
P

A

M

Q

Z

Z
Y

E

Q
R
Q

Z

Fig. 1. The STR alphabet subdivides the letter E fromDSSPinto P,A,M for
strands in the middle of a (parallel, anti-parallel, or mixed) sheet, and Q,Z for
the strands on the edge of a sheet. TheSTR2 alphabet further specifies as Y
the residues in anti-parallel strands which participate in the sheet hydrogen
bonds. TheSTR3 alphabet additionally specifies as R the residues in parallel
edge strands which participate in the sheet hydrogen bonds.The STRalpha-
bets are all defined strictly fromDSSPoutput, and so useDSSPdefinitions for
hydrogen bonds andβ-sheet partners. The E letter is used for residues that
DSSPidentifies as E, but which do not follow one of the defined patterns.

1 SUPPLEMENTARY MATERIALS

1.1 Local structure alphabets
Backbone geometry alphabets include the classical secondary struc-
ture alphabets and derivatives:DSSP, a seven letter version1 of the
alphabet defined by Kabsch and Sander (Kabsch and Sander, 1983);
STRIDE, a six letter version2 of the alphabet defined by Frishman
and Argos (Frishman and Argos, 1995);DSSP-EHL2, a reduction3

of DSSPto three states;STRIDE-EHL2, a reduction4 of STRIDE to
three states;STR, STR2, STR3, our enhanced versions ofDSSPthat
subdivide the letter E (β-strand) into six, seven, or eight letters
(see Figure 1), according to the particular hydrogen bonding pat-
tern in which the strand (and residue) participates (parallel-type vs.
anti-parallel-type on one, alternate, or both sides).

Other backbone geometries of interest areALPHA, our 11-letter
manual discretization of the pseudo torsion angle betweenCα atoms
of adjacent residues (see Figure 2 and Figure 3), andBYS, an 11-
letter alphabet used in theHMMSTR (Bystroff et al., 2000) program,
consisting of one letter forcispeptide bonds and a 10-letter discreti-
zation of the Ramachandran (Ramachandranet al., 1963) plot (see
Figure 4 and Table 1) fortranspeptide bonds.

We previously explored a large number of fairly similarburial
alphabets, all of which attempt to represent whether a residue is on

1 The DSSP alphabet EHTSGBICX includes E(β-strand), H(α-helix),
T(turn), S(bend), G(3-10 helix), B(shortβ-bridge), I(π-helix), and
C(random coil) as well as the wildcard X which is not needed for prediction.
We use the letters EBGHSTL forDSSP, using L(loop) for C, and mapping
the rare letter I to H.
2 We use letters EBGHTL forSTRIDE, using L(loop) for C or S, and
mapping the rare letter I to H
3 DSSP-EHL2 maps G and I to H; B to E; C, T, and S to L
4 STRIDE-EHL2 maps G and I to H; B to E; C, T, and S to L

CA(i)

CA(i-1) CA(i+1)

CA(i+2)

Fig. 2. The backbone angleALPHA is defined for a residuei as the virtual
dihedral angle betweenCα atoms of residuesi-1, i, i+1, andi+2 .

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

8 31 58 85 140 165 190 224 257 292 343

G H I S T A B C D E F

Fig. 3. Smoothed histogram ofALPHA angle distribution. The 11-letter
ALPHA alphabet was chosen based on break points in this curve and in the
curves forP (ALPHA|amino acid)/P (ALPHA) for each of the amino acids.

C’(i-1)

CA(i-1) N(i)
CA(i)

C’(i)

N(i+1)

ψ

φ

Fig. 4. The pair of dihedral backbone anglesφ andψ are defined by the
atomsC′-N -Cα-C′ (φ) andN -Cα-C′-N (ψ).

the surface or in the interior of a protein. These alphabets count the
number of atoms or residues within a given radius of each residue.
They differ in the center point of the sphere (typically theCα or
Cβ atom of the residue) and the representative points of the other
residues to be counted within the radius. We then discretized the
distribution of counts into a fixed number of letters (such as 7 or
11), using bins of equal frequency on a sample data set that we
previously described (Karchinet al., 2004). We find that we have
better success with these counts of neighborhood density than the
surface area measures that others have used. One of our alphabets

1

BYS Bystroff φ ψ

C c cis peptide
H H -61.91 -45.20
G G -109.78 20.88
P B -70.58 147.22
E E -132.89 142.43
D d -135.03 77.26
N b -85.03 72.26
Y e -165.00 175.00
L L 55.88 38.62
T l 85.82 -0.03
S x 80.00 -170.00

Table 1. Centers of the ten classes in theBYS alphabet.The first column is
the letter we assign to the class, the second column is the letter that Bystroff
assigned to the class. We could not use Bystroff’s nomenclature, because
uppercase/lowercase distinctions already have a different meaning in our
software. The last two column give the center of the class in Ramachandran
space. To classify a residue after a trans peptide, select the class with the
smallest sum of squared differences in angles.

that we have found to perform very well in the past isBURIAL -CB-
14-7, a 7-letter discretization of the number ofCβ atoms within a
14Å radius of theCβ atom of the residue in question. More recently
we have had improved results withNEAR-BACKBONE-11 which is
an 11-letter alphabet.

NEAR-BACKBONE-11 is a burial count alphabet that counts all
residues within a sphere near the residue. The center of the 9.65Å
radius sphere is at a fixed location relative to the backbone. The
sphere is centered at (-2.66, -5.15, 3.48) whereCα is at the origin,
N is on the positivex axis, and C is on thexyplane, with a positivey
value. The second spot defines the location of the residues to count.
The spot is near the backbone at (1.24, 0.64, 0.23). The spot location
and sphere radius were optimized to maximize mutual information
between the identity of the residue and the measured burial.

1.2 Iterative search to generate multiple alignments
To generate a multiple alignment as input toPREDICT-2ND we use
the iterative search method implemented in SAM (Karpluset al.,
1998). The first step consists of performing a BLAST search of the
nonredundant protein database NR (NR, ????) with the single input
sequence as query, to generate a set of putative homologs, which are
then used to build an initial HMM. The HMM is then used to search
for more remote homologs, which are iteratively used to update the
HMM.

In the current work we used the SAM-T2K search method that
was introduced in 2000. We also tested other iterative search
methods (SAM-T04) that was developed for ourCASP6 efforts and
(SAM-T06) that was developed for ourCASP7 efforts. These differ
in several minor ways from the SAM-T2K search. The most nota-
ble differences are in the prefiltering and in the regularizers used
for transition probabilities. In SAM-T04, prefiltering of the data-
base is done using one iteration of PSI-BLAST (Altschulet al.,
1997; Sch¨affer et al., 2001) at each iteration of the search. This
change allows the search to be much more sensitive, without requi-
ring extremely loose thresholds on the prefilter. Also, in SAM-T04,
a regularizer is used that keeps the costs of gaps fairly low even in

the later iterations of the iterative search. The resulting multiple ali-
gnments look worse to the human eye, but seem to work better for
predicting local structure and contacts. SAM-T04 and SAM-T06 are
similar in that they use the same prefiltering and regularizers, with
SAM-T06 having slightly different thresholds to attempt to incre-
ase the sensitivity of the multiple alignments. We also noticed that
some of the SAM-T04 alignments were contaminated with unre-
lated protein sequences, and SAM-T06 attempted to correct this
contamination at each iterative step. However, the fixes we tried
did not seem to work and some of our alignments still contain the
contamination.

1.3 Converting multiple alignments to profiles
This section describes in more detail the weighting scheme used in
converting the multiple alignments into profiles used as inputs for
the neural networks.

Each alignment column of the multiple alignment corresponds to
one position in the target sequence. For each alignment column, we
need to create a probability vector giving the probability of seeing
each amino acid at that position in the sequence for homologs of
the target. Computing these probabilities is a two-step process: first
converting the alignment into weighted counts of amino acids, then
converting the count vector into a probability vector.

To get the weighted counts, we assign a sequence weight to
each sequence. The relative weights are determined by the Henikoff
method (Henikoff and Henikoff, 1994, 1996). That is, each column
is initially assigned a weight of 1, which is divided up among the
residues of column so that ifk distinct residue types appear in the
column, the total weight for each of thek is 1/k, with all residues
of the same type in a given column getting the same weight. Each
sequence is then assigned the sum of the weights of all the residues
in alignments columns for that sequence. These sequence weights
define a relative weighting of the sequences, and can be scaled to
get any arbitrary total weight.

The weight counts for a particular column are obtained by sum-
ming the sequence weights for each residue type appearing in the
column. To convert these counts to probabilities, we use a mix-
ture of 20 Dirichlet distributions (recode3.20comp) that we have
been using successfully for regularizing the emission probabilities
of match states in hidden Markov models. Sj¨olander et al. have a
good explanation of Dirichlet mixtures (Sj¨olanderet al., 1996).

We usually set the total weight of the sequences so that the ave-
rage relative entropy of the probability vectors after regularization
is 1.3 bits/column. The higher the sequence weights, the closer the
probability distribution is to the maximum-likelihood estimate, and
the higher the relative entropy. In our initial tests, we thought that
using a guide sequence would allow us to generalize the profile
more (perhaps even as far as the 0.5 bits/column we use for fold-
recognition searches). We found that very little generalization (we
used 1.3 bits/column) worked better.

1.4 Training the nets
This section describes the training protocol in more detail.

We initially used the approach of train/cross-train/test sets in
order to maximize the bits-saved measure. We would train three net-
works using our split data set, using different sets for training and
cross-training for each of the networks. Looking at the results for
these three networks, we would sometimes see a big difference in

2

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 0.9 0.95 1 1.05 1.1 1.15

T
es

t d
at

a
in

 b
its

-s
av

ed

Train or cross-train data in bits saved

Bits-saved for 150 neural networks with str2 alphabet

train vs. test
cross-train vs. test

x

Fig. 5. The training and cross-training data against the test data. This plot
shows two main groupings. The x’s represent the cross-training vs. test bits-
saved after neural network training. The crosses represent the training vs.
test bits-saved. Both groups show a linear relationship in bits-saved for the
training data and the test data. Both groups also show a wide range of bits-
saved for the 150 networks (around 1-1.12 for training data, 0.95-1.04 for
cross-training data, and 0.93-1.04 for test data).

the resulting bits-saved measures from one of the three networks,
and the difference could not be attributed to one of the three trai-
ning sets. To check this difference, we ran the protocol fifty times
and looked at the differences between the resulting 150 neural net-
works. Figure 5 plots the results for the test data against the training
data.

The figure shows two important results. The first is the wide range
of results we acquired from the 150 neural networks, with around a
0.1 bit spread for each of the sets. This spread shows that different
random starts can hinder the training process. The second result is
that both the training and the cross-training sets show a linear relati-
onship with the test set. The training set is a bit more dispersed than
the cross-training data, but the linear relationship shows us that we
can eliminate the cross-training set and instead train on two-thirds
of our dataset to improve our results.

Since we can attribute the poor training to random starts, we
developed a new method for training the networks. For each set of
training data, we start 100 neural networks for each training set and
train them for fifty epochs. After all the networks have been trained,

we select the top ten networks based on the bits-saved result for the
training set. We continue to train these networks for another 100
epochs (for 150 total epochs), and we select the top three networks
for each training set based on the bits-saved result. We train these
networks for a last 100 epochs (for a total of 250 epochs), and we
select the best network for each training set based on the bits-saved
result. Once we select the final network for each training set, we test
the network using the one-third of the data that we held back for
testing. This is our final result for the neural network. This training
protocol seems to give us consistent results across the three training
sets.
REFERENCES
Altschul, S., Madden, T., Schaffer, A., Zhang, J., Zhang, Z., Miller, W., and Lipman,

D. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database
search programs.Nucleic Acids Research, 25, 3389–3402.

Bystroff, C., Thorsson, V., and Baker, D. (2000). HMMSTR: a hidden Markov model
for local sequence-structure correlations in proteins.Journal of Molecular Biology,
301(1), 173–190.

Frishman, D. and Argos, P. (1995). Knowledge-based protein secondary structure
assignment.Proteins: Structure, Function, and Genetics, 23, 566–579.

Henikoff, J. G. and Henikoff, S. (1996). Using substitution probabilities to improve
position-specific scoring matrices.Computer Applications in the Biosciences, 12(2),
135–143.

Henikoff, S. and Henikoff, J. G. (1994). Position-based sequence weights.Journal of
Molecular Biology, 243(4), 574–578.

Kabsch, W. and Sander, C. (1983). Dictionary of protein secondary structure: pattern
recognition of hydrogen-bonded and geometrical features.Biopolymers, 22(12),
2577–2637.

Karchin, R., Cline, M., and Karplus, K. (2004). Evaluation of local struc-
ture alphabets based on residue burial.Proteins: Structure, Function, and
Genetics, 55(3), 508–518. Online: http://www3.interscience.wiley.com/cgi-
bin/abstract/107632554/ABSTRACT.

Karplus, K., Barrett, C., and Hughey, R. (1998). Hidden Markov models for detecting
remote protein homologies.Bioinformatics, 14(10), 846–856.

NR (????). NR (All non-redundant GenBank CDS translati-
ons+PDB+SwissProt+PIR+PRF Database) Distributed via anonymous FTP from
ftp://ftp.ncbi.nih.gov/blast/db . Information on NR is available at
http://www.ncbi.nlm.nih.gov/BLAST/blast databases.html .

Ramachandran, G., Ramakrishnan, C., and Sasisekharan, V. (1963). Stereochemistry
of polypeptide chain configurations.Journal of Molecular Biology, 7, 95–99.

Schäffer, A. A., Aravind, L., Madden, T. L., Shavirin, S., Spouge, J. L., Wolf, Y. I.,
Koonin, E., and Altschul, S. F. (2001). Improving the accuracy of PSI-BLAST
protein database searches with composition-based statistics and other refinements.
Nucleic Acids Research, 29(14), 2994–3005.

Sjölander, K., Karplus, K., Brown, M. P., Hughey, R., Krogh, A., Mian, I. S., and Haus-
sler, D. (1996). Dirichlet mixtures: A method for improving detection of weak but
significant protein sequence homology.Computer Applications in the Biosciences,
12(4), 327–345.

3

