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Abstract

This paper makes a quantitative comparison of different
methods, called regularizers, for estimating the distribution
of amino acids in a specific context, given a very small sam-
ple of amino acids from that distribution. The regularizers
considered here are zero-offsets, pseudocounts, substitution
matrices (with several variants), and Dirichlet mizture reg-
ularizers.

Each regularizer is evaluated based on how well it es-
timates the distributions of the columns of a multiple
alignment—specifically, the expected encoding cost per
amino acid using the regularizer and all possible samples
from each column.

In general, pseudocounts give the lowest encoding costs
for samples of size zero, substitution matrices give the low-
est encoding costs for samples of size one, and Dirichlet mix-
tures give the lowest for larger samples. One of the substitu-
tion matrix variants, which added pseudocounts and scaled
counts, does almost as well as the best known Dirichlet mix-
tures, but with a lower computation cost.

Keywords: regularizers, entropy, encoding cost, pseu-
docounts, Gribskov average score, substitution matri-
ces, data-dependent pseudocounts, Dirichlet mixture
priors

1 Why estimate amino acid
distributions?

Most search and comparison algorithms for proteins
need to estimate the probabilities of the twenty amino
acids in a given context. This probability is often
expressed indirectly as a score for each of the amino
acids, with positive scores for expected amino acids and
negative scores for unexpected ones.

As Altschul pointed out [1], any alignment-scoring
system is really making an assertion about the proba-
bility of the test sequences given the reference sequence.
The score for an alignment is the sum of the scores
for individual matched positions, plus the costs for in-
sertions and deletions. For each match position, there
are twenty scores—one for each of the possible amino
acids in the test sequence. Each match score can be
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interpreted as the logarithm of the ratio of two esti-
mated probabilities: the probability of the test amino
acid given the amino acid in the reference sequence and
the probability of the test amino acid in the background
distribution. If we define P, (i) as the estimated prob-
ability of amino acid i in position z and Py(i) as the
estimated background probability in any position, then
the score for i in column ¢ is log, (P;(i)/Po(i)) for some
arbitrary logarithmic base b [1].

Any method for estimating the probabilities pt(z)
and Po(i) defines a match-scoring system. Rather than
looking at the final scoring system, this paper will
concentrate on methods that can be used for estimating
the probabilities themselves.

In more sophisticated models than single sequence
alignments, such as multiple alignments, profiles [7],
and hidden Markov models [14, 3], we may have more
than one reference sequence in our training set. Each
position in such a model defines a context for which we
need to estimate the probabilities of the twenty amino
acids. In this paper, s refers to a sample of amino acids
from a column and s(#) to the number of times that
amino acid ¢ appears in that sample. Our problem,
then, is to compute the estimated probabilities ]55(2)
for the context from which sample s was taken, given
only the twenty numbers s(i).

For alignment and search problems, we usually add
scores from many positions, and so fairly small improve-
ments in computing individual match scores can add up
to significant overall differences. For example, the small
differences between the PAM and BLOSUM scoring ma-
trices have been shown to make a significant difference
in the quality of search results [9].

The differences between regularizers are often fairly
small; this paper attempts to quantify these small dif-
ferences for several regularizers. Section 2 explains
the measure used to quantify the tests; Section 3 ex-
plains the notion of posterior counts; Section 4 describes
the data used for training and testing; and Section 5
presents the different methods and quantitative com-
parisons of them.



2 Quantitative measure for regularizers

The traditional method used in computational biol-
ogy to demonstrate the superiority of one technique to
another is to compare them on a biologically interesting
search or alignment problem. Many of the regulariz-
ers in Section 5 have been validated in this way [9, 4,
18]. This sort of anecdotal evidence is valuable for es-
tablishing the usefulness of techniques in real biological
problems, but is very difficult to quantify.

In this paper, regularizers are compared quantita-
tively on the problem of encoding the columns of multi-
ple alignments. This generic problem has some attrac-
tive features:

e Large data sets of multiple alignments are available

for training.

e Many techniques that use regularizers also produce
multiple alignments, and regularizers that produce
good encodings should be good regularizers for
these algorithms.

e By using trusted alignments, we can have fairly
high confidence that each amino acid distribution
we see is for amino acids from a single biological
context, and not just an artifact of a particular

search or alignment algorithm.
The encoding cost (sometimes called conditional en-

tropy) is a good measure of the variation among se-
quences of the multiple alignment. Since entropy is ad-
ditive, the encoding cost for independent columns can
be added to get the encoding cost for entire sequences,
and strict significance tests can be applied by looking at
the difference in encoding cost between a hypothesized
model and a null model [16].

Each column ¢ of a multiple alignment will give us a
(possibly weighted) count of amino acids, Fy(z). If we
write the sum of all the counts for a column as |F}|,
we can estimate the probability of each amino acid in
the column as P;(i) = Fy(i)/|F;|. This is known as
the mazimum-likelihood estimate of the probabilities.
Note: throughout this paper the notation |y| will mean
> amino acid ¢ ¥(@) for any vector y.

To evaluate the regularizers, we want to see how
accurately they predict the true probabilities of amino
acids, given a sample. Unfortunately, true probabilities
are never available with finite data sets. To avoid this
problem, we will take a small sample of amino acids
from the column, apply a regularizer to it, and see how
well the regularizer estimates the maximum-likelihood
probabilities for the whole column.

Let’s use s(i) to be the number of occurrences of
amino acid 4 in the sample. The estimated probability
of amino acid ¢ given the sample s will be written as
153(2'), and the Shannon entropy or encoding cost of
amino acid i given the sample is —log, Py(i). The

average encoding cost for column ¢ given sample s is the
weighted average over all amino acids in the column of
the encoding for that amino acid:

Z IFI Py(i) .

The better the estimation P, (i) is of P, (i), the lower the
encoding cost H(t) will be. The lowest possible value
would be obtained if the estimate were exact:

Ei(9)
mln Z |F | t| .

To make a fair comparison of regularizers, we should
not look at a single sample s, but at the expected value
when a sample of size k is chosen at random:

Hi(t)= Y P(sI)H() .

sample s,|s|=k

The weighting for each of the encoding costs Hj(t)
is the probability of obtaining that particular sample
from that column. If the samples of size |s| are drawn
by independent selection with replacement from the
density Pt, then the probability of each sample can be
computed from the counts Fy:

P(s]t) II'HPt (1)* /(1)
= |'|Ft|*‘|HF () /(i)

We can do a weighted average of the encoding costs
over all columns to get the expected cost per amino acid
for a given sample size:

H, = M
Zcolumn t |Ft|

If we precompute the total count T'= >
and summary frequencies for each sample

T,(i)= Y P(s|)F(i),

column ¢

|Ft|7

column ¢

then we can rewrite the computation as

Ho=— Y Y L)lom ).

sample s,|s|=k 1

The average encoding cost Hj would be minimized if
P, (i) = Ty(i)/|Ts|, giving us a lower bound on how well
a regularizer can do for samples of size k. Table 1 shows
this minimum average encoding cost for the columns



sample size  encoding cost relative encoding cost

in bits in bits
ls|  Hi Hy oy —Hy
0 4.19666
1 2.78084 1.41582
2 2.38691 0.39393
3 2.16913 0.21778
4 2.02703 0.14210
5 1.92380 0.10323
full  1.32961

Table 1: Encoding cost of columns from the weighted
BLOCKS database, given that a sample of |s| amino
acids is known. The encoding cost is a lower bound
on the encoding cost for any regularizer. The last row
(labeled “full”) is the encoding cost if we know the
distribution for each column of the alignment exactly,
not just a sample from the column. The relative
encoding cost is the information gain from seeing one
more amino acid.

of the BLOCKS multiple alignment [8] (with sequence
weights explained in Section 4), given that we have
sampled |s| amino acids from each column.

The last row of the table is the average encoding
cost for the columns if we use the full knowledge of
the probabilities for the column P, rather than just a
random sample. This is the best we can hope to do with
any method that treats the columns independently. It
is probably not obtainable with any finite sample size,
but we can approach it if we use information other than
just a sample of amino acids to identify the column. The
relative entropy in the last column of Table 1 measures
how much information we have gained by seeing one
more amino acid.

One disadvantage of the encoding cost computation
used in this paper is the cost of pre-computing the 7T’(7)
values and computing the ]55(2) values for each of the
possible samples. The number of distinct samples to be
examined is (20*" \:||—1)7 which grows exponentially with
|s|, but remains manageable for |s| < 5 (42,504 distinct
samples for |s| = 5).

3 Posterior Counts

Section 2 introduced the maximume-likelihood method
for estimating probabilities from counts, P,(i) =
s(4)/|s|. Maximum likelihood is asymptotically optimal
as |s| — oo, but performs very badly for small sample
sizes, since the encoding cost for any amino acid not
seen in the sample is —log, 0 = oco. To avoid this in-
finitely high cost, we will constrain regularizers to pro-
vide non-zero estimates for all probabilities: 0 < P, (i).

Regularizers can be viewed as making an adjustment
to the sample counts, s, to produce posterior counts,
X, from which we estimate the probability:

By(i) = T)‘}Z) -

To get legal estimated probabilities and avoid infinite
costs, the primary constraint is X(¢) > 0.

Note: there will be several different formulas given for
computing X, corresponding to different regularizers.
The symbols X (i) < will be used for defining the
different methods. The notations Py (i) and Py(i) refer
to the background probabilities and their estimates
(that is, the probabilities given a sample of size zero).

Once we have decided that the goal is to minimize
the average encoding cost of the columns, and chosen a
method to try, we can try to optimize the parameters of
the method, using Newton’s method to find parameter
values at which all the first derivatives of the encoding
cost are zero and all the second derivatives are positive
(other gradient descent algorithms could also be used).

We can compute the derivatives of the encoding cost
Hj, with respect to any parameter fairly easily from X
and its derivatives. For many of the methods, the sec-
ond derivative of X is 0 for all the parameters, further
simplifying the optimization. For a more complete dis-
cussion of optimization, see [13].

4 Experimental method

The regularizers are compared by computing the av-
erage entropy Hj of a multiple alignment given a reg-
ularizer. The multiple alignments chosen are from the
BLOCKS database [8]. The sequences are weighted us-
ing a slight variant of the Henikoffs’ position-specific
weighting scheme [10], as implemented by Kimmen
Sjolander. Her weighting scheme is proportional to the
Henikoffs’ position-specific weights, but instead of hav-
ing the weights sum to 1.0 for each block, they sum to
the number of sequences in the block, so that blocks
containing more sequences have more influence than
blocks with only a few sequences.

The weighting scheme attempts to reduce the sam-
pling bias in the database, by reducing the weight of
sequences that are similar to others, and increasing
the weight of outliers. Other weighting schemes have
been proposed for this purpose (for example, tree dis-
tances [20] or weighting for pairs of alignments [2]); I
chose the position-specific one rather arbitrarily for its
ease of computation.

5 Results for training and testing on
full database

This section reports the average encoding costs ob-
tained for different sample sizes and different regular-
izers. For each regularizer and sample size, the excess
entropy is reported, that is, the difference between the



s excess entropy
optimized for

[s| =1 [s| =2 |s| =0,1,2,3

z=1 | 2=0.04851 2z =0.05420 =z = 0.05260
0 |0.12527 0.12527 0.12527 0.12527
1 | 1.07961 0.20482 0.20677 0.20585
2 | 1.17080 0.18636 0.18457 0.18470
3 |1.16489 0.16843 0.16587 0.16626
4 |1.13144 0.15311 0.15063 0.15105
5 | 1.09164 0.14203 0.13989 0.14026
full | 0.84541 0.08013 0.08884 0.08653

Table 2: Excess entropy for the zero-offset regular-
izers. The popular “add-one” regularizer is clearly a
poor choice for the BLOCKS database.

average encoding cost per column using the regular-
izer and the average encoding cost per column using
the best theoretically possible optimizer. For the entire
database, the best possible encoding costs are reported
in Table 1.

The last row of each of Tables 2 through 8 reports
the excess entropy if the full column F; is given to the
regularizer, rather than a sample s. Since the entropy
for the column is minimized if the X(¢) values exactly
match the observed counts Fj(i), this measures how
much the regularizer distorts the data. Because some
of the columns have few counts, it is not the same as
letting |s| — oo, but offers a more realistic idea of what
can be expected with large sample sizes.

5.1 Zero-offset

The simplest method for ensuring that no probabil-
ity is estimated as zero is to add a small, fixed, posi-
tive zero-offset to each count to generate the posterior
counts:

Xs(i) — s(i)+ z .

For large sample sizes, the zero-offset has little effect
on the probability estimation, and P,(i) — Ps(i) as
|s] — oo.

For |s| = 0, the estimated distribution will be flat
(Py(i) = 1/alphabet size = 0.05), which is generally a
poor approximation to the amino acid distribution in a
context about which nothing is known yet.

It is fairly traditional to use z = 1 when nothing
is known about the distributions being approximated,
but this value is much too large for highly conserved
regions like the BLOCKS database—the optimal value is
much closer to 0.05. Table 2 presents the excess entropy
for three optimized regularizers, as well as the popular
“add-one” regularizer.

s excess entropy optimized for |s| =
0 1 2 3 0,1,2,3
0 0.00000 0.01910 0.02848 0.03459 0.00610
1 0.14221 0.13384 0.13643 0.13925 0.13644
2 0.14499 0.13681 0.13455 0.13497 0.13720
3 0.13838  0.13127 0.12792  0.12757  0.13097
4 0.13006  0.12397  0.12060  0.12004  0.12350
5 0.12369 0.11845 0.11543 0.11484 0.11804
full | 0.07966 0.07913 0.08767 0.09129 0.08521

Table 3: Excess entropy for pseudocount regularizers.

5.2 Pseudocounts

Pseudocount methods are a slight variant on the zero-
offset, intended to produce more reasonable distribu-
tions when |s| = 0. Instead of adding a constant zero-
offset, a different positive constant is added for each
amino acid:

X, (i) — s(i) + 2(3) -

These zero-offsets are referred to as pseudocounts, since
they are used in a way equivalent to having counted
amino acids.

Again, as |s| — oo the pseudocounts have diminishing
influence on the probability estimate and P, (i) — Ps(0).
For |s| = 0, we can get Py(i) = Py(i), by setting
z(i) = aPy(i), for any positive constant a. This set-
ting of the pseudocounts has been referred to as back-
ground pseudocounts [15] or the Bayesian prediction
method [18] (for the Bayesian interpretation of pseudo-
counts, see [13]). For the BLOCKS database and |s| > 0,
the optimal value of a is near 1.0.

For non-empty samples, the pseudocounts that min-
imize the encoding cost of Section 2 are not necessarily
multiples of Py(i) (see [13] for details).

The pseudocounts were optimized for |s| = 0 through
|s|] = 3, both separately, and minimizing the average
entropy for all four sample sizes combined. The excess
entropy for different pseudocounts is given in Table 3.
The pseudocount regularizers do much better than the
zero-offset regularizers for |s| = 0 and |s| = 1, but
already by |s| = 5, the difference is only 0.025 bits per
column.

5.3 Gribskov average score

The Gribskov profile [7] method or average-score
method [18] computes the weighted average of scores
from a score matriz M. There are several standard
scoring matrices in use, most notably the Dayhoff ma-
trices [6] and the BLOSUM matrices [9], which were orig-
inally created for aligning one sequence with another
(Is] = 1).

The scores are best interpreted as the logarithm of
the ratio of the probability of the amino acid in the
context to the background probability [1]:



score = log Py(i)/ Po(i) .

The averaging of the score matrices is intended to
create a new score. With the interpretation of scores
given above, and assuming natural logarithms are used,
the posterior counts are

Mo
X,(6) — Py(i)e T .

We can avoid recording the extra parameters Py(i) by
redefining the score matrix slightly. If we let M|, =
Mi’j + hlPo(i), then

E.M{JS(J)

Xs(i) — e Ts]

The BLOSUM substitution matrices provide a score

matrix Pli.j)

2V

Mig = log (Po@)Po(j))

for matching amino acid ¢ and amino acid j, where
P(i,j) is the probability of ¢ and j appearing as an
ordered pair in any column of a correct alignment. Let’s
take natural logarithms in creating the score matrix (to
match the exponential in the computation of X,(4)). If
we use jJ to name the sample consisting of a single amino
acid 7, then

This is the optimal value for Pj, and so the Gribskov
method is optimal for |s| = 1 (with a properly chosen
score matrix).

Although the Gribskov method is optimal for |s| = 1,
it does not perform well at the extremes. For |s| = 0,
it predicts a completely flat distribution (just as zero-
offset methods do). As |s| — oo, the Gribskov method
does not approach a maximum-likelihood estimate for
P,(i).

We can get much better performance for |s| > 1 by
optimizing the score matrix, but the Gribskov method
does not generalize to other values of |s| as well the
substitution matrix method described in Section 5.4.

Four score matrices were tested: the BLOSUM62 ma-
trix (more precisely, In P(4,5)/FPo(j) for the BLOSUM62
data), the log-odds matrix with scores In P(%,j)/Po(j)
for the test data, a matrix optimized for |s| = 2, and
one optimized for |s| = 0,1,2,3. The excess entropies
are presented in Table 4.

5.4 Substitution matrices

A substitution matrix computes the posterior counts
as a linear combination of the counts:

X, (i) « ZMi,jso) :

excess entropy

BLOSUM62  log-odds | optimized for |s| =

Is| 2 0,1,2,3
0 0.12527 0.12527 | 0.12527  0.12527

1 0.13294 0.00000 | 0.19046  0.08408

2 0.41066 0.13311 | 0.01694  0.03136

3 0.59404 0.27749 | 0.08442  0.12809

4 0.71962 0.38475 | 0.15471  0.21261

5 0.81315 0.46765 | 0.21601  0.28223

full 1.37003 0.98464 | 0.65103  0.74889

Table 4: Excess entropy for Gribskov average-score
regularizers.

This method is similar to the Gribskov average-score
method of Section 5.3, with one major difference—the
matrix M is not a logarithmic score matrix.

Note that for |s| = 0, all the sample counts s(j) are
zero, and so the posterior counts Xy(i) are also zero.
This violates the constraints on posterior counts, and
so some other method of deriving posterior counts is
needed for |s| = 0. For experiments reported in this
paper, all-zero count vectors are replaced by all-one
count vectors (s(j) = 1 and Xo(i) = >_; M; ;). This
is equivalent to adding an infinitesimal zero-offset to
the count vectors before multiplying by the substitution
matrix M.

Substitution matrices, like score matrices, are de-
signed for use in sequence-sequence alignment, where
the sample consists of exactly one amino acid (|s| = 1).
Let P; be the distribution we expect in a column in
which amino acid j has been seen (the relatedness odds
ratio which has been widely studied; see, for exam-
ple [12]). Then we can get optimal behavior for |s| =1
by setting M, ; = a;P;(i), for arbitrary positive con-
stants a;.

Furthermore, if we set a; = aPy(j), then Xo(i) =
> abo(4)Pj(i) = aPo(i), and we get optimal estima-
tion for |s| = 0 (Py(i) = Py(i)) as well as |s| = 1.
Neither the log-odds matrix (a; = 1) nor this frequency
matrix approach works well for larger sample sizes.

For large values of |s|, the substitution matrix
does not guarantee that the estimated distribution ap-
proaches the true distribution, unless the count vector
s happens to be an eigenvector of the matrix.

Four substitution matrices were tested: the fre-
quency matrix from which the BLOSUM62 scoring ma-
trix was derived, a frequency matrix computed from the
weighted BLOCKS database, a substitution matrix opti-
mized for |s| = 2, and one optimized for |s| = 0,1, 2, 3.
Table 5 presents the excess entropies.

The pure frequency matrix is optimal for |s| = 0 and
|s| = 1, but degrades badly for larger samples, and is
worse than pseudocounts for |s|] = 3. The BLOSUMG62
matrix does not do well for any sample size greater than



excess entropy

BLOSUM62  frequency | optimized for |s| =

| matrix 2 0,1,2,3
0 0.00369 0.00000 | 0.05348  0.05270

1 0.13294 0.00000 | 0.05723  0.03647

2 0.35455 0.08581 0.02495  0.02708

3 0.50493 0.17251 0.05577  0.06792

4 0.61172 0.24275 | 0.09300 0.11082

5 0.69341 0.30091 0.12933  0.15083

full 1.20369 0.71452 | 0.44748  0.48373

Table 5: Excess entropy for substitution matrix reg-
ularizers.

zero, probably because of the difference in weighting
schemes used for building the matrix and for testing.

Optimizing the substitution matrix can preserve its
superiority over pseudocounts up to |s| = 4, but as the
sample size increases, the pseudocounts approach the
optimum regularizer, while substitution matrices get
farther from the optimum.

5.5 Substitution matrices plus extra
terms

In an attempt to avoid the rather ad hoc approach
for handling |s| = 0 with substitution methods, I tried
a method which combines substitution matrices and
pseudocount methods:

X, (i) — (i) + ZMi,js(j) :

If one thinks of a substitution matrix as a mutation
model, then the pseudocounts represent a mutation or
substitution that does not depend on what is currently
in the sequence. For doing single alignments, where
there is exactly one s(i) that is non-zero, one could
obtain the same effect by adding the pseudocounts
to each column of the substitution matrix, but for
other sample sizes, the separation of residue-specific and
background substitutions turns out to be quite useful.

If 2(i) is set to aPy(i) for a very small positive
number a, then the method is essentially identical to
the pure substitution matrix method. If M is set to
be the identity matrix, then the method is identical
to the pure pseudocount method. In practice, the
optimal matrix is closer to the identity matrix than the
simple substitution matrix is, but still has significant
off-diagonal elements.

As with substitution matrices, substitution matrices
plus pseudocounts do not converge to the optimal dis-
tribution as |s| — co. They do a little better than pure
substitution matrices, since the matrix is closer to being
an identity matrix.

Adding pseudocounts makes substitution matrices
work better for |s| = 0, but they still do not converge

to the maximum-likelihood estimate as |s| — oo. This
problem can be solved by adding one more term to
the posterior counts, proportional to the counts and
growing faster than the vector Ms does. One easy way
to accomplish this is to add the counts scaled by their
sum:

X, (i) — |s|s(i) + 2(d) + Z M js(j) .

This substitution-matrix method is a slight general-
ization of the data-dependent pseudocount method [18].
The data-dependent method sets

52, BRo(i)e e s()

X, (i) — s(i) + o

)

for arbitrary parameter B, “natural-scale” parameter
A, and a substitution matrix A. Scaling this by |s]
and absorbing the constants and exponentiation into
the matrix gives us

which is identical to the method here, if the pseudo-
counts z(i) are all zero. However, the construction
of the matrices in [18] is optimized for single-sequence
alignment (|s|] = 1) and may be far from optimal for
other sample sizes.

Claverie proposed a similar method [5]—his method
is equivalent to setting z(z) = 0 and scaling the s(i) by
max(+/]s], |s|/20), instead of |s|. It might be interest-
ing to try other scaling functions, besides |s| or /|s|;
any positive function such that f(|s|) — oo as |s| — oo
would give the correct convergence to the maximum-
likelihood estimate. Lacking any theoretical justifica-
tion for choosing the scaling function, I took the sim-
plest one: |s|.

Adding pseudocounts, scaled counts, or both to the
substitution matrices improves their performance signif-
icantly. Table 6 presents the excess entropies for these
regularizers. The full method, using scaled counts and
pseudocounts as well as the substitution matrix, has the
best results of any of the methods mentioned so far.

Note that adding pseudocounts is not equivalent to
any change in the substitution matrix and makes a
noticeable improvement in the excess entropy, probably
justifying the 5% increase in the number of parameters.

5.6 Dirichlet mixtures

The Dirichlet mixture method introduced in [4] has
similarities to the pseudocount methods, but is some-
what more complex. They have been used quite suc-
cessfully by several researchers [4, 18, 11]. The results



excess entropy
subst+pseudo subst+scaled subst+pseudo-+scaled

optimized for |s| = | optimized for |s| = optimized for |s| =
s 2 0,1,2,3 2 0,1,2,3 2 0,1,2,3
0 0.02555  0.00012 | 1.00651  0.00099 | 0.43012 0.00000
1 0.02670  0.01080 | 0.01970  0.00734 | 0.02960 0.00080
2 0.02498  0.02595 | 0.02502  0.03105 | 0.02496 0.02509
3 0.04969  0.04743 | 0.04099  0.04823 | 0.04157 0.03975
4 0.07834  0.06937 | 0.05093  0.05753 | 0.05210 0.04849
5 0.10718  0.09152 | 0.05833  0.06407 | 0.05973 0.05548
full | 0.38692  0.32624 | 0.07968  0.07789 | 0.07492 0.09645

Table 6: Excess entropy for substitution matrix regularizers with pseudocounts and pseudocounts plus scaled counts.

here show that Dirichlet mixtures are quantitatively su-
perior to all the other regularizers examined, and that
there is not much room for improvement to better reg-
ularizers.

One way to view the posterior counts of Dirichlet mix-
tures is as a linear combination of pseudocount regular-
izers, where the weights on the combination vary from
one sample to another, but the underlying regularizers
are fixed. Each pseudocount regularizer is referred to as
a component of the mixture. The weights for the com-
ponents are the product of two numbers—a prior weight
ge called the mizture coefficient and a weight that is
proportional to the likelihood of the sample given the
component.

Each pseudocount regularizer defines a Dirichlet den-
sity function (p; through py) on the possible distribu-
tions of amino acids, with p,. characterized by the pseu-
docounts z.(i). We need to introduce some notation—
the Gamma and Beta functions. The Gamma function
is the continuous generalization of the integer factorial
function I'(n + 1) = n! and the Beta function is a gen-
eralization of the binomial coefficients:

L T)
Bl = 15 at) -

With this notation, we can define

X0 = Y a2 ) 4 sa)) |

1<e<k B(z)

where z. + s should be interpreted as the component-
wise sum of the two vectors. The derivation of this
formula using Bayesian statistics can be found in [13].
Because each of the pseudocount regularizers con-
verges to the correct estimate as |s| — oo, the Dirichlet
mixture will also have the correct behavior in the limit.
For |s| = 0, the Beta functions cancel, and we have

XO(Z) — Z QCzc(i)v
1<c<k

which can easily be made to fit the background distri-
bution.

Dirichlet mixtures are clearly the luxury choice
among regularizers. The need for computing Gamma
functions in order to evaluate the regularizer makes
them much more expensive to use than any of the other
regularizers reviewed here. However, the excess entropy
results in Tables 7 and 8 show that the mixtures per-
form better than any other regularizer test, and may
well be worth the extra computational cost in creating
a profile or hidden Markov model.

The regularizers in the table (except for the 9-
component one) were created by fitting a single com-
ponent to the data, or by adding components to a pre-
viously created mixture, optimizing after each addition
for |s| = 1,2. The components were selected using the
greedy strategy described in [13]. The l-component
mixture is just a set of pseudocounts, and so performs
almost identically to the pseudocounts optimized for
|s] =1 or |s| = 2.

The 9-component mixture was optimized by Kim-
men Sjolander to produce a good Bayesian prior for
the count vectors from the BLOCKS database with
all sequences given equal weight [4]. Sjolander’s 9-
component mixture is the best we have for |s| = 5,
but it does fairly poorly for |s| =0, 1, 2.

The overall best regularizer is the 21-component
Dirichlet mixture, which gets within 0.027 bits of the
best possible regularizer for sample sizes up to 5, and
probably never takes more than 0.09 bits more than the
optimum regularizer.

6 Results for separate training and
testing

One possible objection to the tests in Section 5 is that
the same data is used for training the regularizers and
for testing them.

The tests were repeated using separate training and
test sets. The BLOCKS database was divided into three
disjoint sets, with about 10% of the blocks in set 10a,
10% in 10b, and the remaining 80% in 80c. Regularizers
were created separately for each of the three sets, and



excess entropy for n components
1 3 4 6 7 9 10 10
s 1 1+2 143 14243 142+4 9 1+2+3+4 14346
0 | 0.02230 0.02488 0.03134 0.02516 0.02694 0.06123 0.02385 0.01774
1 0.13437 0.05235 0.04026 0.02336 0.01972 0.05336 0.01115 0.00661
2 | 0.13524 0.07353 0.05311 0.03275 0.02678  0.02402 0.02290 0.01610
3 | 0.12930 0.08302 0.05933 0.03960 0.03301 0.01970 0.03127 0.02520
4 | 0.12206 0.08657 0.06200 0.04367 0.03715 0.02083 0.03620 0.03105
5 | 0.11676 0.08886 0.06455 0.04762 0.04119 0.02455 0.04066 0.03624
full | 0.08308 0.07986 0.08234 0.08365 0.08837 0.10274 0.08607 0.08992
Table 7: Excess entropy for small Dirichlet mixtures regularizers optimized for |s| = 1,2. The mixtures were built by
adding new components to a previous mixture, except for for the nine-component mixture, which was provided by Kimmen
Sjolander.
excess entropy for n components
15 15 20 21 28 31 35
s 142434445 1424448 14346+10 142+43+445+6 1+2+43+445+6+7 1424448416 14346410415
0 0.01989 0.01040 0.01111 0.00883 0.00832 0.00786 0.00812
1 0.00192 0.00227 0.00169 0.00115 0.00470 0.00198 0.00578
2 0.01137 0.01002 0.01003 0.00757 0.01750 0.00764 0.02100
3 0.01987 0.01958 0.01957 0.01471 0.02740 0.01776 0.03863
4 0.02608 0.02613 0.02653 0.02051 0.03380 0.02479 0.04903
5 0.03186 0.03199 0.03286 0.02636 0.03943 0.03092 0.05650
full 0.08603 0.09155 0.08715 0.08589 0.09357 0.09474 0.10174
Table 8: Excess entropy for larger Dirichlet mixtures regularizers optimized for |s| = 1,2. The mixtures were built by

adding new components to a previous mixture, with the history of the additions shown in the name. The 21-component

mixture 14243444546 is the best overall regularizer for the BLOCKS database.

tested on the other two. The ordering of the methods
produced by these tests was almost identical to the or-
dering produced by the self-test presented in Section 5,
but the results are too voluminous to present here.

This separate train-test evaluation lends extra confi-
dence to the comparative evaluation of the regularizers,
and some assurance that the good regularizers will gen-
eralize to similar multiple alignments.

7 Conclusions and future research

For applications that can afford the computing cost,
Dirichlet mixture regularizers are clearly the best
choice. In fact, they are so close to the theoretical op-
timum for regularizers, that there doesn’t seem to be
much point in looking for better regularizers. Other
evaluations of regularizers, based on searches in bio-
logical contexts, have also found Dirichlet mixtures to
be superior [18, 11], validating the more information-
theoretic approach taken here.

For applications in which there is little data to train a
regularizer, pseudocounts are probably the best choice,
as they perform reasonably well with few parameters.
Dirichlet mixtures and substitution matrices have com-
parable numbers of parameters and so require compa-
rable amounts of training data. If the regularizers do

not need to be re-evaluated frequently, then Dirichlet
mixtures are the preferred choice.

Although most applications (such as training hidden
Markov models or building profiles from multiple align-
ments) do not require frequent evaluation of regulariz-
ers, there are some applications (such as Gibbs sam-
pling) that require recomputing the regularizers inside
an inner loop. For these applications, the substitution
matrix plus pseudocounts plus scaled counts is probably
the best choice, as it has only about 0.03 bits more ex-
cess entropy than the Dirichlet mixtures, but does not
require evaluating Gamma functions.

One weakness of the empirical analysis done in this
report is that all the data was taken from the BLOCKS
database, which contains only highly conserved blocks.
While this leads us to have high confidence in the align-
ment, it also means that the regularizers do not have to
do much work. The appropriate regularizers for more
variable columns may look somewhat different, though
one would expect the pseudocount and substitution-
matrix methods to degrade more than the Dirichlet
mixtures, which naturally handle high variability.

To get significantly better performance than a Dirich-
let mixture regularizer, we need to incorporate more
information than just the sample of amino acids seen
in the context. There are two ways to do this: one



uses more information about the column (such as sol-
vent accessibility or secondary structure) and the other
uses more information about the sequence (such as a
phylogenetic tree relating it to other sequences).

Using extra information about a column could im-
prove the performance of a regularizer up to the “full”
row shown in Table 1, but no more, since the full row as-
sumes that the extra information uniquely identifies the
column. There is about 0.6 bits that could be gained by
using such information (relative to a sample size of 5),
far more than difference between the best regularizer
and a crude zero-offset regularizer.

Incorporating sequence-specific information may pro-
vide even larger gains than using column-specific infor-
mation. Based on preliminary work at UCSC, there
may be a full bit per column to be gained by taking into
account phylogenetic relationships among sequences in
a multiple alignment.

Another way to use sequence-specific information
would be to use modified regularizers for residues that
are in contact, adjusting the probabilities for one amino
acid based on what is present in the contacting position.

A longer version of this paper, including deriva-
tions for Dirichlet mixture regularizers and results for
feature-based techniques [19, 17] is available as [13].
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