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ABSTRACT

We consider the problem of wiring together two parallel
rows of points under a variety of conditions. The op-
tions include whether we allow the rows to slide relative
to one another, whether we use only rectilinear wires
or arbitrary wires, and whether we can usc wires in one
layer or several layers. In almost all of these combina-
tions of conditions, we can provide a polynomial-time
algorithm to minimize the distance between the paral-
lel rows of points. We also compare two fundamentally
different wiring approaches, where one and two layers
are used. We show that although the theoretical model
implies that there can be great gains for the two-layer
strategy, even in cases where no crossovers are required,
when we consider typical design rules for laying out
VLSI circuits there is no substantial advantage to the
two-layer approach over the one-layer approach.

I. Definitions

One uscful structure to place on VLSI circuits is a
hierarchy of rectangles, where two or more are wired
together to form a larger rectangle, which is the small-
est rectangle that circumscribes them. [J] is an example
of such an approach. In order to make the circumscrib-
ing rectangle as small as possible, we must wire together
ports, which are points on the borders of the rectangles,
in some designated order, which we shall generally as-
sume is the same for both rectangles; that s, no cross-
overs are mandated. We shall assume, as scems sen-
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Fig. 1. Basic wiring problem.

sible, that the ports of two vectangles that nced to be
wired together are placed on the adjacent sides of those
reclangles, as suggested by Fig. 1.

The wiring problem, in the abstract, is to draw
lines between each P; and its corresponding €, subject
to the constraint that no two lines ever come within one
unit of each other. It is therefore sensible to assume
that the P;’s are spaced at lcast one unit from one
another, and likewise the @,’s. Partly for mathematical
convenience, and partly to model the fact that within
the rectangles there may be unknown wires that we
must not approach too closely, it is also assumed that
within one unit of the upper and lower lines in Fig. 1,
we may only have wires that travel vertically to a port.
We consider principally two models for the behavior of
wires.

1. Wires can travel in any direction. This case was
considered by [T], and an optimal wiring was ob-
tained for the situation where the relative position
of the rectangles is fixed bouh horizontally and ver-
tically, or fixed only horizontally. We call this case
of wire behavior the general case.

Wires can travel only horizontally or vertically.
This case, which has been considered by [V, FP,
St], for example, is motivated by the fact that
many mask-making facilitics permit only designs
that are cotnposed of horizontally or vertically ori-
ented rectangles. To avoid some complexity in the
description of results, we shall assume in this case
that the plane is a unit grid, as in {V], and that
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wires can trave! only along grid lines. Also, the

ports are placed only on grid lines, although not

necessarily on consecutive lines. We call this case
the rectilinear case.

Much of what we say goes through for a larger class
of constraints on how wires may travel. For e¢xample,
we can generalize the rectilinear casc to the situation
where wires may also travel along the diagonals of the
squares of the grid. This model also reflects the real
constraints of some mask-making facilities.

Next, let us introduce the kinds of optimization
problems we consider. We call the horizontal displace-
ment of @ from P, in Fig. 1 the offset, and we refer
to the distance between the two rows of ports as the
separation.

1. Given an offset and a wiring rule (e.g., rectilinear),
what is the minimum separation for which a legal
wiring exists? This is the separation problem.

2.  Given a wiring rule, for what offset is the separa-
tion minimized? This is the offset problem.

The last dimension along which we divide wiring
problems is the number of layers in which wires are
allowed to run. We counsider single-layer wirings frst.
Fven though we shall discover that in the rectilinear
model, single-layer wirings can be arbitrarily bad, we
also show that when the grid is translated into real
circuit parameters the single-layer wiring techniquce ap-
pears as good as any other.

We shall also consider two-layer wirings, because
these are more general, and are nccessary in the situa-
tion where the ports of the two rectangles are not to be
connccted in order (2 situation we shall mention only
briefly). The optimal wiring problem for this case is
claimed in [L] to be N P-complete, but a slight change
in the wiring model eliminates that difficulty. ln par-
ticular, we shall, in the rectilincar case, assume that one
layer is reserved for horizontal wires and the other for
vertical wires. Further, we assumec that two wires can
run along a grid line in the vertical direction, but only
one in the horizontal direction.t We call this model the
restricted two-layer model.

II. The Rectilinear Model Separation Problem

Given a fixed offset, and n pairs of ports,

(PI:QI)J"')(Pn»Qn)

where we take P; to be both the name of a port on the
bottom row and the horizontal position of that port,
and we take @, to be a similar port on the upper row, we

t In terms of nMOS |[MC] circuits, we ar¢ inodeling an arrange-
ment where metal wires run horizontally and polysilicon and
diffusion wires run vertically. As crossovers between wires of the
latter types forms a transistor, it is fortunate that in the designs
we use, such crossovers do not occur. In principle, we could
negate the effect of the transistor by “implanting” the region of
crossover, but the result is an undesirably high resistance.

may attempt to find the minimum separation for which
a legal wiring exists. [.et us define a right block to be a
maximal sequence of pairs of ports (£, @), ..., (#;, @;)
such that for ¢ < £k < 7,

1. Qk 2 Pk, and

2. P < Q@ if k>t

Condition (1) says that all the connections in the
block have the position in the upper row to the right
oi the corresponding position on the lower row, and
condition (2) says that there is some “interaction,” that
is, each wire competes for horizontal position with its
neighbors in the block.

We may define a left block in the obvious, sym-
metric way. We call a left or right block a block.

There are two important constraints that force large
separations. First, therc is the crossing number at any
horizontal position h. That is the number of values of ¢
for which P, < hand @, > hor P, > hand @; < h,
but not, P, = @, = h. Second is th» conflict number
for any two pairs of ports, ¢ and 7, which we denote by
W (1, 5) and definc as follows. First, W(¢,5) = 0 in any
of the following threc cases.

1. ¢+=jand @, = P;.

2. i<jand @;—i < P —7.

3. 1 >jand @ —12> Pj—7.

In all other cases, W(i,7) =| 7 — 7| -+1.

Intuitively, the crossing number tells how many
wires must cross the vertical line at position h. The
conflict number for ¢ and 7 is intended to measure the
number of wires that must cross an iinaginary line from
P; to @;. This concept is an adaptalion of the basic
idea of [T] to the rcclilinear case. The reason it takes
the strange form it does is that the wires may pass
either horizontally or vertically between P; and Q.
If @; and P; are sufficicntly far apart, horizontally,
then the wires could pass vertically, and we cannot
assert anything about the minimum separation. Thus
W(i,5) = 0. If @; and P; are close, horizontally, then
the wires cannot all pass vertically, and we can show
that one channel per wire in the horizontal direction
will be needed. In this case, a lower bound on the
separation can be obtained.

Example 1: Figure 2 shows an interesting case, where
n pairs of ports are oflfset one unit. At any interior
horizontal position the crossing number is 2. However,
P, — @, = n — 2, which is less than n — 1. Thus,
W(1,n) == n, from which we shall conclude that separa-
tion n is required. []

Lemma 1: The largest crossing number in a problem is
never greater than the largest conflict number. ||

Lemma 2: In any onc-layer solution to a rectilinear
separation problem except the trivial problem (P, = Q;
for all 7), the number of channels (grid lines between the
lines of ports) is at least as great as the largest conflict
number.
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Fig. 2. Example showing large conflict number
and siall crossing number.

Proof : Adapts .he ideas of [T]. {]

Theorem 1: In any rectilinear separation problem, a
number of channels equal to the largest conflict number
ir necessary and sufficient for a one-layer wiring to exist.

Proof: With Lemma 2, we have only to give an algo-
rithm that achieves the bound. First, break the pairs
of ports into blocks, that is, maximal sequences of left-
going and right-going pairs. To wire any block we use a
greedy algorithm. Say the block is a right block. Then
‘starting at the left end, we run wires across from bot-
tom to top. When, as we lay any particular wire, we
cannot proceed vertically, we move to the right instead,
returning to the vertical direction when legally able to
do so. {]

Example 2: Figure 2 is an example of an application of
the greedy algorithm. ||

Corollary 1: There is always an optimal solution to the
rectilinear separation problem in which the wires for a
block do not overlap in the horizontal direction with
the wires for any other block.

Froof: The greedy algorithm provides such a solution.
0

Corollary 2: The number of channels needed for the
rectilinear separation problem can be determined in
O(n) time.

Proof: Normalize the problem so all blocks are right
blocks by redefining

PJ' - mz'n(PJ-, QJ)

and
Q; = maz(P;, Q;)

By Corollary 1 this doesn’t change the number of chan-
nels nceded. Let ¢; be the smallest + < 7 such ‘that
P;—@; < j—1i(or j if no such ). By definition of W,

Wi(c;,7) = maz,<i<jW(4,j). Since both P; — j and

@ Q2 @3 Q4 -+ Qn

P, P, Ps P - P,

Fig. 3. Two-layer greedy wiring

@: — ¢ are nondecreasing functions of 7 and 7, respec-
tively, ¢, < c;j41. Thus we can find the maximum

conflict number by incrementing 5 from 1 to n, search-
ing for c; (starting at c;_;) and computing W(c,, 5).

[

When we cousider the restricted two-layer model,
we get an cntirely different sort of result. There, the
conflict number is irrelevant, and only the crossing num-
ber influences the separation.

Lemma 3: A number of channels equal to the largest
crossing number is necessary for a restricted two-layer
solution to the rectilinear separation problem to exist.
{ : '
Theorem 2: A restricted two-layer solution to the rec-
tilinear separation problem using no more chanunels than
the largest crossing number exists.

Proof: We use the following strategy. First, as in

- Theorem 1, break the pairs of ports into blocks. All

wires in a block run first vertically in one layer, then
horizontally in the second, and finally vertically again
in the first layer. Say we are wiring a right block. Then
we select channcls from left-to-right. In each case, pick
the lowest available channel for the horizontal wire.

If P, = Q,, and the 7' pair uses a higher channel
than the ¢*, then we have two vertical wires in the
same place. This problem is avoided, by making the
grid spacing large enough to handle two wirest. ||

Example 3: In I'ig. 3 we see a wiring of the problem of
Fig. 2, using the greedy algorithm of Theorem 2. |]

ITL. The Rectilinear Offset Problem

We now consider how to select the offset that mini-
mizes the separation. Given any offset, we know how
to produce an optimal one-layer wiring in O(n?) time
and an optimal two-layer wiring in O(n) time. In fact,
we can calculate the separation (without the wiring) in
O(n) time in either case. However, in order to obtain a
polynomial-time algorithm for the offset problems, we
must limit the number of offscts that must be tried.

The following fact is useful.

Lemma 4: The maximum crossing number and the

t In practice we can use a third color to obtain a somewhat
smaller grid spacing, yet not create any transistors.
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maximum conflict number are convex functions of the

offset. [}
The following observations arc also useful.

Lemma 5: Sliding the upper row of a right block to the
right cannot decrease the crossing or conflict numbers,
and analogously for sliding left blocks left. ||

Lemma 6: As we slide the upper row of ports left or
right, the crossing .ambers oniy change at positions
where P; == @; for some ¢ and j, and conflict numbers
only change at offsets where P; — j = @; — 1. ||

Theorem 3: There is an O(nlogn) algorithm to solve
the rectilinear one-layer and restricted two-layer offset
problems.

Proof : (sketch) We shall only prove the one-layer case.
The restricted two-layer case is similar. To begin, sup-
pose we pick some particular offset and calculate the
minimum separation. Call a block critical if it has a
conflict number as large as any in the whole problem.
Observe that if the offset chosen yields a critical left
block and a critical right block, then by Lemma 5, we
are done. Suppose all critical blocks are right blocks.
Then we can only improve the scparation if we slide the
upper row left. Similarly, if we try some offset and find
only critical left blocks, we need only consider sliding
the upper row right.

If the P’s and @’s are bounded by a polynomial in
n, then the optimal offset must be polynomial in n, and
a binary search provides the optimal offset in 0O(logn)
stages, where we calculate the separation once at each
stage. Since the latter calculation takes 0(n) time, we
have an 0(nlog n) algorithm.

However, we can compute the optimal offset in
0(nlog n) time even when the positions cf the ports are
arbitrary, by doing a binary search involving the n?
critical offsets indicated by Lemma 6. To begin, assume
that @, = P; = 1 and that zero offset occurs when @,
and Py are aligned. Define D(4,5) = P; — @, — 7 -+ 4;
that is, D{7, 7) is the displacement when @, is moved to
position P; + ¢ — 7, which is one of the critical offsets
indicated by L.emma 6.

We compute dj,,, and dy;g4, the lowest and highest
offsets between which we know the optimal offset to
lie. Initially, dipyy = —@Q, + n and dpiyp = P,, — n.
Repeatedly find d between d;,,, and dp;gn such that at
least one-fourth of the i-7 pairs for which D(z, 7) lies
between dj,,, and dpig) lie on either side of d. We shall
require only 0(n) time to compute d, as well as 0(n)
time to compute the separation at d and tell on which
side of d the optimum point lies. As we start with n?
possible offsets and have at most three-fourths as many
possibilities after cach stage, 0(log n) stage: suffice, and
we have an 0(n log n) algorithm.

To find the desired d, we shall compute LOW(7)
and HIGH(s), where

LOW(j)=min{1d | D(,7) > diow }

or n 1 if no such ¢ exists, and

HIGH(5)==max {1 | D(3,7) < dnigr }

or 0 if no such ¢ exists. We compute LOW in 0(n) time
by

1.=1;
for 5:=1 to n do begin
while (1 < n) and (D(, J) < diow) do
1:==1 -} 1;
LOW(7):=g;
end

The reason the above works correctly is that D(s, j) is
monotonically nondecreasing in ¢ and nonincreasing in
7. Of course, HIGH can be computed similarly in linear
time.

Define, for 1 < 7 < n

m,=(HIGH(5)+LOW(5))/2

and
. dj = D(mj,7)

and let d be the weighted median of the d;’s, where
the weight of d; is the number of possible offsets in-
volving P;, that is, 1-+HIGH(7)—LOW(j), except in
the case where LOW(5)==n 4 1 and HIGH(5)=0, i.e.,
there is no D(1,7) in the range d,, through dygn.
In the latter case, the weight is appropriately szero.
We can compute the weighted median in linear time
by a generalization of the usual algorithm apparently
due first to Bentley and Shamos; see [Sh]. Then ap-
proximately three-fourths, at most, of all the D(3, j)'s
that are in the range dj,,, through dy;g), are in the in-
terval di,,, through d or the interval d through dj;gn.

0
The following fact is not surprising, but worth
mentioning.

Theorem 4: The separation problems are log-linear red-
ucible to their corresponding offset problems.

Proof: Given a separation problem, pick a position to
the left of all the points, and mirror the problem about
the vertical line at that point. By Lemma 4, and a
simple symmetry argument, the new data (the original
points plus their mirror images), treated as an offset
problem, has an optimal solution with no change in the
offset. [|

IV. Comparison of Onc-Layer and Two-Layer Solutions

Looking at Figs. 2 and 3, one gets the impression that
two-layer wirings can be arbitrarily better than one-
layer wirings. However, we shall argue that such is
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Fig. 4. Diagram for Theorem 5.

not the case in practice. We need a preliminary result
saying that as long as ports are not packed too tightly
along Lhe lines, then a one-layer solution with separa-
tion proportional to the crossing number, not the con-
flict number, always exists.

Theorem 5: Let z be the maximum crossing number.
Suppose there is a constant a > 0 such that for every
r > (1 -+ 1/a), no r consecutive grid lines have more
than r/(1 + «a) ports. Then there always exists a one-
layer solution to the rectilinear separation problem us-
ing no more than z(1 4- 1/a) channels.

Proof: (sketch) The crucial case is the one shown in
Fig. 4. Note that & is the crossing number at @; (thus
k < z) and k + m is the conflict number W{z, 5) if the
latter is not zero. We must show that W(s, j) is either
proportional to z or is zero, thus showing that the max-
imum conflict and crossing numbers are proportional.
If m < z/o, then W{z, ) is no larger than z(1 4 1/a).
If m > z/o, reason as follows. In order that W(i, 5)
not be zero, we must have k 4 m > P, — @,. But by
our assumption about the sparseness of ports, we can
show that m < (P;— @;)/(1+ a). It follows from these
two inequalities that k +m > m(1-+ a), or m < k/c.
Since we assumed m > z/a > k/a, we see that W(i, 7)
must be 0. |]

Note that there is a qualitative difference between
the situation where ports are not as densely packed
as the grid lines, however close to one the ratio may
be, and the case where ports are packed one to a grid
line. In the former case, the separation depends on the
crossing number only, and in the latter on the conflict
number.

Now we can apply Theorem 5 to particular values
of a that reflect real design rules. First, in terms of
A, the fundamental unit for design rules, We can run
a single-layer wiring in red (polysilicon) with grid units
equal to 4xf. However, consider the grid size for a two-
layer wiring. Assuming that wires run vertically in red,

t In fact, we can use a 3\ grid if we alternate red and green

(diffusion), but because of the capacitance inherent in green wires,
there is good reason not to do so.

horizontally in blue, then vertically in redt, according
to the algorithm of Theorem 2, we have several choices,
none very good.

Example 4: We could use a horizontal grid of 10\ and
a vertical grid of TA. That is, we require that ports be
separated by 10\. But if that is the case, we could use a
4X grid and a one-layer wiring, and claim that a = 3/2.
Then, by Theorem 5, there is a wiring with no more
cuannels than 5/3 the maximum crossing number. If
z is that maximum, then in terms of X, the separation
in the one-layer case is 6.67h\z, while for the two-layer
case, with its 7\ vertical grid, we need Thz separation,
which is greater. ||

We could also use a three-color wiring with an 8\
horizontal grid and 7X vertical, which gives slightly
better separation than the one-layer solution. Other
choices for the grid size in the two-layer case, such as
a T\ horizontal grid coupled with a 14\ vertical grid,
yield the same conclusion: in practice. one-layer wirings
are as good or better than restricted two-layer wirings.
Note that we cannot prove the 8 by 7 or 7 by 14 grids to
be best possible for their horizontal grid values, so we
must leave open the possibility that better grids could
be discovered and our conclusion about restricted two-
layer wirings contradicted.

V. Other results

We shall summarize some of the other results related
to wiring problems of the nature we have discussed.

Theorem 6: We can solve the rectilinear one-layer and
two-layer offset problems in O(n®) time, if the figure
of merit is not the minimum separation but rather the
minimum area of the circumscribing rectangle. ||

In [DS], Thecrems 1 and 3 are generalized to the
case where wires may run along any finite set of di-
agonals of the grid. That is, the optimal separation
may be calculated in 0(n) time and offsets in 0(nlog n)
time. The most important special case occurs when
wires are resticted to the eight 45° compass points,
since many fabrication facilities handle rectangles in
only these orientations. In fact, similar results hold
even when wires are allowed to run on a grid finer
than integer, and for certain classes of permitted wire
shapes more general than siraight lines, e.g., circles and
parabolas.

References

[DS]  Dolev, D. and A. Siegel, report in preparation.

[FP|  Fischer, M. J. and M. S. Paterson, “Optimal tree
layout,” Proc. Twelfth Annual ACM Symposium
on the Theory of Computing, pp. 177-189, 1980.

[J] Johannsen, D., “Dristle blocks: a silicon compiler,”

t This wire must be green if the horizontal grid is less than 10X,
and certain other combinations of horizontal and vertical grid
sizes require that this wire be green, as well.

316



[L]

MC]

(Sh]

[St]

[T}

V]

Caltech Conf. on VLSI, pp. 303-310, Jan., 1979.
See also Sixteenth Design Automation Proceedings,
pp. 310-313, June, 1979.

LaPaugh, A. S, “A polynomial time algorithm for
optimal routing around a rectangle,” Proc. Twenty-
first Annual IEEE Symposium on Foundations of
Computer Science, pp. 282--293, 1980.

Mead, C. and L. Conway, Introduction to VLSI
Systems, Addison Wesley, Reading, Mass.

Shamos, M. 1., “Geometry and statistics: problems
at the interface,” in Algorithms and Complexity, J.
F. Traub, ed., Academic Press, 1976.

Storer, J. A., “The ncde cost measure for embedding
graphs on the planar grid,” Proc. Twelfth Annual
ACM Symposium on the Theory of Computing, pp.
201-210, 1980.

Tompa, M., “An optimal solution to a wire-routing
problem,” Proc. Twelfth Annual ACM Symposium
on the Theory of Computing, pp. 161-176, 1980.

Valiant, L., “Universality considerations in VLSI
circuits,” CSR-54--80, Dept. of CS, Univ. of Edin-
burgh, 1980.

317



