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A B S T R A C T  

We consider  the  p rob lem of wiring toge the r  two para l l e l  
rows of poin ts  under  a var ie ty  of condi t ions .  The  op- 
t ions ' inc lude  whe the r  we allow tim rows to slide re la t ive  
to one another ,  wb.ether we use only rec t i l inear  wires 
or a rb i t r a ry  wires, and whe the r  we can use wires in one 
layer or several  layers. In a lmos t  all o f  these Colnbina- 
t ions of condi t ions ,  we can provide a p o l y n o m i a l - t i m e  
a lgor i thm to min imize  the  d i s tance  be twecn the para l -  
lel rows of points .  We also compare  two f u n d a m e n t a l l y  
different wir ing approaches ,  where  one and  two layers  
are used. We show tha t  a l though  the  theo re t i ca l  model  
implies  tha t  there  carl be g rea t  gains for .tile i~wo-layer 
s t ra tegy ,  even in cases where  no crossovers are  required,  
when we consider  typ ica l  design rules for lay ing  ou t  
VLSI  c i rcui ts  there  is no sul)s tant ia l  advan tage  to the  
two-layer  a p p r o a c h  over the  one- layer  approach .  

I. Definitions 

One useful s t ruc tu re  to place on VLSI  c i rcui ts  is a 
h ie rarchy  of rectangles ,  where two or more  are wired 
toge ther  to form a larger  rectangle,  which is the  small-  
est  r ec tang le  t tmt  c i rcumscr ibes  them.  [J] is an e x a m p l e  
of such an approach .  In o rder  to  make  the c i rcumscr ib-  
ing rec tang le  as small  as possible,  we mus t  wire t oge the r  
por ts ,  which are points  on the borders  of the: rec tangles ,  
in some des igna ted  order ,  which we shall  genera l ly  as- 
sume is tim same for bo th  rectangles;  t ha t  ;s, no cross- 
overs are  m a n d a t e d .  We shall  assume,  as seems sen- 
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Fig.  1. Basic wir ing p rob lem.  

sible, tha t  the  por ts  of two rec tangles  t h a t  need to be 
wired toge the r  are p laced  oil tile a d j a c e n t  sides of those  
rectangles ,  as sugges ted  by Fig.  1. 

The  wir ing p rob lem,  in the  abs t r ac t ,  is to d raw 
lines between each Pi and its co r respond ing  Q,:, sub jec t  
to the cons t r a in t  t ha t  no two lines ever come wi th in  one 
uni t  of each other .  I t  is therefore  sensible to assume 
tha t  the  Pi's are  spaced a t  least  one uni t  h 'om one 
ano ther ,  and  likewise the  Q, ' s .  P a r t l y  for m a t h e m a t i c a l  
convenience,  and  p a r t l y  to model  the  fact  t h a t  w i th in  
the  rec tangles  there may  be unknown wires tha t  we 
mus t  no t  a p p r o a c h  too  closely, it  is also assumed  t h a t  
wi th in  one uni t  of the  upper  and lower lines in Fig.  1, 
we m a y  only have wires  t h a t  t ravel  ver t i ca l ly  to a por t .  
We consider  p r inc ipa l ly  two models  for the  behav ior  of 
wires. 

1. Wi rcs  can t rave l  in any di rec t ion .  This  case was 
considered by iT], and an op t ima l  wir ing was ob- 
t a i ned  for tire s i tua t ion  where  the re la t ive  pos i tkm 
of the  rec tangles  is f ixed bouh hor izon ta l ly  and  ver- 
t ica l ly ,  or fixed only hor izonta l ly .  We  call  this  case 
of wire behavior  the  gene ra l  case. 

Wires  can travel  only hor izon ta l ly  or ver t ica l ly .  
Th is  case, which  has been cons idered  by  iV, F P ,  
St], for example ,  is m o t i v a t e d  by  thc  fact  t h a t  
many  m a s k - m a k i n g  faci l i t ies  p e r m i t  only designs 
t h a t  are  composed  of hor izon ta l ly  or ver t ica l ly  ori- 
en ted  rectangles .  To avoid some c omplex i t y  in the  
desc r ip t ion  of resul ts ,  we shall  assume in this  case 
t h a t  the  p lane  is a uni t  grid,  as in iV], and  t h a t  
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wires can tra','e! only along grid lines. Also,  the 
porl;s are p laced  only on grid lines, a l though  not  
necessar i ly  on consecut ive lines. We call this  case 
the  rectilinear case. 
Much of w h a t  we say goes th rough  for a larger  class 

of cons t ra in ts  on how wires may  travel.  For example ,  
we can general ize  the  rec t i l inear  case to the  s i tua t ion  
where wires may also travel  along the d iagonals  of the  
squares of t,he grid. This  model  also reflects the  real 
cons t ra in ts  of some m a s k - m a k i n g  facilit ies.  

Next ,  let  us in t roduce  the  kinds  of op t imiza t i on  
prob lems  we consider.  We call the hor izonta l  displace-  
ment  of Q1 from Pl in Fig.  1 the  of£seg, and  we refer 
to the  d i s tance  between the two rows of por t s  as the 
separation. 
1. Given an offset and  a wiring rule (e.g., rect i l inear) ,  

w h a t  is the  min imum separa t ion  for which a legal 
wir ing exists? This  is the separation problem. 

2. Given a wir ing rule, for w h a t  offset is the  separa-  
tion minimized? This  is the  otIset problem. 
The  last  d imension  along which we divide  wiring 

prob lems  is the  number  of layers in which wires are 
allowed to run. We consider  s ingle-layer  wirings first. 
Fven  though we shall  discover t ha t  in the  rec t i l inear  
model ,  s ingle-layer  wirings can be a rb i t r a r i l y  bad ,  we 
also show t h a t  when the grid is t r ans l a t ed  into real 
circuit  p a r a m e t e r s  the single-layer wir ing technique  ap- 
pears  as good as any other .  

We shall  also consider  two-layer  wirings,  because  
these are more general ,  and are necessary in the  si tua- 
t ion where the  por ts  of the  two rec tangles  are not  to be 
connec ted  in order  (~ s i tua t ion  we shall ment ion  only 
brietly). The  op t ima l  wir ing problem for this  case is 
c laimed in ILl to be N P - c o m p l e t e ,  b u t  a sl ight  change 
in the wiring model  e l imina tes  t ha t  difficulty.  In par-  
t i tu l a r ,  we shall,  in the  rect i l inear  case, assume t h a t  one 
layer is reserved for hor izonta l  wires and  the  o the r  for 
ver t ical  wires. Fu r the r ,  we assume tha t  two wires can 
run along a grid line in the ver t ica l  direct ion,  b u t  only 
one in the  hor izon ta l  d i r ec t ion . t  We call this  mode l  the 
restricted two-layer model. 

II. The Rectilinear Model Separation Problem 

Given a fixed offset, and  n pairs  of por ts ,  

(P~, Q~), • • •, (P~, Q~,) 

where  we take  Pi to be bo th  the  name  of a po r t  on the  
b o t t o m  row and the hor izonta l  pos i t ion  of t ha t  por t ,  
and  we take  Q, to be a s imilar  po r t  on the  upper  row, we 

t In terms of nMOS [MC] circuits, we arc modeling an arrange- 
ment where metal wires run horizontally and polysilicon and 
diffusion wires run vertically. As crossovers between wires of the 
latter types forms a transistor, it, is fortunate that in the designs 
we. use, such crossovers do not occur. In principle, we could 
negate the effect of the transistor by "implanting ~' the region of 
crossover, but the result is an undesirably high resistance. 

may  a t t e m p t  to find the  min imum sepa ra t ion  for which  
a legal wir ing exists .  I ,e t  us define a righ~ block to be a 
maxirna l  sequence of pai rs  of por t s  (Pi,  Qi ) , . . . ,  (t:"j, Qj) 
such t ha t  for i < k < j ,  

1. Qk >_ .Pk, and  

2. Pk _< Qk--~ if k > i. 

Condi t ion  (I)  says t ha t  all tile connec t ions  in the  
block have the posit.ion in ti le upper  row to the  r ight  
ol the  cor responding  posi t ion on the  lower row, and  
condi t ion  (2) says t h a t  there  is some " in terac t ion ,"  t h a t  
is, each wire competes  for hor izonta l  pos i t ion  with  i ts  
ne ighbors  in the  block.  

We may define a left block in the  obvious,  sym- 
met r ic  way. We call a left or r ight  block a block. 

There  are two i m p o r t a n t  cons t ra in t s  t ha t  force large 
separa t ions .  F i r s t ,  thcre  is the  crossing mlmber  at  any  
hor izonta l  posi t ion h. T h a t  is the  number  of values of i 
for which P, < h and Q, > h o r  Pi ~ h and Qi ~ h, 
b u t  not, Pi --" Q, =-= h. Second is l.ho conflict number 
for any two pairs  oF ports ,  i and  j ,  which we denote  by  
W(i, j )  and  define as ('o~lows. F i r s t ,  W(i, j ) - - -  0 in any 
of the  fol lowing three  cases. 

1. i - -  j and  Q i : Pj. 
2. i < j a n d  Qi --  i < Pj --  j .  
3. i > j a n d Q i . - - i >  P j - - j .  
In all o ther  cases, W(i , j )  =l i - -  j I+1 .  

In tu i t ive ly ,  the  crossing number  tells how many  
wires mus t  cross the  ver t ica l  line at  pos i t ion h. The  
conflict  number  for i and  3' is in t ended  to measure  the  
number  of wires t ha t  mus t  cross an imag ina ry  line from 
P j  to Qi. This  concept  is an a d a p t a t i o n  of the  basic  
idea  of IT] to the  rec t i l inear  case. The  reason i t  takes  
the  s t range  form it does is t h a t  the  wires may  pass  
e i ther  hor izonta l ly  or ver t ica l ly  between Pj and  Qi .  
If Qi and  I% are sulficiently far apar t ,  hor izonta l ly ,  
then  the wires could pass ver t ica l ly ,  and  we canno t  
asser t  any th ing  a b o u t  the  min imum separa t ion .  Thus  
W(i, j)  - -  O. If Qi a n d / ~ i  are close, hor izonta l ly ,  then  
the  wires canno t  all pass ver t ical ly ,  and  we can show 
t h a t  one channel  per  wire in the  hor izon ta l  d i rec t ion  
will be needed.  In this  case, a lower bound  on the  
sepa ra t ion  can be ob ta ined .  

Example l: Figure  2 shows an in teres t ing  case, where  
n pairs  of por t s  are  offset one unit .  A t  any in ter ior  
hor izon ta l  pos i t ion the  crossing number  is 2. t towever,  
P ~ - - Q ~  - -  n - - 2 ,  which is less t han  n - -  1. Thus ,  
W(1, n) - -  n, from which we shall  conclude t h a t  separa-  
t ion n is required.  [] 

L e m m a  1: The  la rges t  crossing number  in a p rob lem is 
never  grea te r  than  the  larges t  conflict  number .  [] 

Lemma 2: In any onc- layer  solut ion to a rec t i l inear  
sepa ra t ion  p rob lem excep t  the  trivial prob lem (Pi = Qi  
for all i), the  number  of channels (grid lines be tween the  
lines of por ts )  is a t  leas t  as g rea t  as the  larges t  conflict  
number .  
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Fig. 2. Example showing large conflict number 
and small crossing number. 

Proof: Adapts Am ideas of [T]. [l 

Theorem 1: In any rectilinear separation problem, a 
number of channels equal to tile largest conflict number 
ir necessary and sufficient for a one-layer wiring to exist. 

Proof: With Lemma 2, we have only to give an algo- 
rithm that achieves the bound. First, break the pairs 
of ports into blocks, that  is, maximal sequences of left- 
going and right-going pairs. To wire any block we use a 
greedy algorithm. Say the block is a right block. Then 
star t ing at the left end, we run wires across from bot- 
tom to top. When, as we lay any particular wire, we 
cannot proceed vertically, we move to the right instead, 
returning to the vertical direction when legally able to 
do so. [1 

Example 2: Figure 2 is an example of an application of 
the greedy algorithm. [] 

Corollary 1 : There is always an optimal solution to the 
rectilinear separation problem in which the wires for a 
block do not overlap in the horizontal direction with 
the wires for any other block. 

Proof: The greedy algorithm provides such a solution. 
[] 
Corollary 2: The number of channels needed for the 
rectilinear separation problem can be determined in 
O(n) time. 

Proof: Normalize the problem so all blocks are right 
blocks by redefining 

P, -= min(Pj, Qj) 

and 
Qj = max(P,,  Q j) 

By Corollary 1 this doesn't change the number of chan- 
nels nceded. Let cj be the smallest i ( j such "that 
P j - -  Qi (_ J - -  i (or j if no such i). By definition of W, 
W(cj, j )  = m a x l < i < j W ( i , j  ). Since both P j -  j and 
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Fig. 3. Two-layer greedy wiring 

Qi - -  i are nondecreasing functions of j and i, respec- 
tively, cj < cj+l. Thus we can find the maximum 
conflict number by incrementing j from 1 to n, search- 
ing for cj (starting at cj-- l)  and computing W(cj,j).  
[1 

When we consider the restricted two-layer model, 
we get an entirely different sort of result. There, the 
conflict number is irrelevant, and only the crossing num- 
ber influences the separation. 

Lemma 3: A number of channels equal to the largest 
crossing number is necessary for a restricted two-layer 
solution to the rectilinear separation problem to exist. 
[] 
Theorem 2: A restricted two-layer solution to the rec- 
tilinear separation problem using no more channels than 
tile largest crossing number exists. 

Proof: We use the following strategy. First, as in 
. Theorem 1, break the pairs of ports into blocks. All 
wires in a block run first vertically in one layer, then 
horizontally in the second, and finally vertically again 
in the first layer. Say we are wiring a right block. Then 
we select channels from left-to-right. In each case, pick 
the lowest aw~ilablc channel for the horizontal wire. 

If Pa ---- Qi, and the jtJ~ pair uses a higher channel 
than the i °~, then we have two vertical wires in the 
same place. This problem is avoided, by making the 
grid spacing large enough to handle two wirest. 

Example 3: In Fig. 3 we see a wiring of the problem of 
Fig. 2, using the greedy algorithm of Theorem 2. 

HI. The Rectilinear Offset Problem 

We now consider how to select the offset that  mini- 
mizes the separation. Given any offset, we know how 
to produce an optimal one-layer wiring in O(n 2) time 
and an optimal two-layer wiring in O(n) time. In fact, 
we can calculate tile separation (without the wiring) in 
O(n) time in either case. However, in order to obtain a 
polynomial-time algorithm for the offset problems, we 
must limit the number of offsets that must be tried• 
The following fact is useful. 

Lemma 4: Tile maximum crossing number and the 
I" In practice we can use a third color to obtain a somewhat 

smaller grid spacing, yet not create any transistors. 

314 



maximum conflict number are convex functions of the 
o set. [] 

The following observations are also useful. 

Lemma  5: Sliding the upper row of a right block to the 
right cannot decrease the crossing or conflict numbers, 
and analogously for sliding lef~ blocks left. [] 

Lemma  6: As we slide the upper row of ports left or 
right, the crossing .mmbers only change at positions 
where Pj =: Qi for some i and j ,  and conflict numbers 
only change at offsets where P j  - -  j = Q i  - i .  [] 

Theorem 3: There is an O(nlogn) algorithm to solve 
the rectilinear one-layer and restricted two-layer offset 
problems. 

Proof: (sketch) ~Ve shall only prove the one-layer case. 
The restricted two-layer case is similar. To begin, sup- 
pose we pick some particular offset and calculate the 
minimum separation. Call a block critical if it has a 
conflict number as large as any in the whole problem. 
Observe that  if the offset chosen yields a critical left 
block and a critical right block, then by L e m m a  5, we 
are done. Suppose all critical blocks are right blocks. 
Then we can only improve the separation if we slide the 
upper row left,. Similarly, if we try some offset and find 
only critical left blocks, we need only consider sliding 
the upper row right. 

If the P ' s  and Q's are bounded by a polynomial in 
n, then the optimal  offset must be polynomial in n, and 
a binary search provides the optimal offset in 0(log n) 
stages, where we calculate the separation once at each 
stage. Since the latter calculation takes 0(n) time, we 
have an 0(n log n) algorithm. 

However, we can compnte the opt imal  offset in 
0(n log n) time even when the positions of the ports are 
arbitrary,  by doing a binary search involving t.he n 2 
critical offsets indicated by L e m m a  6. To begin, assume 
that  Q t -=-- PI = 1 and that  zero offset occurs when Q I 
and PL are aligned. Define D(i , j )  = Pj --  Qi - - j  -[- i; 
that  is, D(i, j) is the displacement when Qi is moved to 
position Pj ~ i - -  j ,  which is one of the critical offsets 
indicated by Lemma 6. 

We compute dto,,, and dhi,jh, the lowest and highest 
offsets between which we know the opt imal  offset to 
lie. Initially, dto,~, ---= --Q,~ --~ n and dhigh, ~ Pn --  n. 
Repeatedly find d between dtow and daigh such tha t  at 
least one-fourth of the i-j  pairs for which D(i , j )  lies 
between dtow and dmgh lie on either side of d. We shall 
require only 0(n) time to compute d, as well as 0(n) 
time to compute the separation at d and tell on which 
side of d the opt imum point lies. As we star t  with n 2 
possible offsets and have at most three-fourths as many 
possibilities after each stage, 0(log n) stage:; suffice, and 
we have an 0(n log n) algorithm. 

To find the desired d, we shall compute  LOW(j)  
and HIGH(j) ,  where 

LOW(j)-----rain( i I D(i, j)  > dtow } 

or n -I- 1 if no such i exists, and 

U l G I t ( j ) - - m a x {  i t D(i , j )  < dhigh } 

or 0 if no such i exists. We compute LOW in 0(n) time 
by 

i :=1 ;  
for j:----1 to n do begin 

while (i ~ n) and (D(i, j)  <2 dlow) do 
i:=:i -n t- 1; 

L O W ( j ) : = i ;  
end 

The reason the above works correctly is tha t  D(i,3") is 
monotonically nondecreasing in i and nonincreasing in 
j .  Of course, HIGH can be computed similarly in linear 
time. 

Define, for 1 _~ j ~  n 

m~--- - ( t t IGH(j )+LOW(j) ) /2  

and 

dj --~ D(mj ,  3') 

and let d be the weighted median of the dj's, where 
the weight of dj is the number of possible offsets in- 
volving Pj, tha t  is, 1-[-- t tIGH(j)--LOW(j),  except in 
the case where L O W ( j ) - - n - ~ -  1 and I-1IGtI(j)----0, i.e., 
there is no D(i , j )  in the range dlow through dhigh. 
In the latter case, the weight is appropriately zero. 
We can compute the weighted median in linear t ime 
by a generalization of the usual algorithm apparent ly 
due first to Bentley and Shamos; see [Sh]. Then ap- 
proximately three-fourths, at most,  of all the D(i,j) 's  
tha t  are in the range dt,,w through dhigh are in the in- 
terval dto,w through d or the interval d through dhigh. 
[1 

The following fact is not surprising, but  worth 
mentioning. 

Theorem 4: The separation problems are log-linear red- 
ucible to their corresponding offset problems. 

Proof: Given a separation problem, pick a position to 
the left of all the points, and mirror the problem about  
the vertical line at that  point. By L e m m a  4, and a 
simple symmetry  argument,  the new data  (the original 
points plus their mirror images), t reated as an offset 
problem, has an optimal  solution with no change in the 
offset. H 

IV. Comparison of One-Layer and Two-Layer  Solutions 

Looking at  Figs. 2 and 3, one gets the impression tha t  
two-layer wirings can be arbitrarily bet ter  than one- 
layer wirings. However, we shall argue tha t  such is 
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Fig. 4. Diagram for Theorem 5. 

not  the case in practice.  We need a prel iminary result  
saying tha t  as long as ports  are not  packed too  tightly 
along the lines, then a one-layer solution with separa- 
t ion propor t ional  to the crossing number,  not  the con- 
flict number,  always exists. 

Theorem 5: Let  x be the m a x i m um  crossing number.  
Suppose there is a constant  a > 0 such tha t  for every 
r > x(1 -~- l / a ) ,  no r consecutive grid lines have more 
than  r / (1  -~- ~) ports.  Then  there always exists a one- 
layer solution to the rectilinear separat ion problem us- 
ing no more than  x(1 -1- l / a )  channels. 

Proof: (sketch) The  crucial case is tile one shown in 
Fig. 4. Note tha t  k is the crossing number  at Q~ (thus 
k _< x) and k ~- m is the conflict number  W(i , j )  if the 
lat ter  is not  zero. We must  show tha t  W(i , j )  is either 
propor t ional  to x or is zero, thus showing tha t  the max- 
imum conflict and crossing numbers  are proport ional .  
If m <_ x/c~, then W ( i , j )  is no larger titan x(1 -4- 1/~) .  
If m > x/c~, reason as follows. In order tha t  W( i , j )  
not  bc zero, we must  have k ~ m >> Pj --  Qi. But by 
our  assumpt ion  about  the sparseness of ports,  we can 
show that  m < ( P j - - Q , ) / ( 1 - 4 -  a). I t  follows from these 
two inequalities tha t  k -1- m > rn(1 -{- a), or m _< k / a .  
Since we assumed rn > x / a  _> k / a ,  we see tha t  W(i , j )  
must  be 0. [] 

Note  tha t  there is a quali tat ive difference between 
the si tuat ion where ports  are not  as densely packed 
as the grid lines, however close to one the rat io may  
be, anti the case where ports  arc packed one to a grid 
line. In the former case, the separat ion depends on the 
crossing number  only, and in the lat ter  on the conflict 
number.  

Now we can apply Theorem 5 to par t icular  values 
of a t h a t  reflect real design rules. First ,  in terms of 
X, the fundamenta l  uni t  for design rules, We can run 
a single-layer wiring in red (polysilicon) with grid units  
equal to 4)`t. However, consider the grid size for a two- 
layer wiring. Assuming tha t  wires run vertically in red, 

~f In fact, we can use a 3X grid if we al ternate red and green 
(diffusion), but  because of the capacitance inherent in green wires, 
there is good reason not  to do so. 

horizontal ly in blue, then vertically in redt ,  according 
to the a lgor i thm of Theorem 2, we have several choices, 
none very good. 

Example 4: We could use a horizontal  grid of 10k and 
a vertical grid of 7X. T h a t  is, we require tha t  ports  be 
separated by 10k. But  if t ha t  is the case, we could use a 
4X grid and a one-layer wiring, and claim tha t  a = 3/2.  
Then ,  by Theorem 5, there is a wiring with no more  
channels  than  5/3  the m a x i m u m  crossing number.  If 
x is t h a i  max imum,  then in terms of X, the separat ion 
in the one-layer case is 6.67),x, while for the two-layer 
case, with its 7X vertical grid, we need 7kx separat ion,  
which is greater.  [] 

We could also use a three-color wiring wi th  an 8k 
horizontal  grid and 7), vertical, which gives slightly 
bet ter  separat ion than  the one-layer solution. Other  
choices for the grid size in the two-layer case, such as 
a 7), horizontal  grid coupled with a 14), vertical grid, 
yield the same conclusion: in practice, one-layer wirings 
are a~ good or bet ter  than restr icted two-layer wirings. 
Note  tha t  we cannot  prove tile 8 by 7 or 7 by 14 grids to 
be best possible for their hor izontal  grid values, so we 
must  leave open the po3sibility t ha t  be t te r  grids could 
be discovered and our  conclusion about  restr icted two- 
layer wirings contradicted.  

V. Othe r  results 

kVe shall summarize  some of tile other  results related 
to wiring prob |ems of the nature  we have discussed. 

Theorem 6: We can solve the rectilinear one-]ayer and  
two-layer offset problems in O(n 3) time, if tile figure 
of meri t  is not  the min imum separat ion bu t  ra ther  the  
min imum area of the circumscribing rectangle.  [] 

In [DS], Theorems  1 and 3 are generalized to the 
case where wires may  run along any finite set of di- 
agonals of the grid. T h a t  is, the opt imal  separat ion 
may be calculated in 0(n) t ime and offsets in 0(n log  n) 
time. The  most  impor tan t  special case occurs when 
wires are rest icted to the eight 45 ° compass  points, 
since many  fabr icat ion facilities handle  rectangles in 
only these orientat ions.  In fact, s imi lar ' resul ts  hold 
even when wires are allowed to run on a grid finer 
than  integer, and for certain classes of permi t ted  wire 
shapes more general than  sizaight lines, e.g., circles and  
parabolas.  
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