See
the Supplemental Materials for a more detailed description of the weighting
methods.

2.4 Neural net architectural features
The PREDICT-2ND implementation is script-driven and has the ability to
write out and read back in a neural net description that comprises a set of
interfaces and layers of essentially arbitrary size. Based on our earlier expe-
rience, we have focused in the current work on neural nets with three hidden
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layers, varying the number of units in each hidden layer and the windowing
used in each interface.

The number of input units is 42 if a guide sequence is used: a one-hot
encoding (this is the guide sequence) of the amino acid in the target sequence
(20), a probability for each amino acid from the multiple alignment (20), and
probabilities of insertion and deletion (2). The number of output units is just
the number of distinct letters in the local structure alphabet to be predicted.

To calculate the output of each unit in each layer, we use asoft maxfunc-
tion so that all of the outputs of a given layer represent a valid probability
distribution (summing to unity) over that layer’s units. Thus if a unitj re-
ceives weighted inputswijxi from the set of unitsi with valuesxi in the
previous layer, and has a bias valuebj , then its output is calculated as

eyj

P
k eyk

whereyj =
X

i

wijxi + bj .

In each layer, every unit actually takes as inputs a window of outputs from
the previous layer’s set of units. So in the previous formula, the range ofi
should be taken to includeNW values, whereN is the number of unique
units in the previous layer, andW is the window width used. This window-
ing feature gives the net the ability to capture local structure information that
is not encoded in a single amino acid position. We would normally expect
the weights to be highest in the center of the window, but there is nothing in
the current neural net training paradigm to enforce this.

Because the number of paths from input positioni to output positionj
decreases as|i − j| increases, the influence of residues further away from
the position being predicted is automatically reduced by the multi-layer win-
dowing. The multi-layer windowing also allows propagation of information
from a fairly large set of inputs with relatively few parameters to train in the
neural net, reducing the dangers of overfitting the training data.

In our work with three hidden layers we usually use between 10 and 15
units in each layer, with window widths varying from about 5 at the input
layer to as high as 13 for the layer before the outputs.

2.5 Training the nets
Our training data is a set we calldunbrack-30pc-1763, which is a set of
1763 nonhomologous chains. It is derived from a culled PDB set of 1875
chains, with resolution of 1.8̊A or better, maximum R-factor 0.25, and maxi-
mum sequence identity of 30%, using Dunbrack’s PISCES server (Wang and
Dunbrack, Jr., 2003). We removed 112 chains from the set:

• 77 chains because length< 50

• 26 chains that were non-globular (fragments of a protein that had
been entered in PDB as separate chains, chains with very long breaks,
chains with topological problems such as bad knots, or non-compact
monomers from a multimeric complex). Because the desired labeling
for burial alphabets was determined from chains in isolation, without
other parts of multimeric complexes or crystal contacts, we did not want
to include too many examples of chains that were not independently
folding. In retrospect, we probably should have removed even more of
the chains that are unlikely to fold independently to the experimentally
observed structure.

• 9 chains that had very bad clashes as determined by the clash detector
in our UNDERTAKER program.

We used three-fold cross-validation to test the neural networks, that is, we
split the dunbrack-30pc-1763 set into three sets of chains, trained networks
on two-thirds of the data, and tested on the remaining third. Results are
reported on the average of three networks, one for each of the three test sets.

To train the networks, we started by training 100 networks each with dif-
ferent random values for the weightswij and biasbj in each neuron. After

IDaaHr IDGaaH13
use guide seq? no yes
total seq. weight # of seqs to get 1.3 bits
input units 22 42
layer 1 window 5 3
Layer 1 units 15 13
layer 2 window 7 7
Layer 2 units 15 13
layer 3 window 9 9
Layer 3 units 15 13
Output window 13 11
Output units 11 (for bys) 11 (for bys)
degrees of freedom 6850 (for bys) 5438 (for bys)

Table 1. Architectures for the neural nets compared in this paper.
The IDaaHr network uses amino acid probabilities and insert/delete proba-
bilities from a multiple sequence alignment as inputs. The IDGaaH13 uses
those inputs plus a one-hot encoding of the amino acid of the target sequence.
The sequence weighting for computing the probabilities differs between the
two networks, but this is probably irrelevant (see Table 4).
The number of units in each layer and the window of inputs from the pre-
vious layer is shown. The number of output units is equal to the number of
letters in the output alphabet being predicted. The degrees of freedom rep-
resents the number of parameters to be trained (downward adjusted for the
parameters which could be subsumed in other parameters, due to the nor-
malization of the soft-max function) and is shown for the case of theBYS

alphabet, which has 11 output units. The nets for other alphabets will have
slightly different degrees of freedom as the output layer will have different
numbers of parameters, based on the number of outputs.

50 epochs of training, we chose the ten best networks and trained these net-
works for 100 more epochs. We then trained the top three networks for a
final 100 epochs, and chose the best of those.

All the training and choices were based strictly on the training set. We then
used the reserved test data to test the finally chosen network. More details
about our training protocol can be found in the Supplementary Materials.

3 RESULTS
To date we have explored the space of architectures to a limited extent,
with preliminary experiments (not reported here) indicating that architec-
tures with two or three hidden layers outperformed architectures with zero
or one hidden layer, but that the arrangement of window widths and number
of hidden units was not critical.

In this paper we focus on two architectures for which we did extensive
testing, described in Table 1. One network is chosen from the class of archi-
tectures using a guide sequence in addition to a profile for input; the other
uses the profile only. Each architecture was selected based on preliminary
testing of a small number of architectures on one alphabet and one set of mul-
tiple sequence alignments (data not provided). Note that they have the same
number of hidden layers (3), with comparable window sizes and number of
units in the hidden layers.

Due to its smaller windows and number of units, the IDGaaH13 network
has slightly fewer total degrees of freedom (number of parameters to be
trained, downward adjusted for the parameters which could be subsumed
in other parameters because of the normalization by the soft-max function),
than the IDaaHr network, despite having more inputs. If the guide sequence
did not matter, one might expect the IDaaHr network to outperform the
IDGaaH13 network with its fewer degrees of freedom, but the opposite is
apparently true for all alphabets tested, as shown in Table 2.

The Qn value for theDSSP-EHL2 alphabet is included in Table 2 to
show thatPREDICT-2ND is comparable to other methods of local structure
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bits saved Qn

alphabet IDaaHR IDGaaH13 IDaaHR IDGaaH13
str2 1.05 1.12 0.54 0.56
dssp 0.92 0.98 0.63 0.64
stride 0.89 0.94 0.66 0.67
bys 0.70 0.83 0.58 0.59
dssp-ehl2 0.75 0.79 0.77 0.78
alpha 0.67 0.74 0.46 0.47
burial CB14 0.55 0.57 0.35 0.35
near-backbone-11 0.49 0.54 0.24 0.25

Table 2. Comparison of results for several alphabets with the two archi-
tectures specified in Table 1, using SAM-T06 multiple alignments. The
bits-saved measure is the one used for training, asQn (the fraction of
most-probable letters that are correct) is not really comparable between dif-
ferent alphabets. Note that the backbone alphabets carry more predictable
information than the burial alphabets (CB14 and near-backbone-11).

epochs 50 150 250
STR2 mean bits saved

IDaaHr 0.84 1.02 1.08
IDGaaH13 0.94 1.10 1.16

near-backbone-11 mean bits saved
IDaaHr 0.05 0.47 0.50

IDGaaH13 0.33 0.51 0.56

Table 3. Comparison of the average training results for theSTR2 andNEAR-
BACKBONE-11 alphabets for two architectures specified in Table 1 trained
for 50, 150, and 250 epochs. The architecture with the guide sequence
(IDGaaH13) is consistently superior at all stages of training.

prediction. However, theQn measure can vary greatly depending on the
training and test data, so this measure does not show thatPREDICT-2ND is
considerably better or worse than other prediction methods.

In Table 3 we show the results in bits saved after each stage of training.
We report the average over all neural nets trained after 50, 150, and 250
epochs of training. Because we do 3-fold cross-validation and select fewer
networks for training in later stages, the number of neural networks used
in the averages are 300, 30, and 9 respectively. These results indicate that
using a guide sequence in our training helps improve the results from the
neural network. For example for theNEAR-BACKBONE-11 alphabet, after
fifty epochs, the average without a guide sequence is only 0.05 bits-saved
while the average with a guide sequence is 0.33 bits-saved.

In Table 4 we show the results for theSTR2 alphabet using differ-
ent weighting methods for generating the profiles from the multiple se-
quence alignments. For both architectures, changing the total weight of the
sequences made essentially no difference in the average quality of the results.

In Table 5 we present the results for comparison across three iterated
search methods for generating the multiple alignments: SAM-T2K, SAM-
T04, and SAM-T06. The differences between the architectures is consistent
across all the different multiple sequence alignments.

In Figure 3, we plot histograms of the bits saved for each chain of the
test sets for theSTR2 alphabet test. The distributions of bits saved for the
two architectures are quite similar, and the difference in the means is only
about 0.2 standard deviations, but is almost 10 times the standard error of
the mean.

4 APPLICATIONS AND DISCUSSION
We use the predictions of various local structure alphabets produced
by PREDICT-2ND in several of our software tools. We find that rea-
sonably accurate predictions of novel alphabets are important for

Architecture weighting mean bits saved
IDaaHr # of seq 1.05
IDaaH13 1.3 bits/col 1.05
IDGaaHr # of seq 1.12
IDGaaH13 1.3 bits/col 1.12

Table 4. The IDaaHr and IDGaaH13 neural nets in Table 1 differ in both
architecture and sequence weighting. In this table we compare the effect of
the architecture change and the weighting change separately for theSTR2
alphabet, using the SAM-T06 alignments. IDaaH13 has the same architec-
ture as IDaaHr, but uses a different sequence weighting. IDGaaHr has the
same architecture as IDGaaH13, but with a different sequence weighting.
The choice of weighting method does not seem to have an effect on the
bits-saved measure, while the choice of architecture does.

alignment SAM-T2K SAM-T04 SAM-T06
STR2 mean bits saved

IDaaHr 1.07 1.02 1.05
IDGaaH13 1.10 1.09 1.12

near-backbone-11 mean bits saved
IDaaHr 0.51 0.48 0.49

IDGaaH13 0.54 0.52 0.55

Table 5. Comparison of results for theSTR2 and NEAR-BACKBONE-11
alphabets for two architectures specified in Table 1 trained on multiple
alignments created with three different protocols. The difference between
architectures is consistent across the different multiple alignments, with
the IDGaaH13 architecture (which uses a guide sequence) consistently
outperforming the IDaaHr architecture.
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Figure 3. Histogram of bits saved in cross-validation tests using the two ar-
chitectures, one with and one without guide sequence for prediction ofSTR2
alphabet. IDGaaH13 has a mean of 1.14, standard deviation of 0.31, and
standard error of the mean of 0.007. IDaaHr has a mean of 1.08, standard de-
viation of 0.33, and standard error of the mean of 0.008. Most of the outliers
with negative bits saved are short chains that are part of multimeric com-
plexes and which probably do not fold independently to the experimentally
observed conformation.

extending the performance of those tools, and that improvements in
local structure prediction result in improvements in fold recognition
and alignment.

A key improvement to the ability of SAM to find remote ho-
mologs has come from the extension of theHMMs, first to two
tracks, and more recently to three tracks. For three-trackHMMs
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our current preferred set of alphabets is amino-acid,STR2, and
NEAR-BACKBONE-11. We continue to optimize the weighting of
the tracks for various applications including finding templates and
making alignments to these templates.

Another use of predicted local structure is in theUNDERTAKER

program, which uses local structure predictions in its cost func-
tion. There are two distinct uses, one only for backbone alphabets
and the other for any alphabet thatUNDERTAKER can assign to a
conformation. For backbone alphabets (such as DSSP, Stride, str2,
alpha, . . . ), confident helix and strand predictions can be converted
to helix and strand constraints for undertaker. For any alphabet,
UNDERTAKER can include a cost function that is just the sum of
the log odds ratios,log(P̂i(ci)/P0(ci), for each position of the
conformation.

5 CONCLUSION
From the initial rough predictions of the classically defined sec-
ondary structure of the protein backbone, much progress has been
made in optimizing neural nets to predict local structure on a
residue-by-residue basis. Among the significant previous advances
in these efforts were the use of amino acid profiles (or multiple
alignments) as the input to the neural nets, and the cascading of
two neural nets (each with one hidden layer), to produce the final
predictions.

Our PREDICT-2ND program generalizes these paradigms by al-
lowing for arbitrary local structure alphabets, and arbitrary numbers
of hidden layers, units per layer layer and window size at each layer.
We have added a guide sequence as an additional input and found
small but consistent improvements from doing so.

We have developed a multiple-random-start training protocol to
get consistently good results from neural network training, despite
the tendency for neural nets to get trapped in local optima.

By optimizing for information gain, rather than fraction correct,
we have been able to compare alphabets with quite different sizes
and background probabilities.
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