EXCLUSION CONSTRAINTS FOR DIGITAL MOS CIRCUITS:
) A NEW SET OF ELECTRICAL DESIGN RULES

4 Kevin Karplus

Cornell University, School of Electrical Engineering
(also in Computer Science Department)

Abstract: Exclusion constraints are boolean equations
that must always be satisfied for an MOS circuit to be
adequately modeled by simple switch models. The con-
straints are generated.by a new set of electrical design
rules, which are simple enough to be checked aufomati-
cally. Violating an exclusion constraint does not neces-
sarily mean a circuit is unusable, but careful analysis or
analog simulation is needed to ensure digital operation.
The rules attempt to formalize common rule-of-thumb de-
sign practices, summarized as follows:

Rule 1: Avoid shorting power.

Rule 2: Avoid changing the inputs.

Rule 3: Avoid parallel pullups.

Rule 4: Avoid gates in the middle of pulldown chains.

Rule 5: Avoid charge-sharing.

Rule 6: Avoid odd inverter cycles.

" Rule 1 is the primary well-formedness criterion for static
cMOS and pre-charged circuits. Rule 2 prevents sneak
paths that can cause modules to behave incorrectly when
connected. Rule 3 makes inverter ratio checking more
accurate, and points out where special ratio computations
are needed. Rule 4 ‘detects un-intentional bi-directional
pass transistors. Rule 5 detects some situations in which
circuit behavior is not digital. Rule 6 detects oscillation
and some non-digital circuit behavior.

Introduction

This paper presents a new set of design rules for switch
circuits. No information is needed about switch sizes or
parasitics, so the rules can be applied before layout. Prob-
lems are spotted early in the design, so corrections can
be made quickly and cheaply. The six rules in this paper
are simple enough to be applied automatically.

The rules apply to both nMOS and cMOS circuits, and
use a simple switch model of the circuits. Some useful
circuits violate the rules, but these circuits are often not
handled correctly by current CAD tools. By pointing out
the places where the implicit assumptions of the tools are
violated, the rules can focus attention on those parts of
the circuit that need more detailed modeling.

The first five rules are checked on a switch graph, in
which each signal is a vertex, and each switch is an edge
connecting the source and drain. Edges are labeled with
the signal on the gate of the switch and with the type of
switch (nMOS or pMOS). Static load devices (pullups) are
not included in the switch graph, but pulled up vertices
are marked. A path in the switch graph represents a
possible DC connection between two signals.

Boolean expressions are generated to summarize all
paths from any node n to Vaq (V.), ground (Gy), a pullup
(Ps), a high input (Inl,), or a low input (In0,). The

CH2233-5/85/0000/0244%$01.00 © 1985 |EEE

expressions can be quickly generated using sparse ma-
trix techniques on the adjacency matrix for the switch

* graph®2.

244

The sixth rule is checked on an inverter graph, in
which vertices correspond to signals, and edges to sub-
circuits that act as static inverters. Each edge is labeled
with the conditions needed to make the subcircuit act as
an inverter. The label on an edge from z to y can be
c0fnputed form the paths needed to check the first four
rules:

label(z,y) =(G, V In0,)|

A (ﬁGy)l Ai(=In0y)

z=0 z=0

AV, Y, Fyv Inl,,)l .
g o=

A _ A In)|

Figure 1 shows inverter graphs for some simple subcir-
cuits.

Figure 1: Inverter graphs.

The Rules

Rule 1: Avoid shorting power.

Every path in the switch graph from Vg4q to ground
must have at least one open switch on it (that is, Gyaa =
0). Rule 1 generates constraints mainly for cMOS circuits
and pre-charged circuits. For eMOS, the power-short con-
straints are the primary criteria for the well-formedness .
of logic gates. For pre-charged-circuits (nMOS or cMOS),
the power-short constraints are usually satisfied by using
a clocking discipline®4.

Figure 2 shows a ¢MOS NAND-gate and its switch
graph. Rule 1 requires that (~AV-B)AAAB=0.

vdd

A
>
@

Vss

Figure 2: ¢cMOS NAND-gate and its switch graph.
Rule 2: Avoid changing the inputs.

Active paths are prohibited from a low input of a cir-
cuit to Vgq or a pullup, from a high input to ground, or
from an input to an input with a different value, that is:

Vinputs n:n A(Gn V In0,) =0
nA (Vo VP,V Int,)=0.

This rule tries to prevent “sneak paths” back through
the inputs of a circuit or subcircuit. If such sneak paths
are allowed, the behavior of a system can not be reliably
computed from the behavior of individual subcircuits.

Not all circuits that violate rule 2 are wrong. For
example, datapath modules commonly use buses for both
input and output. '

Rule 3: Avoid parallel pullups.

No signal vertex may be simultaneously connected to
two different pulled-up nodes and to ground. This rule is
intended to make the usual simple pullup over pulldown
ratio calculations accurate. The constraints generated by
rule 3 for an array of the two-port dynamic RAM cells of
Figure 3 can be satisfied by putting some restrictions on
RAM usage:

‘1) Simultaneous reads and writes on the same bus are
prohibited.

2) Writing into a cell from both buses simultaneously is
prohibited. _

3) Reading the same cell from both buses simultaneously
is prohibited when the storage transistor is on.

Although the last seems an unnatural restriction, the
storage pulldown must be wider than usual if both buses
read from it at the same time, since the saturation cur-
rents of the two pullups are added. .

Rule 4: Avoid gates in the middle of pulldown chains.

If the gate of a transistor is connected to a pulldown
tree, the connection should be through the pulled-up
node, not through a lower node in the tree. For ¢cMOS,
a gate connected to either an sMOS pulldown tree or a
pMOS pullup tree should be connected through the node
where the two trees meet.

The circuit shown in Figure 4 will be interpreted by
some programs as having a uni-directional information
flow through the pass transistor. This is usually intended,

writeA
Writed

Figure 3: Two Port RAM. 1

but is correct only if PASS and CLEAR are mutually exclu-
sive.

Figure 4. Gate in middle of pulldown chain.

Rule 5: Avoid charge-sharing.

A signal that is used on the gate of some transis-
tor must be either isolated from all other nodes (stor-
ing charge) or connected to Vaq, ground, or a pulled-up
node. When two nodes isolated from power become con-
nected to each other, the charge on the nodes is shared
between them. If the nodes initially have different values,
the result may be an illegal intermediate voltage. Static
storage nodes (nodes on even cycles in the inverter graph)
also must be isolated to avoid charge-sharing.

The circuit in figure 5 illustrates the charge-sharing
rule. The input is stored at node STORE when LOAD is
high during phase 1. LOAD may go high before ¢,, shar-
ing the charge between STORE and X. If the LOAD and
READ signals are simultaneously high, the illegal value
can be propagated to the output.

? load
gy « P

_‘__l__ store (V1S2)
J

read
(v2)

Figure 5: Charge-sharing violation.

Rule 6: Avoid odd inverter cycles.

In the inverter graph, at least one edge in each odd
cycle must be inactive. This rule prohibits circuits that
oscillate or present intermediate voltage outputs. Such
circuits are particularly troublesome for switch simula-
tors, which can get stuck in infinite loops looking for the
non-existent digital equilibrium state. Figure 6 shows a
circuit with an odd inverter cycle, which generates the
constraint BAE =0. :

Some proponents of strict two-phase clocking prohibit
all cycles in the inverter graph®. The extra restriction
does not seem necessary, and prohibits many useful cir-
cuits (including most static RAM cells).

The subtle dynamic feedback in Figure 7(based on an
example by Noice?) is easily detected by rule 6, which
requires AA D AIA~I- =0. Because of delays in the
circuit, the constraint may be violated when A rises.

Ring oscillators and RAM bias generators routinely vi-
olate rule 6, and need detailed analog simulation to ensure
correct design.

BDI- Py
1 —>1- (5‘5}':3:
e
BDI
C Bii-
Aﬂ\,r_]
A-L5B-—2B p Bllyz

Figure 7: Subtle dynamic-inverter cycle.

Exclusion constraint checker

An exclusion constraint checker has been built. Its
inputs are a list of switches describing the circuit (esim
format) and a set of known constraints on the signals of
the circuit. The output from the tool is a list of additional

- constraints that must be satisfied for the circuit to meet

246

the exclusion rules. The constraints are labeled according
to the rule that generated them, so that the appropriate
corrective action can be taken.

The current tool checks the rules that can be expressed
as excluding paths to distinguished nodes in the switch
graph (rules 1-4). Path expressions are built by doing
symbolic LU-factorization of the sparse adjacency matrix
of the switch graph!?. The checking tool runs fast on
srr}'dll examples, but is somewhat slow on real chips (10
minutes on a Vax 11/780 for a 4000 transistor chip). Most
of the time is spent simplifying the boolean expressions.

Current Work

Experiments are being done with two representations
of boolean expressions, a compact DNF format and a
canonical tree representation®. Minor modifications to
the graph representation are being added to check rule 5.
The inverter graph construction and a fundamental cycle
finder® is being added to check rule 6.

Conclusions

We have presented a new set of design rules that are
simple to check and and easy for designers to learn. They
provide an explicit check for the implicit assumptions of
many current verification tools.

The exclusion constraint checker has been tested on
several circuits by novice designers. It appears to pro-
vide concise, understandable information about the limi-
tations of the designs. ‘

References

[1] Robert Tarjan, “Fast algorithms for solving path prob-
lems” Journal of the Association for Computing Ma-
chinery 28(3), 1981, 594-614.

[2] Alan George and Joseph Liu. Computer Solution of
Large Sparse Positive Definite Systems, Prentice Hall,
Englewood Cliffs NJ, 1981.

[3] Kevin Karplus. A Formal Model for MOS Clocking
Disciplines, Cornell Computer Science Technical Re-
port 84-632, August 1984.

[4] David Cooke Noice. A Clocking Discipline for Two-
phase Digital Integrated Circuits, Stanford PhD The-
sis, January 1983. University Microfilms 8314482.

[5] Randal E. Bryant.. Graph-based Algorithms for Bool-
ean Function Manipulation, Carnegie Mgllon Com-
puter Science Technical Report CMU-CS-85-135.

[6] E. M. Reingold, J. Nievergelt, and N. Deo. Combina-
torial Algorithms, Theory and Practice, Prentice Hall,
Englewood Cliffs NJ, 1977.

