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Outline of Talk
� Fold-recognition

� Scoring (Bayesian statistical modeling)

� SAM-T2K for finding and aligning homologs

� Multi-track HMMs and secondary structure

� Reverse-sequence null model

� Results
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Folding Problem

TheFolding Problem:
Given a protein expressed as a stringA over the alphabet of 20 amino acids
(A 2 fa; c; d; e; f; g; h; i; k; l;m; n; p; q; r; s; t; v; w; yg�),

figure out how it folds up in 3-space.

MTMSRRNTDA ITIHSILDWI EDNLESPLSL EKVSERSGYS KWHLQRMFKK

ETGHSLGQYI RSRKMTEIAQ KLKESNEPIL YLAERYGFES QQTLTRTFKN

YFDVPPHKYR MTNMQGESRF LHPLNHYNS

#
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Fold-recognition problem

TheFold-recognition Problem:

Given a protein expressed as a stringA over the alphabet of amino acids (thetargetsequence)

and a library of proteins with known 3-D structures (thetemplatelibrary),

figure out which template(s)A matches best, and align the target to the template.

� The backbone for the target sequence is predicted to be very similar to the backbone of the

chosen template.

� A quality measure is needed to decide when the best-matching template is still not a good match.
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Remote-homology Problem

TheHomology Problem:

Given a protein expressed as a stringA over the alphabet of amino acids (thetargetsequence),

and a library of proteinsequences,

figure out which sequencesA is similar to and align them toA.

� This problem is fairly easy for recently diverged, very similar sequences, but difficult for more

remote relationships.

� No structure information is used, just sequence information.

� Technically, “homology” means that the sequences evolved from the same ancestral

sequence—but this is almost always inferred from similarity of sequence, structure, or function,

and not directly known.
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Bayesian Stochastic Modeling
� A modelM is a computable function that assigns a probability Prob(A j M) to each stringA.

� When given a stringA, we want to know how likely the model is. That is, we want to compute

something like Prob(M j A).

� Bayes Rule:

Prob(M j A) = Prob(A j M)

Prob(M)

Prob(A)
:

� Problem: Prob(A) and Prob(M) are inherently unknowable.
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Null model
� Standard solution: ask how much more likelyM is than somenull hypothesis(represented by a

null model).
Prob(M j A)

Prob(N j A)
=

Prob(A j M)

Prob(A j N)

Prob(M)

Prob(N)
:

� Prob(M)

Prob(N)

is theprior odds ratio, and represents our belief in the likelihood of the model before

seeing any data.

�

Prob

�
MjA
�

Prob

�
NjA
� is theposterior odds ratio, and represents our belief in the likelihood of the model

after seeing the data.

� We can generalize to a forced choice among many models (M1; : : : ;Mn)

Prob(Mi j A)

P
j Prob(Mj j A)
=

Prob(A j Mi)Prob(Mi)

P
j Prob(A j Mj)Prob(Mj)
:

The Prob(Mj) values can be scaled arbitrarily without affecting the ratio.
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Standard Null Model
� Null model is a zero-order Markov model, that is, each letter is treated as being independently

drawn from the same distribution.

�

Prob(A j N; len(A)) =

len(A)Y
i=1

Prob(Ai) :

�

Prob(A j N) = Prob(string of lengthlen(A))

len(A)Y
i=1

Prob(Ai) :

� The length modeling is often omitted, but one must be careful then to normalize the probabilities

correctly.
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Target Model Method for the Fold-recognition Problem
� Find probable homologs of target sequence and make multiple alignment.

� Make secondary structure probability predictions based on multiple alignment.

� Build anHMM based on the multiple alignment and predicted 2ry structure (or just on multiple

alignment).

� Score sequences and secondary structure sequences for all proteins that have known structure.

� Select the best-scoring sequence(s) to use as templates.

� If the modeling method is well-chosen, the alignment of the target and template is available as a

by-product of the scoring.

9



Template Library Method
� Build a model for each protein in the template library, based on the template sequence (and any

homologs you can find). The template library is selected as a subset of the PDB database of

publicly released solved structures.

� For the fold-recognition problem, structure information can be used in building these models

(though we currently don’t).

� Score target sequence with all models in the library.

� Select the best-scoring model(s) to use as templates.

� Again, the alignment of the target and template may be available as a by-product of the scoring.
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Combined SAM-T2K method

template HMMs

combined scores

target model scores template model scores

template alignments

template sequences
target sequence

target alignment

target HMM

local structure
prediction

� Choose (somehow) the alignment based on the target model or the alignment based on the

template model.

� This method for fold-recognition is available (with only SAM-T99 amino-acid targetHMMs, not

SAM-T2K 2-track targetHMMs) on

http://www.cse.ucsc.edu/research/compbio/hmm-apps/ .

� The library currently has over 5700 templates.
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Hidden Markov Models
� A hidden Markov Model (HMM ) is a finite-state machine with a probability for emitting each

letter in each state, and with probabilities for making each transition between states.

� Probabilities of letters sum to one for each state.

� Probabilities of transitions out of each state sum to one for that state.

� We also includenull statesthat emit no letters, but have transition probabilities on their

out-edges.
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Profile Hidden Markov Model

a1

a2 b4

a -

B1

A3

B2

A4

B3

A5

B5

EndStart

a1 a2 A3 - A4 . A5
. . B1 B2 B3 b4 B5

� Circles are null states.

� Squares arematch states, each of which is paired with a nulldelete state. We call the

match-delete pair afat state.

� Each fat state is visited exactly once on every path from Start to End.

� Diamonds areinsert states, and are used to represent possible extra amino acids that are not

found in most of the sequences in the family being modeled.
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How is HMM built?

Overview of method for building a targetHMM, given a single sequence (or a seed alignment):

1. Construct a profileHMM with one fat state for each letter of sequence (or column of multiple

alignment).

2. Find sequences in a large database of protein sequences that score well withM . This is the

training set.

3. RetrainM (using forward-backward algorithm) to re-estimate all probabilites, based on the

training set.

4. Make a multiple alignment (using Viterbi algorithm) of all sequences in the training set. The

multiple alignment has one alignment column for each fat state of theHMM.

5. Repeat from step 1, with thresholds in step 2 loosened.
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Some details of constructingHMMs from alignment
� Do weighting of sequences to reduce the effect of biased sampling in the database.

� Compute Prob(a j si) for match states using a Dirichlet mixture regularizer and the weighted

counts of the amino acids from the corresponding alignment column.

� Instead of background frequency, or normalizing the relatively few insertion counts, set

insertion-state emission probabilities by normalizing the geometric mean of match state

frequencies.

� Set transition probabilities based on weighted counts of insertions and deletions in the

alignment, plus large pseudocounts based on transitions in many different alignments.
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Multi-track HMMs and secondary structure

We can also use alignments built using a two-track targetHMM:

� Amino-acid track (created with script w0.5 from the SAM-T2K multiple alignment).

� Secondary-structure track (probabilities offE, H, Lg or fE, B, G, H, T, Lg from neural net). The

correct letters are defined by STRIDE.

� Can align template (AA+2ry) to target model.

� Haven’t implemented good way to create 2-track template models, nor to align targets to

template models.

AA

start stop

AA

2ry

AA AA AA

2ry

2ry2ry2ry
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Human input to alignments
� Alignments that scored well examined in 3D, marking aligned residues and identical residues.

� Look for compactness, clustering of identical residues, striping of identical residues across beta

sheets, disulphide bridges, ...

� Tweak alignments to improve placement of gaps.
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Reversed model for null
� When using the standard null model, certain sequences andHMMs have anomalous behavior.

Many of the problems are due to unusual composition—a large number of some usually rare

amino acid.

� For example, metallothionein, with 24 cysteines in only 61 total amino acids, scores well on any

model with multiple highly conserved cysteines.

� We avoid this (and several other problems) by using a reversed modelM r as the null model.

� The probability of a sequence inM r is exactly the same as the probability of the reversal of the

sequence givenM .

� If we assume thatM andM r are equally likely, then

Prob(M j S)

Prob(M r j S)
=

Prob(S j M)

Prob(S j M r)
:

� This method corrects for composition biases, length biases, and several subtler biases.
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Composition as source of error

A cysteine-rich protein, such as metallothionein, can match anyHMM that has several

highly-conserved cysteines, even if they have quite different structures:

cost in nats

model� model�

HMM sequencestandard null reversed-model

1kst 4mt2 -21.15 0.01

1kst 1tabI -15.04 -0.93

4mt2 1kst -15.14 -0.10

4mt2 1tabI -21.44 -1.44

1tabI 1kst -17.79 -7.72

1tabI 4mt2 -19.63 -1.79
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Composition examples

Metallothionein Isoform II (4mt2)

Kistrin (1kst)
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Composition examples

Kistrin (1kst)

Trypsin-binding domain of Bowman-Birk Inhibitor (1tabI)

21



Long helices as source of error

Long helices can provide strong similarity signals from the periodic hydrophobicity, even when the overall folds are

quite different:

cost in nats, normalized using

HMM sequence Null model reversed-model

1av1A 2tmaA -22.06 2.13

1av1A 1aep -21.25 1.03

1av1A 1cii -13.67 -1.75

1av1A 1vsgA -7.89 -0.51

2tmaA 1cii -20.62 0.46

2tmaA 1av1A -17.96 1.01

2tmaA 1aep -12.01 0.78

2tmaA 1vsgA -8.25 0.08

1vsgA 2tmaA -14.82 -1.20

1vsgA 1av1A -13.04 -2.68

1vsgA 1aep -13.02 -3.52

1vsgA 1cii -11.12 0.28

1aep 1av1A -11.30 1.79

1aep 2tmaA -10.73 1.06

1aep 1cii -8.35 1.38

1aep 1vsgA -6.87 0.53

1cii 2tmaA -23.24 -1.48

1cii 1av1A -19.49 -5.62

1cii 1aep -12.85 -1.77

1cii 1vsgA -10.20 -1.57
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Helix examples

Tropomyosin (2tmaA)

Colicin Ia (1cii)

Flavodoxin mutant (1vsgA)
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Helix examples

Apolipophorin III (1aep)

Apolipoprotein A-I (1av1A)
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Fold recognition results
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Web sites

UCSC bioinformatics (research and degree programs) info:
http://www.cse.ucsc.edu/research/compbio/

SAM tool suite info: http://www.cse.ucsc.edu/research/compbio/sam.html

HMM servers: http://www.cse.ucsc.edu/research/compbio/hmm-apps/

SAM-T99 prediction server: http://www.cse.ucsc.edu/research/compbio/

hmm-apps/T99-query.html

These slides:http://www.cse.ucsc.edu/˜karplus/papers/genome9.pdf
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