
Dirichlet Mixtures: A Method for Improved Detection of Weak
but Signi�cant Protein Sequence Homology

Kimmen Sj�olandery

Computer Science

U.C. Santa Cruz

kimmen@cse.ucsc.edu

Kevin Karplus
Computer Engineering

U.C. Santa Cruz

karplus@cse.ucsc.edu

Michael Brown
Computer Science

U.C. Santa Cruz

mpbrown@cse.ucsc.edu

Richard Hughey
Computer Engineering

U.C. Santa Cruz

rph@cse.ucsc.edu

Anders Krogh
The Sanger Centre

England

krogh@sanger.ac.uk

I. Saira Mian
Lawrence Berkeley Laboratory

U.C. Berkeley

saira@cse.ucsc.edu

David Haussler
Computer Science

U.C. Santa Cruz

haussler@cse.ucsc.edu

Abstract

We present a method for condensing the information in multiple alignments of proteins into a mixture
of Dirichlet densities over amino acid distributions. Dirichlet mixture densities are designed to be
combined with observed amino acid frequencies to form estimates of expected amino acid probabilities
at each position in a pro�le, hidden Markov model, or other statistical model. These estimates give
a statistical model greater generalization capacity, so that remotely related family members can be
more reliably recognized by the model. This paper corrects the previously published formula for
estimating these expected probabilities, and contains complete derivations of the Dirichlet mixture
formulas, methods for optimizing the mixtures to match particular databases, and suggestions for
e�cient implementation.

Keywords: Substitution matrices, pseudocount methods, Dirichlet mixture priors, pro�les,
hidden Markov models.

yTo whom correspondence should be addressed. Mailing address: Baskin Center for Computer Engineering and
Information Sciences, Applied Sciences Building, University of California at Santa Cruz, Santa Cruz, CA 95064.
Phone: (408) 459-3430, Fax: (408) 459-4829. Mail to Karplus, Brown, Hughey and Haussler may be sent to the Baskin
Center for Computer Engineering and Information Sciences, Applied Sciences Building, University of California at
Santa Cruz, Santa Cruz, CA 95064. Mail to Krogh should be sent to The Sanger Centre, Hinxton Hall, Hinxton,
Cambs CB10 1RQ, England. Mail to Mian should be sent to Life Sciences Division (Mail Stop 29-100), Lawrence
Berkeley Laboratory, University of California, Berkeley, CA 94720.

1 Introduction

One of the main techniques used in protein sequence analysis is the identi�cation of homologous proteins|
proteins which share a common evolutionary history and almost invariably have similar overall structure
and function (Doolittle, 1986). Homology is straightforward to infer when two sequences share 25% residue
identity over a stretch of 80 or more residues (Sander and Schneider, 1991). Recognizing remote homologs,
with lower primary sequence identity, is more di�cult. Finding these remote homologs is one of the primary
motivating forces behind the development of statistical models for protein families and domains, such as
pro�les and their many o�shoots (Gribskov et al., 1987; Gribskov et al., 1990; Bucher et al., 1996; Barton and
Sternberg, 1990; Altschul et al., 1990; Waterman and Perlwitz, 1986; Thompson et al., 1994a; Thompson et
al., 1994b; Barton and Sternberg, 1990; Bowie et al., 1991; L�uthy et al., 1991; Bucher et al., 1996), Position-
Speci�c Scoring Matrices (Heniko� et al., 1990), and hidden Markov models (HMMs) (Churchill, 1989;
White et al., 1994; Stultz et al., 1993; Krogh et al., 1994; Hughey and Krogh, 1996; Baldi et al., 1992;
Baldi and Chauvin, 1994; Asai et al., 1993; Eddy, 1995; Eddy et al., 1995; Eddy, 1996).

We address this problem by incorporating prior informationabout amino acid distributions that typically
occur in columns of multiple alignments into the process of building a statistical model. We present a
method to condense the information in databases of multiple alignments into a mixture of Dirichlet densities
(Bernardo and Smith, 1994; Berger, 1985; Santner and Du�y, 1989) over amino acid distributions, and to
combine this prior informationwith the observed amino acids to formmore e�ective estimates of the expected
distributions. Multiple alignments used in these experiments were taken from the Blocks database (Heniko�
and Heniko�, 1991). We use Maximum Likelihood (Duda and Hart, 1973; Nowlan, 1990; Dempster et al.,
1977) to estimate these mixtures|that is, we seek to �nd a mixture that maximizes the probability of the
observed data. Often, these densities capture some prototypical distributions. Taken as an ensemble, they
explain the observed distributions in columns of multiple alignments.

With accurate prior information about which kinds of amino acid distributions are reasonable in columns
of alignments, it is possible with only a few sequences to identify which prototypical distribution may have
generated the amino acids observed in a particular column. Using this informed guess, we adjust the
expected amino acid probabilities to include the possibility of amino acids that may not have been seen but
are consistent with observed amino acid distributions. The statistical models produced are more e�ective
at generalizing to previously unseen data, and are often superior at database search and discrimination
experiments (Wang et al., 1996; Hughey and Krogh, 1996; Karplus, 1995a; Bailey and Elkan, 1995; Tatusov
et al., 1994; Heniko� and Heniko�, 1996; Brown et al., 1993).

1.1 Database search using statistical models

Statistical models for proteins capture the statistics de�ning a protein family or domain. These models
have two essential aspects: 1) parameters for every position in the molecule or domain that express the
probabilities of the amino acids, gap initiation and extension, and so on, and 2) a scoring function for
sequences with respect to the model.

Statistical models do not use percentage residue identity to determine homology. Instead, these models
assign a probability score1 to sequences, and then compare the score to a cuto�. Most models (including
HMMs and pro�les) make the simplifying assumption that each position in the protein is generated inde-
pendently. Under this assumption, the score for a sequence aligning to a model is equal to the product
of the probabilities of aligning each residue in the protein to the corresponding position in the model. In
homolog identi�cation by percentage residue identity, if a protein aligns a previously unseen residue at a
position it is not penalized; it loses that position, but can still be recognized as homologous if it matches at a
su�cient number of other positions in the search protein. However, in statistical models, if a protein aligns
a zero-probability residue at a position, the probability of the sequence with respect to the model is zero,
regardless of how well it may match the rest of the model. Because of this, most statistical models rigorously
avoid assigning residues probability zero, and accurate estimates for the amino acids at each position are
particularly important.

1Some methods report a cost rather than a probability score; these are closely related (Altschul, 1991).

2

1.2 Using prior information about amino acid distributions

The parameters of a statistical model for a protein family or domain are derived directly from sequences in
the family or containing the domain. When we have few sequences, or a skewed sample,2 the raw frequencies
are a poor estimate of the distributions which we expect to characterize the homologs in the database.
Models that use these raw frequencies may recognize the sequences used to train the model, but will not
generalize well to recognizing remoter homologs.

It is illuminating to consider the analogous problem of assessing the fairness of a coin. A coin is said to
be fair if Prob(heads) = Prob(tails) = 1=2. If we toss a coin three times, and it comes up heads each time,
what should our estimate be of the probability of heads for this coin? If we use the observed raw frequencies,
we would set the probability of heads to 1. But, if we assume that most coins are fair, then we are unlikely
to change this a priori assumption based on only a few tosses. Given little data, we will believe our prior
assumptions remain valid. On the other hand, if we toss the coin an additional thousand times and it comes
up heads each time, few will insist that the coin is indeed fair. Given an abundance of data, we will discount
any previous assumptions, and believe the data.

When we estimate the expected amino acids in each position of a statistical model for a protein family, we
encounter virtually identical situations. Fix a numbering of the amino acids from 1 to 20. Then, each column
in a multiple alignment can be represented by a vector of counts of amino acids of the form ~n = (n1; : : : ; n20),
where ni is the number of times amino acid i occurs in the column represented by this count vector, and
j~nj =

P
i ni. The estimated probability of amino acid i is denoted p̂i. If the raw frequencies are used to set

the probabilities, then p̂i := ni= j~nj. Note that we use the symbol `:=' to denote assignment, to distinguish
it from equality, since we compute p̂i di�erently in di�erent parts of the paper.

Consider the following two scenarios. In the �rst, we have only three sequences from which to estimate
the parameters of the model. In the alignment of these three sequences we have a column containing only
isoleucine, and no other amino acids. With such a small sample, we cannot rule out the possibility that
homologous proteins may have di�erent amino acids at this position. In particular, we know that isoleucine
is commonly found in buried beta strand environments, and leucine and valine often substitute for it in these
environments. Thus, our estimate of the expected distribution at this position would sensibly include these
amino acids, and perhaps the other amino acids as well, albeit with smaller probabilities.

In a second scenario, we have an alignment of 100 varied sequences and again �nd a column containing
only isoleucine, and no other amino acids. In this case, we have much more evidence that isoleucine is indeed
conserved at this position, and thus generalizing the distribution at this position to include similar residues
is probably not a good idea. In this situation, it makes more sense to give less importance to prior beliefs
about similarities among amino acids, and more importance to the actual counts observed.

The natural solution is to introduce prior information into the construction of the statistical model.
The method we propose interpolates smoothly between reliance on the prior information concerning likely
amino acid distributions, in the absence of data, and con�dence in the amino acid frequencies observed at
each position, given su�cient data.

1.3 What is a Dirichlet density?

A Dirichlet density � (Berger, 1985; Santner and Du�y, 1989) is a probability density over the set of all proba-
bility vectors ~p (i.e., pi � 0 and

P
i pi = 1). Proteins have a 20-letter alphabet, with pi = Prob(amino acid i).

Each vector ~p represents a possible probability distribution over the 20 amino acids.
A Dirichlet density has parameters ~� = �1; : : : ; �20, with �i > 0. The value of the density for a

particular vector ~p is

�(~p) =

Q20
i=1 p

�i�1
i

Z
; (1)

2Skewed samples can arise in two ways. In the �rst, the sample is skewed simply from the luck of the draw. This
kind of skew is common in small samples, and is akin to tossing a fair coin three times and observing three heads in
a row. The second type of skew is more insidious, and can occur even when large samples are drawn. In this kind of
skew, one subfamily is over-represented, such that a large fraction of the sequences used to train the statistical model
are minor variants of each other. In this kind of skew, sequence weighting schemes are necessary to compensate for
the bias in the data.

3

where Z is the normalizing constant that makes � sum to unity. The mean value of pi given a Dirichlet
density with parameters ~� is

Epi = �i= j~�j ; (2)

where j~�j =
P

i �i.
The second moment Epi pj , for the case i 6= j is given by

Epi pj =
�j�i

j~�j (j~�j+ 1)
: (3)

When i = j, the second moment Ep2i is given by

Ep2i =
�i (�i + 1)

j~�j (j~�j+ 1)
: (4)

We chose Dirichlet densities because of their mathematical convenience: a Dirichlet density is a conjugate
prior|i.e., the posterior of a Dirichlet density has the same form as the prior (see, for example, Section A.4).

1.4 What is a Dirichlet Mixture?

A mixture of Dirichlet densities is a collection of individual Dirichlet densities that function jointly to
assign probabilities to distributions. For any distribution of amino acids, the mixture as a whole assigns a
probability to the distribution by using a weighted combination of the probabilities given the distribution
by each of the components in the mixture. These weights are called mixture coe�cients. Each individual
density in a mixture is called a component of the mixture.

A Dirichlet mixture density � with l components has the form

� = q1�1 + : : :+ ql�l ; (5)

where each �j is a Dirichlet density speci�ed by parameters ~�j = (�j;1; : : : ; �j;20) and the numbers q1; : : : ; ql
are the mixture coe�cients and sum to 1.

The symbol � refers to the entire set of parameters de�ning a prior. In the case of a mixture, � =
(~�1; : : : ; ~�l; q1 : : : ; ql), whereas in the case of a single density, � = (~�).

1.4.1 Interpreting the parameters of a Dirichlet mixture

Since a Dirichlet mixture describes the typical distributions of amino acids in the data used to estimate the
mixture, it is useful to look in some detail at each individual component of the mixture to see what distri-
butions of amino acids it favors. We include in this paper a 9-component mixture estimated on the Blocks
database (Heniko� and Heniko�, 1991), a close variant of which has been used in experiments elsewhere
(Tatusov et al., 1994; Heniko� and Heniko�, 1996).

A couple of comments about how we estimated this mixture density are in order.
First, the decision to use nine components was somewhat arbitrary. As in any statistical model, a balance

must be struck between the complexity of the model and the data available to estimate the parameters of
the model. A mixture with too few components will have a limited ability to represent di�erent contexts for
the amino acids. On the other hand, there may not be su�cient data to precisely estimate the parameters
of the mixture if it has too many components. We have experimented with mixtures with anywhere from
one to thirty components; in practice, nine components appears to be the best compromise with the data we
have available. Also, a 9-component mixture uses 188 parameters, slightly fewer than the 210 of a symmetric
substitution matrix, so that better results with the Dirichlet mixture cannot be attributed to having more
parameters to �t to the data.

Second, there are many di�erent mixtures having the same number of components that give basically
the same results. This re
ects the fact that Dirichlet mixture densities attempt to �t a complex space, and
there are many ways to �t this space. Optimization problems such as this are notoriously di�cult, and we
make no claim that this mixture is globally optimal. This mixture works quite well, however, and is better
than many other 9-component local optima that we have found.

Table 1 gives the parameters of this mixture. Table 2 lists the preferred amino acids for each component
in the mixture, in order by the ratio of the mean probability of the amino acids in a component to the
background probability of the amino acids. An alternative way to characterize a component is by giving

4

the mean expected amino acid probabilities and the variance around the mean. Formulas to compute these
quantities were given in Section 1.3.

The value j~�j =
P20

i=1 �i is a measure of the variance of the component about the mean. Higher values
of j~�j indicate that distributions must be close to the mean of the component in order to be given high
probability by that component. In mixtures we have estimated, components having high j~�j tend to give
high probability to combinations of amino acids which have similar physiochemical characteristics and are
known to substitute readily for each other in particular environments. By contrast, when j~�j is small, the
component favors pure distributions conserved around individual amino acids. A residue may be represented
primarily by one component (as proline is) or by several components (as isoleucine and valine are).3

1.5 Comparison with other methods for computing these probabilities

In this section we compare the di�erent results obtained when estimating the expected amino acids using
three methods: Dirichlet mixture priors, substitution matrices, and pseudocounts. A brief analysis of the
di�erences is contained in the subsections below. In addition, we give examples of the di�erent results
produced by these methods in several tables. Tables 4{7 show the di�erent amino acid estimates produced
by each method for the cases where 1 to 10 isoleucines are aligned in a column, with no other amino acids.

1.5.1 Substitution matrices

The need for incorporating prior information about amino acid distributions into protein alignmentmotivated
the development of amino acid substitution matrices. These have been used e�ectively in database search
and discrimination tasks (Heniko� and Heniko�, 1993; Jones et al., 1992; George et al., 1990; Heniko� and
Heniko�, 1992; Altschul, 1991; Claverie, 1994; Rodionov and Johnson, 1994).

There are two drawbacks associated with the use of substitution matrices. First, each amino acid
has a �xed substitution probability with respect to every other amino acid. In any particular substitution
matrix, to paraphrase Gertrude Stein, a phenylalanine is a phenylalanine is a phenylalanine. However, a
phenylalanine seen in one context, for instance, a position requiring an aromatic residue, will have di�erent
substitution probabilities than a phenylalanine seen in a context requiring a large non-polar residue. Second,
only the relative frequency of amino acids is considered, while the actual number observed is ignored.
Thus, in substitution-matrix-based methods, the expected amino acid probabilities are identical for any
pure phenylalanine column, whether it contains 1, 3, or 100 phenylalanines. All three situations are treated
identically, and the estimates produced are indistinguishable.

1.5.2 Pseudocount methods

Pseudocount methods can be viewed as a special case of Dirichlet mixtures, where the mixture consists of
a single component. In these methods, a �xed value is added to each observed amino acid count, and then
the counts are normalized. More precisely, the formula used is p̂i := (ni + zi)=(

P
j nj + zj), where each

zj is some constant. Pseudocount methods have many of the desirable properties of Dirichlet mixtures|in
particular, that the estimated amino acids converge to the observed frequencies as the number of observations
increases|but because they have only a single component, they are unable to represent as complex a set of
prototypical distributions.

1.5.3 Dirichlet mixtures

Dirichlet mixtures address the problems encountered in substitution matrices and in pseudocounts.
The inability of both substitution matrices and pseudocount methods to represent more than one context

for the amino acids is addressed by the multiple components of Dirichlet mixtures. These components enable
a mixture to represent a variety of contexts for each amino acid. It is important to note that the components
in the mixture do not always represent prototypical distributions, and are, instead, used in combination
to give high probability to these commonly found distributions. Sometimes a component will represent a

3When we estimate mixtures with many components, we sometimes �nd individual components with high j~�j
that give high probability to pure distributions of particular amino acids. However, this is unusual in mixtures with
relatively few components.

5

prototypical distribution, at other times such a distribution is represented by a combination of components;
in some cases, multiple distributions will be represented by a single component.

For example, the mixture density shown in Tables 1 and 2 presents several contexts for isoleucine. A
pure isoleucine distribution would be given high probability by component 9, which gives high probability
to all conserved distributions. Components 5, 6, and 8 prefer isoleucine found in combination with other
amino acids. In producing an estimate for the expected amino acids, the formula (equation 15) gives those
components that are most likely to have generated the observed amino acids the greatest impact on the
estimation. Table 3 shows the change in the posterior probabilities of the components as a variable number
of isoleucines are observed (with no other amino acids).

Dirichlet mixtures also address the second drawback associated with substitution matrices|the impor-
tance of the actual number of residues observed|in the formula used to compute the expected amino acids.
In this formula, given no observations, the estimated amino acids probabilities approximate the background
distribution. But as more data becomes available, the estimate for a column becomes increasingly peaked
around the maximum likelihood estimate for that column (i.e., p̂i approaches ni= j~nj as j~nj increases). Im-
portantly, when the data indicate a residue is conserved at a particular position, the expected amino acid
probabilities produced by this method will remain focused on that residue, instead of being modi�ed to
include all the residues that substitute on average for the conserved residue.

Dirichlet mixtures were shown to give superior results in encoding multiple alignments and in database
discrimination experiments in comparison with various pseudocount and substitution-matrix-based methods
in (Karplus, 1995a; Tatusov et al., 1994; Brown et al., 1993; Heniko� and Heniko�, 1996).

2 Algorithm

2.1 Computing Amino Acid Probabilities

The raw frequencies in small samples are often poor approximations to the distribution of amino acids among
all proteins which the model is supposed to represent. This section will show how to use Dirichlet priors to
form p̂i estimates that are good approximations of the actual pi values.

A Dirichlet density with parameters � = (~�1; : : : ; ~�l; q1 : : : ; ql) de�nes a probability distribution ��
over all the possible distributions of amino acids. Given a column in a multiple alignment, we can combine
the prior probabilities for each amino acid distribution with the observed amino acid counts to form estimates
p̂i of the probabilities of each amino acid i at that position.

We assume that the distribution of amino acids can be modeled by the following generative stochastic
process:

1. First, a component j from the mixture � is chosen at random according to the mixture coe�cient qj.

2. Then a probability distribution ~p is chosen independently according to Prob
�
~p
�� ~�j�, the probability

de�ned by component j over all such distributions.

3. Finally, the observed amino acids are generated independently according to the distribution ~p. Thus
the count vector ~n summarizing the observed amino acids in a column will be distributed according
to the multinomial distribution with parameters ~p.

When � consists of a single component, the probability of the component is 1, and the stochastic process
consists of steps 2 and 3.

We can now de�ne the estimated probability of amino acid i, p̂i, given a Dirichlet density with parameters
� and observed amino acid counts ~n, as follows:

p̂i := Prob
�
amino acid i

��� �; ~n� (6)

=

Z
~p

Prob
�
amino acid i

��� ~p�Prob�~p ��� �; ~n� d~p : (7)

The �rst term in the integral, Prob
�
amino acid i

�� ~p�, is simply pi, the i
th element of the distribution

vector ~p. The second term, Prob
�
~p
�� �; ~n�, represents the posterior probability of the distribution ~p under

the Dirichlet density with parameters �, given that we have observed amino acid counts ~n. The integral rep-
resents the contributions from each probability distribution ~p, weighted according to its posterior probability,
of amino acid i. An estimate of this type is called a mean posterior estimate.

6

2.1.1 Computing probabilities using a single density (pseudocounts)

In the case of a single-component density with parameters ~�, the mean posterior estimate of the probability
of amino acid i is de�ned

p̂i :=

Z
~p

Prob
�
amino acid i

��� ~p�Prob�~p ��� ~�; ~n� d~p : (8)

By Lemma 4 (the proof of which is found in the Appendix) the posterior probability of each distribution
~p, given the count data ~n and the density with parameters ~�, is

Lemma 4:

Prob
�
~p
��� ~�; ~n� = �(j~�j+ j~nj)Q20

i=1 �(�i + ni)

20Y
i=1

p�i+ni�1
i ;

where � is the Gamma function, the continuous generalization of the integer factorial function (i.e., �(x+1) =
x!).

Here we can substitute pi for Prob
�
amino acid i

�� ~p� and the result of Lemma 4 into equation 8, giving

p̂i :=
�(j~�j+ j~nj)Q20
k=1 �(�k + nk)

Z
~p

pi

20Y
k=1

p�k+nk�1
k d~p : (9)

Now, noting the contribution of the pi term within the integral, and using equation (47) from Lemma

2, giving
R
~p

Q
i p

�i�1
i d~p =

Q
i
�(�i)

�(j~�j) ; we have

p̂i :=
�(j~�j+ j~nj)

�(j~�j+ j~nj+ 1)

�(�i + ni + 1)
Q

k 6=i �(�k + nk)Q20
k=1 �(�k + nk)

: (10)

Since �(n+1)
�(n) = n!

(n�1)! = n, we obtain

p̂i :=

Z
~p

piProb
�
~p
��� ~�; ~n� d~p =

ni + �i
j~nj+ j~�j

: (11)

The method in the case of a single Dirichlet density can thus be seen as adding a vector ~� of pseudocounts
to the vector ~n of observed counts, and then normalizing so that

P
i p̂i = 1.

Note, when j~nj = 0, the estimate produced is simply �i= j~�j, the normalized values of the parameters ~�,
which are the means of the Dirichlet density. While not necessarily the background frequency of the amino
acids in the training set, this mean is often a close approximation. Thus, in the absence of data, our estimate
of the expected amino acid probabilities will be close to the background frequencies. The computational
simplicity of the pseudocount method is one of the reasons Dirichlet densities are so attractive.

2.1.2 Computing probabilities using mixture densities

In the case of a mixture density, we compute the amino acid probabilities in a similar way:

p̂i := Prob
�
amino acid i

��� �; ~n� = Z
~p

Prob
�
amino acid i

��� ~p�Prob�~p ��� �; ~n� d~p : (12)

As in the case of the single density, we can substitute pi for Prob(amino acid i j ~p). In addition, since �
is a mixture of Dirichlet densities, by the de�nition of a mixture (equation 5), we can expand Prob(~p j�; ~n)
obtaining

p̂i :=

Z
~p

pi

0
@ lX

j=1

Prob
�
~p
��� ~�j; ~n�Prob�~�j ��� ~n;��

1
A d~p : (13)

7

In this equation, Prob
�
~�j
�� ~n;�� is the posterior probability of the jth component of the density, given

the vector of counts ~n (equation 16 below). It captures our assessment that the jth component was chosen
in step 1 of the stochastic process generating these observed amino acids. The �rst term, Prob(~p j ~�j; ~n),
then represents the probability of each distribution ~p, given component j and the count vector ~n.

Pulling out terms not depending on ~p from inside the integral gives us

p̂i :=
lX

j=1

Prob
�
~�j

��� ~n;��Z
~p

piProb(~p j ~�j; ~n) d~p : (14)

Substituting equation 11, 4

p̂i :=
lX

j=1

Prob
�
~�j

��� ~n;�� ni + �j;i
j~nj+ j~�jj

: (15)

Thus, instead of identifying one single component of the mixture that accounts for the observed data,
we determine how likely each individual component is to have produced the data. Then, each component
contributes pseudocounts proportional to the posterior probability that it produced the observed counts.
This probability is calculated using Bayes' Rule:

Prob
�
~�j

��� ~n;�� = qj Prob
�
~n
�� ~�j ; j~nj�

Prob
�
~n
�� �; j~nj� : (16)

Prob
�
~n
�� ~�j; j~nj� is the probability of the count vector ~n given the jth component of the mixture, and is

derived in Section A.3. The denominator, Prob
�
~n
�� �; j~nj�, is de�ned

Prob
�
~n
��� �; j~nj� = lX

k=1

qkProb
�
~n
��� ~�k; j~nj� : (17)

Equation 15 reveals a smooth transition between reliance on the prior information, in the absence of
su�cient data, and con�dence in the observed frequencies as the number of observations increases. When
j~nj = 0, p̂i is simply

P
j qj�j;i= j~�jj, the weighted sum of the mean of each Dirichlet density in the mixture.

As the number of observations increases, the ni values dominate the �i values, and this estimate approaches
the maximum likelihood estimate, p̂i := ni= j~nj.

When a component has a very small j~�j, it adds a very small bias to the observed amino acid frequencies.
Such components give high probability to all distributions peaked around individual amino acids. The
addition of such a small bias allows these components to not shift the estimated amino acids away from
conserved distributions, even given relatively small numbers of observed counts.

By contrast, components having a larger j~�j tend to favor mixed distributions, that is, combinations
of amino acids. In these cases, the individual �j;i values tend to be relatively large for those amino acids i
preferred by the component. When such a component has high probability given a vector of counts, these
�j;i have a corresponding in
uence on the expected amino acids predicted for that position. The estimates
produced may include signi�cant probability for amino acids not seen at all in the count vector under
consideration.

2.2 Estimation of Dirichlet Densities

In this section we give the derivation of the procedure to estimate the parameters of a mixture prior.
Much statistical analysis has been done on amino acid distributions found in particular secondary structural
environments in proteins. However, our primary focus in developing these techniques for protein modeling
has been to rely as little as possible on previous knowledge and assumptions, and instead to use statistical
techniques that uncover the underlying key information in the data. Consequently, instead of beginning with
secondary structure or other column labeling, our approach takes unlabeled training data (i.e., columns from
multiple alignments with no information attached) and attempts to discover those classes of distributions of

4Formula 15 was misreported in previous work (Brown et al., 1993; Karplus, 1995a; Karplus, 1995b).

8

amino acids that are intrinsic to the data. The statistical method directly estimates the most likely Dirichlet
mixture density through clustering observed counts of amino acids. In most cases, the common amino acid
distributions we �nd are easily identi�ed (e.g., aromatic residues), but we do not set out a priori to �nd
distributions representing known environments.

As we will show, the case where the prior consists of a single density follows directly from the general
case of a mixture. In the case of a mixture, we have two sets of parameters to estimate: the ~� parameters
for each component, and the q, or mixture coe�cient, for each component. In the case of a single density, we
need only estimate the ~� parameters. In our practice, we estimate these parameters in a two-stage process:
�rst we estimate the ~�, keeping the mixture coe�cients q �xed, then we estimate the q, keeping the ~�
parameters �xed. This two-stage process is iterated until all estimates stabilize.5

As the derivations that follow can become somewhat complex, we provide two tables in the Appendix
to help the reader: Table 8 summarizes our notation, and Table 9 contains an index to key derivations and
de�nitions.

Given a set of m columns from a variety of multiple alignments, we tally the frequency of each amino
acid in each column, with the end result being a vector of counts of each amino acid for each column in the
data set. Thus, our primary data is a set of m count vectors. Many multiple alignments of di�erent protein
families are included, so m is typically in the thousands.

We have used Maximum Likelihood to estimate the parameters � from the set of count vectors; that
is, we seek those parameters that maximize the probability of occurrence of the observed count vectors.
We assume the three-stage stochastic model described in Section 2.1 was used independently to generate
each of the count vectors in our observed set of count vectors. Under this assumption of independence, the
probability of the entire set of observed frequency count vectors is equal to the product of their individual
probabilities. Thus, we seek to �nd the model that maximizes

Qm
t=1 Prob

�
~nt
�� �; j~ntj�. If we take the

negative logarithm of this quantity, we obtain the encoding cost of all the count vectors under the mixture.
Since the encoding cost of the count vectors is inversely related to their probability, we can equivalently seek
a mixture density with parameters � that minimizes the encoding cost

f(�) = �

mX
t=1

logProb
�
~nt

��� �; j~ntj� : (18)

In the simplest case, we �x the number of components l in the Dirichlet mixture to a particular value
and then estimate the 21l � 1 parameters (twenty �i values for each of the components, and l � 1 mixture
coe�cients). In other experiments, we attempt to estimate l as well. The simplest method to estimate l
involves estimating several Dirichlet mixtures for each number of components, and choosing the smallest
mixture that performs well enough for our purposes. Unfortunately, even for �xed l, there does not appear
to be an e�cient method of estimating these parameters that is guaranteed to �nd the maximum likelihood
estimate. However, a variant of the standard estimation-maximization (EM) algorithm for mixture density
estimation works well in practice6. EM has been proved to result in closer and closer approximations to a
local optimumwith every iteration of the learning cycle; a global optimum, unfortunately, is not guaranteed
(Dempster et al., 1977). Since there are many rather di�erent local optima with similar performance, no
optimization technique is likely to �nd the global optimum. The mixture described in Tables 1 and 2 is the
best local optimum we have found in many di�erent optimizations.

2.2.1 Deriving the ~� parameters

Since we require that the �i be strictly positive, and we want the parameters upon which we will do gradient
descent to be unconstrained, we reparameterize, setting �j;i = ewj;i , where wj;i is an unconstrained real
number. Then, the partial derivative of f (equation 18) with respect to wj;i is

5This two-stage process is not necessary; we have also implemented an algorithm for mixture estimation that
optimizes all parameters simultaneously. However, the performance of these mixtures is no better, and the math is
more complex.

6An introduction to this method of mixture density estimation is given in (Duda and Hart, 1973). We have
modi�ed their procedure to estimate a mixture of Dirichlet rather than Gaussian densities.

9

@f(�)

@wj;i
= �

mX
t=1

@ log Prob
�
~nt
�� �; j~ntj�

@�j;i

@�j;i
@wj;i

: (19)

We will use two lemmas in this section, the proofs for which are given in the Appendix:

Lemma 5:

@ log Prob
�
~n
�� �; j~nj�

@�j;i
= Prob

�
~�j

��� ~n;�� @ log Prob
�
~n
�� ~�j; j~nj�

@�j;i
:

Lemma 6:

@ log Prob
�
~n
�� ~�; j~nj�

@�i
= 	(j~�j) �	(j~nj+ j~�j) + 	(ni + �i) �	(�i)

where 	(x) = �0(x)=�(x). Using Lemma 5, we obtain

@f(�)

@wj;i
= �

mX
t=1

Prob
�
~�j

��� ~nt;�� @ logProb
�
~nt
�� ~�j; j~ntj�

@�j;i

@�j;i
@wj;i

: (20)

Using Lemma 6, and the fact that @�j;i

@wj;i
= �j;i, we obtain

@f(�)

@wj;i
= �

mX
t=1

�j;iProb
�
~�j

��� ~nt;���	(j~�jj)� 	(j~ntj+ j~�jj) + 	(nt;i + �j;i)� 	(�j;i)
�
: (21)

To optimize the ~� parameters of the mixture, we do gradient descent on the weights ~w, taking a step in
the direction of the negative gradient (controlling the size of the step by the variable �, 0 < � � 1) during
each iteration of the learning cycle. Thus, the gradient descent rule in the mixture case can now be de�ned
as follows:

wnew
j;i := wold

j;i � �
@f(�)

@wj;i
(22)

:= wold
j;i + �

mX
t=1

�j;iProb
�
~�j

��� ~nt;���	(j~�jj)� 	(j~ntj+ j~�jj) + 	(nt;i + �j;i) �	(�j;i)
�
:(23)

Now, letting Sj =
Pm

t=1Prob
�
~�j
�� ~nt;��, this gives us

wnew
j;i := wold

j;i + � �j;i

Sj((j~�jj) �	(�j;i)) +

mX
t=1

Prob
�
~�j

��� ~nt;���	(nt;i + �j;i)�	(j~ntj+ j~�jj)
�!

:

(24)

In the case of a single density, Prob(~� j~n;�) = 1 for all vectors ~n, thus Sj =
Pm

t=1 Prob
�
~�
�� ~nt;�� = m,

and the gradient descent rule for a single density can be written as

wnew
i := wold

i + � �i

m ((j~�j)� 	(�i)) +

mX
t=1

�
	(nt;i + �i)� 	(j~ntj+ j~�j)

�!
: (25)

After each update of the weights, the ~� parameters are reset, and the process continued until the change
in the encoding cost (equation 18) falls below some pre-de�ned cuto�.

10

2.2.2 Mixture coe�cient estimation

In the case of a mixture of Dirichlet densities, the mixture coe�cients, q, of each component are also
estimated. However, since we require that the mixture coe�cients must be non-negative and sum to 1,
we �rst reparameterize, setting qj = Qj= jQj, where the Qj are constrained to be strictly positive, and

jQj =
Pl

j=1Qj . As in the �rst stage, we want to maximize the probability of the data given the model,

which is equivalent to minimizing the encoding cost (equation 18). In this stage, we take the derivative of
f with respect to Qj. However, instead of having to take iterative steps in the direction of the negative
gradient, as we did in the �rst stage, we can set the derivative to zero, and solve for those qj = Qj= jQj that
maximize the probability of the data. As we will see, however, the new qj are a function of the previous qj;
thus, this estimation process must also be iterated.

Taking the gradient of f with respect to Qj, we obtain

@f(�)

@Qj
= �

mX
t=1

@ logProb
�
~nt
�� �; j~ntj�

@Qj
: (26)

We introduce Lemma 8 (the proof for which is found in Section A.8),

Lemma 8:

@ logProb
�
~n
�� �; j~nj�

@Qj
=

Prob
�
~�j
�� ~n;��

Qj
�

1

jQj
:

Using Lemma 8, we obtain

@f(�)

@Qj
= �

mX
t=1

Prob

�
~�j
�� ~nt;��

Qj
�

1

jQj

!
(27)

=
m

jQj
�

Pm
t=1 Prob

�
~�j
�� ~nt;��

Qj
: (28)

Since the gradient must vanish for those mixture coe�cients giving the maximum likelihood, we set the
gradient to zero, and solve. Thus, the maximum likelihood setting for qj is

qj :=
Qj

jQj
(29)

:=
1

m

mX
t=1

Prob
�
~�j

��� ~nt;�� : (30)

Here, the reestimated mixture coe�cients7 are functions of the old mixture coe�cients, so we iterate
this process until the change in the encoding cost falls below the prede�ned cuto�.

In summary, when estimating the parameters of a mixture prior, we alternate between reestimating
the ~� parameters of each density in the mixture, by gradient descent on the ~w, resetting �j;i = ewj;i after
each iteration, followed by re-estimating and resetting the mixture coe�cients as described above, until the
process converges.

3 Implementation
Implementing Dirichlet mixture priors for use in hidden Markov models or other stochastic models of bio-
logical sequences is not di�cult, but there are many details that can cause problems if not handled carefully.

This section splits the implementation details into two groups: those that are essential for getting work-
ing Dirichlet mixture code (Section 3.1), and those that increase e�ciency, but are not essential (Section 3.2).

7It is easy to con�rm that these coe�cients sum to 1, as required, since
Pl

j=1

Pm

t=1
Prob

�
~�j
�� ~nt;�� =Pm

t=1

Pl

j=1
Prob

�
~�j
�� ~nt;�� =Pm

t=1
1 =m.

11

3.1 Essential details

In Section 2.1, we gave the formulas for computing the amino acid probabilities in the cases of a single
density (equation 11) and of a mixture density (equation 15).

For a single Dirichlet component, the estimation formula is trivial:

p̂i :=
ni + �i
j~nj+ j~�j

; (31)

and no special care is needed in the implementation. For the case of a multi-component mixture, the
implementation is not quite so straightforward.

As we showed in the derivation of equation 15,

p̂i :=
lX

j=1

Prob
�
~�j

��� ~n;�� ni + �j;i
j~nj+ j~�jj

: (32)

The interesting part for computation comes in computing Prob
�
~�j
�� ~n;�� (see equation 16). We can

expand Prob
�
~n
�� �; j~nj� using equation 17 to obtain

Prob
�
~�j

��� ~n;�� = qjProb
�
~n
�� ~�j; j~nj�Pl

k=1 qkProb
�
~n
�� ~�k; j~nj� : (33)

Note that this is a simple normalization of qjProb
�
~n
�� ~�j; j~nj� to sum to one. Rather than carry the

normalization through all the equations, we can work directly with Prob
�
~n
�� ~�j; j~nj�, and put everything

back together at the end.
First, we can expand Prob

�
~n
�� ~�j; j~nj� using Lemma 3 (the proof of which is found in Section A.3):

Prob
�
~n
��� ~�j; j~nj� = �(j~nj+ 1)�(j~�jj)

�(j~nj+ j~�jj)

20Y
i=1

�(ni + �j;i)

�(ni + 1)�(�j;i)
: (34)

If we rearrange some terms, we obtain

Prob
�
~n
��� ~�j; j~nj� =

Q20
i=1 �(ni + �j;i)

�(j~nj+ j~�jj)

�(j~�jj)Q20
i=1 �(�j;i)

�(j~nj+ 1)Q20
i=1 �(ni + 1)

: (35)

The �rst two terms are most easily expressed using the Beta function: B(x) =
Q20

i=1 �(xi)=�(j~xj), where,
as usual, j~xj =

P
i xi. This simpli�es the expression to

Prob
�
~n
��� ~�j; j~nj� = B (~n+ ~�j)

B (~�j)

�(j~nj+ 1)Q20
i=1 �(ni + 1)

: (36)

The remaining Gamma functions are not easily expressed with a Beta function, but they don't need to
be. Since they depend only on ~n and not on j, when we do the normalization to make the Prob

�
~�j
�� ~n;��

sum to one, this term will cancel out, giving us

Prob
�
~�j

��� ~n;�� = qj
B(~n+~�j)
B(~�j)Pl

k=1 qk
B(~n+~�k)
B(~�k)

: (37)

Plugging this formula into equation 32 gives us

p̂i :=

Pl
j=1 qj

B(~n+~�j)
B(~�j)

ni+�j;i

j~nj+j~�jjPl
k=1 qk

B(~n+~�k)
B(~�k)

: (38)

Since the denominator of equation 38 is independent of i, we can compute p̂i by normalizing

Xi =
lX

j=1

qj
B(~n+ ~�j)

B(~�j)

ni + �j;i
j~nj+ j~�jj

(39)

12

to sum to one. That is,

p̂i =
XiP20
k=1Xk

: (40)

The biggest problem that implementors run into is that these Beta functions can get very large or very
small|outside the range of the
oating-point representation of most computers. The obvious solution is to
work with the logarithm of the Beta function:

logB(x) = log

Q
i � (x(i))

� (j~xj)

=
X
i

log � (x(i)) � log � (j~xj) :

Most libraries of mathematical routines include the lgamma function which implements log �(x), and so using
the logarithm of the Beta function is not di�cult.

We could compute each Xi using only the logarithmic notation, but it turns out to be slightly more
convenient to use the logarithms just for the Beta functions:

Xi =
lX

j=1

qj
B(~�j + ~n)

B(~�j)

�j;i + ni
j~�jj+ j~nj

=
lX

j=1

qje
(logB(~�j+~n)�logB(~�j)) �j;i + ni

j~�jj+ j~nj
:

Some care is needed in the conversion from the logarithmic representation back to
oating-point, since
the ratio of the Beta functions may be so large or so small that it cannot be represented as
oating-point
numbers. Luckily, we do not really need to compute Xi, only p̂i = Xi=

P20
k=1Xk. This means that we

can divide Xi by any constant and the normalization will eliminate the constant. Equivalently, we can
freely subtract a constant (independent of j and i) from logB(~�j + ~n)� logB(~�j) before converting back to

oating-point. If we choose the constant to be maxj (logB(~�j + ~n)� logB(~�j)), then the largest logarithmic
term will be zero, and all the terms will be reasonable.8

3.2 E�ciency improvements

The previous section gave simple computation formulas for p̂i (equations 39 and 40). When computations of
p̂i are done infrequently (for example, for pro�les, where p̂i only needs to be computed once for each column
of the pro�le), those equations are perfectly adequate.

When recomputing p̂i frequently, as may be done in a Gibbs sampling program or training a hidden
Markov model, it is better to have a slightly more e�cient computation. Since most of the computation
time is spent in the lgamma function used for computing the log Beta functions, the biggest e�ciency gains
come from avoiding the lgamma computations.

If we assume that the �j;i and qj values change less often than the values for ~n (which is true of almost
every application), then it is worthwhile to precompute logB(~�j), cutting the computation time almost in
half.

If the ni values are mainly small integers (0 is common in all the applications we've looked at), then it
is worth pre-computing log�(�j;i), log �(�j;i + 1), log �(�j;i + 2), and so on, out to some reasonable value.
Precomputation should also be done for log�(j~�jj), log�(j~�jj+ 1), log�(j~�jj+ 2), and so forth. If all the ~n
values are small integers, this precomputation almost eliminates the lgamma function calls.

In some cases, it may be worthwhile to build a special-purpose implementation of log �(x) that caches
all calls in a hash table, and does not call lgamma for values of x that it has seen before. Even larger savings
are possible when x is close to previously computed values, by using interpolation rather than calling lgamma.

8We could still get
oating-point under
ow to zero for some terms, but the p̂ computation will still be about as
good as can be done within
oating-point representation.

13

4 Discussion
The methods employed to estimate and use Dirichlet mixture priors are shown to be �rmly based on
Bayesian statistics. While biological knowledge has been introduced only indirectly from the multiple
alignments used to estimate the mixture parameters, the mixture priors produced agree with accepted
biological understanding. The e�ectiveness of Dirichlet mixtures for increasing the ability of statistical
models to recognize homologous sequences has been demonstrated experimentally in (Brown et al., 1993;
Tatusov et al., 1994; Karplus, 1995a; Bailey and Elkan, 1995; Wang et al., 1996; Heniko� and Heniko�, 1996;
Hughey and Krogh, 1996).

The mixture priors we have estimated thus far have been on unlabeled multiple alignment columns|
columns with no secondary structure or other information attached. Previous work deriving structurally
informed distributions, such as that by L�uthy, McLachlan, and Eisenberg (L�uthy et al., 1991), has been
shown to increase the accuracy of pro�les in both database search and multiple alignment by enabling
them to take advantage of prior knowledge of secondary structure (Bowie et al., 1991). However, these
distributions cannot be used in a Bayesian framework, since there is no measure of the variance associated
with each distribution, and Bayes' rule requires that the observed frequency counts be modi�ed inversely
proportional to the variance in the distribution. Thus, to use these structural distributions one must assign a
variance arbitrarily. We plan to estimate Dirichlet mixtures for particular environments, and to make these
mixtures available on the World-Wide Web.

Dirichlet mixture priors address two primary weaknesses of substitution matrices: considering only the
relative frequency of the amino acids while ignoring the actual number of amino acids observed, and having
�xed substitution probabilities for each amino acid. One of the potentially most problematic consequences
of these drawbacks is that substitution matrices do not produce estimates that are conserved, or mostly
conserved, where the evidence is clear that an amino acid is conserved. The method presented here corrects
these problems. When little data is available, the amino acids predicted are those that are known to be
associated in di�erent contexts with the amino acids observed. As the available data increases, the amino
acid probabilities produced by this method converge to the observed frequencies in the data. In particular,
when evidence exists that a particular amino acid is conserved at a given position, the expected amino acid
estimates re
ect this preference.

Because of the sensitivity of Dirichlet mixtures to the number of observations, any signi�cant correlation
among the sequences must be handled carefully. One way to compensate for sequence correlation is by the use
of a sequence weighting scheme (Sibbald and Argos, 1990; Thompson et al., 1994a; Thompson et al., 1994b;
Heniko� and Heniko�, 1996). Dirichlet mixtures interact with sequence weighting in two ways. First,
sequence weighting changes the expected distributions somewhat, making mixed distributions more uniform.
Second, the total weight allotted the sequences plays a critical role when Dirichlet densities are used. If the
data is highly correlated, and this is not compensated for in the weighting scheme (by reducing the total
counts), the estimated amino acid distributions will be too close to the raw frequencies in the data, and
not generalized to include similar residues. Since most sequence weighting methods are concerned only
with relative weights, and pay little attention to the total weight allotted the sequences, we are developing
sequence weighting schemes that coordinate the interaction of Dirichlet mixtures and sequence weights.

Since the mixture presented in this paper was estimated and tested on alignments of fairly close homologs
(the BLOCKS (Heniko� and Heniko�, 1991) and HSSP (Sander and Schneider, 1991) alignment databases),
it may not accurately re
ect the distributions we would expect frommore remote homologs. We are planning
to train a Dirichlet mixture speci�cally to recognize true remote homologies, by a somewhat di�erent training
technique on a database of structurally aligned sequences.

Finally, as the detailed analysis of Karplus (Karplus, 1995a; Karplus, 1995b) shows, the Dirichlet mix-
tures already available are close to optimal as far as their capacity for assisting in computing estimates of
amino acid distributions, given a single-column context, and assuming independence between columns and
between sequences for a given column. Thus, further work in this area will perhaps pro�t by focusing on
obtaining information from relationships among the sequences (for instance, as revealed in a phylogenetic
tree) or in inter-columnar interactions.

The Dirichlet mixture prior from Table 1 is available electronically at our World-Wide Web site
http://www.cse.ucsc.edu/research/compbio/. In addition to the extensions described above, we plan to
make programs for using and estimating Dirichlet mixture densities available on our World-Wide Web and
ftp sites later this year. See our World-Wide Web site for announcements.

14

Acknowledgments
We gratefully acknowledge the input and suggestions of Stephen Altschul, Tony Fink, Lydia Gregoret, Steven
and Jorja Heniko�, Graeme Mitchison, and Chris Sander. Richard Lathrop made numerous suggestions that
improved the quality of the manuscript greatly, as did the anonymous referees. Special thanks to friends
at Laforia, Universit�e de Pierre et Marie Curie, in Paris, and the Biocomputing Group at the European
Molecular Biology Laboratory at Heidelberg, who provided workstations, support, and scienti�c inspiration
during the early stages of writing this paper. This work was supported in part by NSF grants CDA-
9115268, IRI-9123692, and BIR-9408579; DOE grant 94-12-048216, ONR grant N00014-91-J-1162, NIH
grant GM17129, a National Science Foundation Graduate Research Fellowship, and funds granted by the
UCSC Division of Natural Sciences. The Sanger Centre is supported by the Wellcome Trust. This paper is
dedicated to the memory of Tal Grossman, a dear friend and a true mensch.

15

References
Altschul, Stephen F.; Gish, Warren; Miller, Webb; Meyers, Eugene W.; and Lippman, David J. 1990. Basic local
alignment search tool. JMB 215:403{410.

Altschul, Stephen F. 1991. Amino acid substitution matrices from an information theoretic perspective. JMB
219:555{565.

Asai, K.; Hayamizu, S.; and Onizuka, K. 1993. HMM with protein structure grammar. In Proceedings of the Hawaii
International Conference on System Sciences, Los Alamitos, CA. IEEE Computer Society Press. 783{791.

Bailey, Timothy L. and Elkan, Charles 1995. The value of prior knowledge in discovering motifs with MEME. In
ISMB-95, Menlo Park, CA. AAAI/MIT Press. 21{29.

Baldi, P. and Chauvin, Y. 1994. Smooth on-line learning algorithms for hidden Markov models. Neural Computation
6(2):305{316.

Baldi, P.; Chauvin, Y.; Hunkapiller, T.; and McClure, M. A. 1992. Adaptive algorithms for modeling and analysis
of biological primary sequence information. Technical report, Net-ID, Inc., 8 Cathy Place, Menlo Park, CA 94305.

Barton, G. J. and Sternberg, M. J. 1990. Flexible protein sequence patterns: A sensitive method to detect weak
structural similarities. JMB 212(2):389{402.

Berger, J. 1985. Statistical Decision Theory and Bayesian Analysis. Springer-Verlag, New York.

Bernardo, J.M. and Smith, A.F.M. 1994. Bayesian Theory. John Wiley and Sons, �rst edition.

Bowie, J. U.; L�uthy, R.; and Eisenberg, D. 1991. A method to identify protein sequences that fold into a known
three-dimensional structure. Science 253:164{170.

Brown, M. P.; Hughey, R.; Krogh, A.; Mian, I. S.; Sj�olander, K.; and Haussler, D. 1993. Using Dirichlet mixture
priors to derive hidden Markov models for protein families. In Hunter, L.; Searls, D.; and Shavlik, J., editors 1993,
ISMB-93, Menlo Park, CA. AAAI/MIT Press. 47{55.

Bucher, Philipp; Karplus, Kevin; Moeri, Nicolas; and Ho�man, Kay 1996. A
exible motif search technique based
on generalized pro�les. Computers and Chemistry 20(1):3{24.

Churchill, G. A. 1989. Stochastic models for heterogeneous DNA sequences. Bull Math Biol 51:79{94.

Claverie, Jean-Michael 1994. Some useful statistical properties of position-weight matrices. Computers and Chem-

istry 18(3):287{294.

Dempster, A. P.; Laird, N. M.; and Rubin, D. B. 1977. Maximum likelihood from incomplete data via the EM

algorithm. J. Roy. Statist. Soc. B 39:1{38.

Doolittle, R. F. 1986. Of URFs and ORFs: A primer on how to analyze derived amino acid sequences. University
Science Books, Mill Valley, California.

Duda, R. O. and Hart, P. E. 1973. Pattern Classi�cation and Scene Analysis. Wiley, New York.

Eddy, S.R.; Mitchison, G.; and Durbin, R. 1995. Maximum discrimination hidden Markov models of sequence
consensus. J. Comput. Biol. 2:9{23.

Eddy, Sean 1995. Multiple alignment using hidden Markov models. In ISMB-95, Menlo Park, CA. AAAI/MIT
Press. 114{120.

Eddy, S.R. 1996. Hidden markov models. Current Opinions in Structural Biology.

George, David G.; Barker, Winona C.; and Hunt, Lois T. 1990. Mutation data matrix and its uses. Methods in

Enzymology 183:333{351.

Gradshteyn, I. S. and Ryzhik, I. M. 1965. Table of Integrals, Series, and Products. Academic Press, fourth edition.

Gribskov, Michael; McLachlan, Andrew D.; and Eisenberg, David 1987. Pro�le analysis: Detection of distantly
related proteins. PNAS 84:4355{4358.

Gribskov, M.; L�uthy, R.; and Eisenberg, D. 1990. Pro�le analysis. Methods in Enzymology 183:146{159.

Heniko�, Steven and Heniko�, Jorja G. 1991. Automated assembly of protein blocks for database searching. NAR
19(23):6565{6572.

Heniko�, Steven and Heniko�, Jorja G. 1992. Amino acid substitution matrices from protein blocks. PNAS

89:10915{10919.

Heniko�, Steven and Heniko�, Jorja G. 1993. Performance evaluation of amino acid substitution matrices. Proteins:
Structure, Function, and Genetics 17:49{61.

Heniko�, Jorja G. and Heniko�, Steven 1996. Using substitution probabilities to improve position-speci�c scoring
matrices. CABIOS.

Heniko�, Steven; Wallace, James C.; and Brown, Joseph P. 1990. Finding protein similarities with nucleotide
sequence databases. Methods in Enzymology 183:111{132.

16

Hughey, Richard and Krogh, Anders 1996. Hidden Markov models for sequence analysis: Extension and analysis of
the basic method. CABIOS 12(2):95{107.

Jones, David T.; Taylor, William R.; and Thornton, Janet M. 1992. The rapid generation of mutation data matrices
from protein sequences. CABIOS 8(3):275{282.

Karplus, Kevin 1995a. Regularizers for estimating distributions of amino acids from small samples. In ISMB-95,
Menlo Park, CA. AAAI/MIT Press.

Karplus, Kevin 1995b. Regularizers for estimating distributions of amino acids from small samples. Technical Report
UCSC-CRL-95-11, University of California, Santa Cruz. URL ftp://ftp.cse.ucsc.edu/pub/tr/ucsc-crl-95-11.ps.Z.

Krogh, A.; Brown, M.; Mian, I. S.; Sj�olander, K.; and Haussler, D. 1994. Hidden Markov models in computational
biology: Applications to protein modeling. JMB 235:1501{1531.

L�uthy, R.; McLachlan, A. D.; and Eisenberg, D. 1991. Secondary structure-based pro�les: Use of structure-
conserving scoring table in searching protein sequence databases for structural similarities. Proteins: Structure,
Function, and Genetics 10:229{239.

Nowlan, S. 1990. Maximum likelihood competitive learning. In Touretsky, D., editor 1990, Advances in Neural

Information Processing Systems, volume 2. Morgan Kaufmann. 574{582.

Rodionov, Michael A. and Johnson, Mark S. 1994. Residue-residue contact substitution probabilities derived from
aligned three-dimensional structures and the identi�cation of common folds. Protein Science 3:2366{2377.

Sander, C. and Schneider, R. 1991. Database of homology-derived protein structures and the structural meaning of
sequence alignment. Proteins 9(1):56{68.

Santner, T. J. and Du�y, D. E. 1989. The Statistical Analysis of Discrete Data. Springer Verlag, New York.

Sibbald, P. and Argos, P. 1990. Weighting aligned protein or nucleic acid sequences to correct for unequal repre-
sentation. JMB 216:813{818.

Stultz, C. M.; White, J. V.; and Smith, T. F. 1993. Structural analysis based on state-space modeling. Protein

Science 2:305{315.

Tatusov, Roman L.; Altschul, Stephen F.; and Koonin, Eugen V. 1994. Detection of conserved segments in proteins:
Iterative scanning of sequence databases with alignment blocks. PNAS 91:12091{12095.

Thompson, Julie D.; Higgins, Desmond G.; and Gibson, Toby J. 1994a. Improved sensitivity of pro�le searches
through the use of sequence weights and gap excision. CABIOS 10(1):19{29.

Thompson, Julie D.; Higgins, Desmond G.; and Gibson, Toby J. 1994b. CLUSTAL W: Improving the sensitivity
of progressive multiple sequence alignment through sequence weighting, position-speci�c gap penalties, and weight
matrix choice. NAR 22(22):4673{4680.

Wang, Jason T. L.; Marr, Thomas G.; Shasha, Dennis; Shapiro, Bruce; Chirn, Gung-Wei; and Lee, T. Y. 1996.
Complementary classi�cation approaches for protein sequences. Protein Engineering.

Waterman, M. S. and Perlwitz, M. D. 1986. Line geometries for sequence comparisons. Bull. Math. Biol. 46:567{577.

White, James V.; Stultz, Collin M.; and Smith, Temple F. 1994. Protein classi�cation by stochastic modeling and
optimal �ltering of amino-acid sequences. Mathematical Biosciences 119:35{75.

17

5 Tables

Parameters of Dirichlet mixture prior Blocks9

Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5 Comp. 6 Comp. 7 Comp. 8 Comp. 9
q 0.1829 0.0576 0.0898 0.0792 0.0831 0.0911 0.1159 0.0660 0.2340
j~�j 1.1806 1.3558 6.6643 2.0814 2.0810 2.5681 1.7660 4.9876 0.0995
A 0.2706 0.0214 0.5614 0.0701 0.0411 0.1156 0.0934 0.4521 0.0051
C 0.0398 0.0103 0.0454 0.0111 0.0147 0.0373 0.0047 0.1146 0.0040
D 0.0175 0.0117 0.4383 0.0194 0.0056 0.0124 0.3872 0.0624 0.0067
E 0.0164 0.0108 0.7641 0.0946 0.0102 0.0181 0.3478 0.1157 0.0061
F 0.0142 0.3856 0.0873 0.0131 0.1536 0.0517 0.0108 0.2842 0.0034
G 0.1319 0.0164 0.2591 0.0480 0.0077 0.0172 0.1058 0.1402 0.0169
H 0.0123 0.0761 0.2149 0.0770 0.0071 0.0049 0.0497 0.1003 0.0036
I 0.0225 0.0353 0.1459 0.0329 0.2996 0.7968 0.0149 0.5502 0.0021
K 0.0203 0.0139 0.7622 0.5766 0.0108 0.0170 0.0942 0.1439 0.0050
L 0.0307 0.0935 0.2473 0.0722 0.9994 0.2858 0.0277 0.7006 0.0059
M 0.0153 0.0220 0.1186 0.0282 0.2101 0.0758 0.0100 0.2765 0.0014
N 0.0482 0.0285 0.4415 0.0803 0.0061 0.0145 0.1878 0.1185 0.0041
P 0.0538 0.0130 0.1748 0.0376 0.0130 0.0150 0.0500 0.0974 0.0090
Q 0.0206 0.0230 0.5308 0.1850 0.0197 0.0113 0.1100 0.1266 0.0036
R 0.0236 0.0188 0.4655 0.5067 0.0145 0.0126 0.0386 0.1436 0.0065
S 0.2161 0.0291 0.5834 0.0737 0.0120 0.0275 0.1194 0.2789 0.0031
T 0.0654 0.0181 0.4455 0.0715 0.0357 0.0883 0.0658 0.3584 0.0036
V 0.0654 0.0361 0.2270 0.0425 0.1800 0.9443 0.0254 0.6617 0.0029
W 0.0037 0.0717 0.0295 0.0112 0.0127 0.0043 0.0032 0.0615 0.0027
Y 0.0096 0.4196 0.1210 0.0287 0.0264 0.0167 0.0187 0.1993 0.0026

Table 1: Parameters of Mixture Prior Blocks9
This table contains the parameters de�ning a nine-component mixture prior estimated on unweighted columns from
the Blocks database. The �rst row gives the mixture coe�cient (q) for each component. The second row gives the
j~�j =

P
i
�i for each component. Rows A (alanine) through Y (tyrosine) contain the values of each of the components'

~� parameters for that amino acid. Section 1.4 gives details on how to interpret these values.

It is informative to examine this table and Table 2 in unison. The mixture coe�cients (q) of the densities reveal that
in this mixture, the components peaked around the aromatic and the uncharged hydrophobic residues (components
2 and 8) represent the smallest fraction of the columns used to train the mixture, and the component representing
all the highly conserved residues (component number 9) represents the largest fraction of the data captured by any
single component.

Examining the j~�j of each component shows that the two components with the largest values of j~�j (and so the most
mixed distributions) represent the polars (component 3) and the uncharged hydrophobics (component 8), respectively.
The component with the smallest j~�j (component 9) gives probability to pure distributions.

This mixture prior is available via anonymous ftp at our ftp site, ftp://ftp.cse.ucsc.edu/pub/protein/dirichlet/
and at our World-Wide Web site http://www.cse.ucsc.edu/research/compbio/dirichlet.html.

18

Analysis of 9-Component Dirichlet Mixture Prior Blocks9

Comp. Ratio (r) of amino acid frequency relative to background frequency
8 � r 4 � r � 8 2 � r � 4 1 � r � 2 1=2 � r < 1 1=4 � r < 1=2 1=8 � r < 1=4 r < 1=8

1 SAT CGP NVM QHRIKFLDW EY
2 Y FW H LM NQICVSR TPAKDGE
3 QE KNRSHDTA MPYG VLIWCF
4 KR Q H NETMS PWYALGVCI DF
5 LM I FV WYCTQ APHR KSENDG
6 IV LM CTA F YSPWN EQKRDGH
7 D EN QHS KGPTA RY MVLFWIC
8 M IVLFTYCA WSHQRNK PEG D
9 PGW CHRDE NQKFYTLAM SVI

Table 2: Preferred amino acids of Blocks9

The function used to compute the ratio of the frequency of amino acid i in component j relative to the

background frequency predicted by the mixture as a whole is �j;i=j~�jjP
k
qk�k;i=j~�kj

.

An analysis of the amino acids favored by each component reveals the following:

Component 1 favors small neutral residues.

Component 2 favors the aromatics.

Component 3 gives high probability to most of the polar residues (except for C, Y, and W).

Component 4 gives high probability to positively charged amino acids and residues with NH2 groups.

Component 5 gives high probability to residues that are aliphatic or large and non-polar.

Component 6 prefers I and V (aliphatic residues commonly found in Beta sheets), and allows substitutions
with L and M.

Component 7 gives high probability to negatively charged residues, allowing substitutions with certain of
the hydrophilic polar residues.

Component 8 gives high probability to uncharged hydrophobics, with the exception of glycine.

Component 9 gives high probability to distributions peaked around individual amino acids (especially P,
G, W, and C).

19

Posterior probability of the components of Dirichlet mixture Blocks9 given 1-10 isoleucines
Ile Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5 Comp. 6 Comp. 7 Comp. 8 Comp. 9
1
2
3
4
5
6
7
8
9
10

0.00 0.25 0.50 0.75 1.00

Table 3: The posterior probability of each component in Dirichlet mixture Blocks9 (equation 16) given
1 to 10 isoleucines. Initially, component 6, which prefers I and V found jointly, is most likely, followed by
components 5 and 8, which like aliphatic residues in general. As the number of observed isoleucines increases,
component 9, which favors pure distributions of any type, increases in probability, but component 6 remains
fairly probable. The more mixed distributions get increasingly unlikely as the number of observed isoleucines
increases.

20

Method used to estimate amino acid probabilities given 1 isoleucine
Substitution Matrices Pseudocount Dirichlet Mixture
Blosum62 SM-Opt. PC-Opt. Blocks9

A 0.055 0.028 0.046 0.037
C 0.018 0.008 0.010 0.010
D 0.020 0.006 0.026 0.008
E 0.020 0.011 0.031 0.012
F 0.044 0.025 0.021 0.027
G 0.022 0.011 0.033 0.012
H 0.010 0.005 0.014 0.006
I 0.253 0.517 0.495 0.472

K 0.027 0.011 0.031 0.014
L 0.147 0.117 0.046 0.117

M 0.037 0.026 0.017 0.030
N 0.017 0.009 0.025 0.010
P 0.018 0.008 0.018 0.008
Q 0.016 0.008 0.023 0.010
R 0.019 0.010 0.027 0.012
S 0.027 0.015 0.039 0.020
T 0.048 0.025 0.033 0.028
V 0.171 0.146 0.042 0.149

W 0.006 0.003 0.006 0.004
Y 0.024 0.011 0.017 0.013

Table 4: Estimated amino acid probabilities using various methods, given one isoleucine.

Tables 4, 5, 6 and 7 give amino acid probability estimates produced by di�erent methods, given a varying
number of isoleucines observed (and no other amino acids). Methods used to estimate these probabilities
include two substitution matrices: Blosum62, which does Gribskov average score (Gribskov et al., 1987)
using the Blosum-62 matrix (Heniko� and Heniko�, 1992), and SM-Opt, which does matrix multiply with
matrix optimized for the Blocks database (Karplus, 1995a); one pseudocount method, PC-Opt, which is a
single-component Dirichlet density optimized for the Blocks database (Karplus, 1995a); and the Dirichlet
mixture Blocks9, the nine-component Dirichlet mixture given in Tables 1 and 2.

In order to interpret the changing amino acid probabilities produced by the Dirichlet mixture, Blocks9, we
recommend examining this table in conjunction with Table 3. Table 3 shows the changing contribution of
the components in the mixture as the number of isoleucines increases. In the estimate produced by the
Dirichlet mixture, isoleucine has probability just under 0:5 when a single isoleucine is observed, and the
other aliphatic residues have signi�cant probability. This reveals the in
uence of components 5 and 6, with
their preference for allowing substitutions with valine, leucine and methionine. By ten observations, the
number of isoleucines observed dominates the pseudocounts added for other amino acids, and the amino acid
estimate is peaked around isoleucine.

The pseudocount method PC-opt also converges to the observed frequencies in the data, as the number of
isoleucines increases, but does not give any signi�cant probability to the other aliphatic residues when the
number of isoleucines is small.

By contrast, the substitution matrices give increased probability to the aliphatic residues, but the estimated
probabilities remain �xed as the number of isoleucines increases.

21

Method used to estimate amino acid probabilities given 3 isoleucines
Substitution Matrices Pseudocount Dirichlet Mixture
Blosum62 SM-Opt. PC-Opt. Blocks9

A 0.055 0.028 0.024 0.018
C 0.018 0.008 0.005 0.005
D 0.020 0.006 0.014 0.003
E 0.020 0.011 0.016 0.004
F 0.044 0.025 0.011 0.013
G 0.022 0.011 0.017 0.006
H 0.010 0.005 0.007 0.002
I 0.253 0.517 0.737 0.737

K 0.027 0.011 0.016 0.005
L 0.147 0.117 0.024 0.059

M 0.037 0.026 0.009 0.015
N 0.017 0.009 0.013 0.004
P 0.018 0.008 0.009 0.004
Q 0.016 0.008 0.012 0.004
R 0.019 0.010 0.014 0.004
S 0.027 0.015 0.020 0.008
T 0.048 0.025 0.017 0.013
V 0.171 0.146 0.022 0.089

W 0.006 0.003 0.003 0.002
Y 0.024 0.011 0.009 0.006

Table 5: Estimated amino acid probabilities using various methods, given three isoleucines. See the caption
for Table 4 for details.

Method used to estimate amino acid probabilities given 5 isoleucines
Substitution Matrices Pseudocount Dirichlet Mixture
Blosum62 SM-Opt. PC-Opt. Blocks9

A 0.055 0.028 0.016 0.010
C 0.018 0.008 0.004 0.003
D 0.020 0.006 0.009 0.002
E 0.020 0.011 0.011 0.002
F 0.044 0.025 0.008 0.007
G 0.022 0.011 0.012 0.004
H 0.010 0.005 0.005 0.001
I 0.253 0.517 0.822 0.846

K 0.027 0.011 0.011 0.003
L 0.147 0.117 0.016 0.034

M 0.037 0.026 0.006 0.008
N 0.017 0.009 0.009 0.002
P 0.018 0.008 0.006 0.002
Q 0.016 0.008 0.008 0.002
R 0.019 0.010 0.009 0.002
S 0.027 0.015 0.014 0.004
T 0.048 0.025 0.012 0.007
V 0.171 0.146 0.015 0.054

W 0.006 0.003 0.002 0.001
Y 0.024 0.011 0.006 0.003

Table 6: Estimated amino acid probabilities using various methods, given �ve isoleucines. See the caption
for Table 4 for details.

22

Method used to estimate amino acid probabilities given 10 isoleucines
Substitution Matrices Pseudocount Dirichlet Mixture

Blosum62 Blocks-Opt. Blocks-Opt. Blocks9
A 0.055 0.028 0.009 0.004
C 0.018 0.008 0.002 0.001
D 0.020 0.006 0.005 0.001
E 0.020 0.011 0.006 0.001
F 0.044 0.025 0.004 0.003
G 0.022 0.011 0.006 0.002
H 0.010 0.005 0.003 0.001
I 0.253 0.517 0.902 0.942

K 0.027 0.011 0.006 0.001
L 0.147 0.117 0.009 0.012

M 0.037 0.026 0.003 0.003
N 0.017 0.009 0.005 0.001
P 0.018 0.008 0.003 0.001
Q 0.016 0.008 0.005 0.001
R 0.019 0.010 0.005 0.001
S 0.027 0.015 0.008 0.002
T 0.048 0.025 0.006 0.003
V 0.171 0.146 0.008 0.020

W 0.006 0.003 0.001 0.001
Y 0.024 0.011 0.003 0.001

Table 7: Estimated amino acid probabilities using various methods, given ten isoleucines. See the caption
for Table 4 for details.

23

A Appendix

j~xj =
P

i
xi, where ~x is any vector.

~n = n1; : : : ; n20 is a vector of counts from a column in a multiple alignment. The symbol ni refers to the
number of amino acids i in the column. The tth such observation in the data is denoted ~nt.

~p = (p1; : : : ; p20),
P

pi = 1, pi � 0, are the parameters of the multinomial distributions from which the ~n
are drawn.

P is the set of all such ~p.

~� = (�1; : : : ; �20) s.t. �i > 0, are the parameters of a Dirichlet density. The parameters of the jth

component of a Dirichlet mixture are denoted ~�j. The symbol �j;i refers to the i
th parameter of the

jth component of a mixture.

qj = Prob(~�j) is the mixture coe�cient of the jth component of a mixture.

� = (q1; : : : ; ql; ~�1; : : : ; ~�l) = all the parameters of the Dirichlet mixture.

~w = (w1; : : : ; w20), are weight vectors, used during gradient descent to train the Dirichlet density parameters
~�. After each training cycle, �j;i is set to ewj;i . The symbol wj;i is the value of the i

th parameter of
the jth weight vector. The nomenclature weights comes from arti�cial neural networks.

m = the number of columns from multiple alignments used in training.

l = the number of components in a mixture.

� = eta, the learning rate used to control the size of the step taken during each iteration of gradient descent.

Table 8: Summary of notation.

24

f(�) = �
Pm

t=1
log(Prob

�
~nt
�� �; j~ntj�) (18)

(the encoding cost of all the count vectors given the mixture|the function minimized)

�(j~nj + 1) = n! (for integer n � 0) (43)
(Gamma function)

	(x) = @ log �(x)
@x

= �0(x)
�(x) (64)

(Psi function)

Prob
�
~n
�� ~p; j~nj� = �(j~nj+ 1)

Q20

i=1

p
ni
i

�(ni+1)
(44)

(the probability of ~n under the multinomial distribution with parameters ~p)

Prob
�
~n
�� ~�; j~nj� = �(j~nj+1) �(j~�j)

�(j~nj+j~�j)

Q20

i=1
�(ni+�i)

�(ni+1)�(�i)
(51)

(the probability of ~n under the Dirichlet density with parameters ~�)

Prob
�
~n
�� �; j~nj� =

Pl

k=1
qk Prob(~n j ~�k; j~nj) (17)

(the probability of ~n given the entire mixture prior)

Prob
�
~�j
�� ~n;�� =

qj Prob(~n j ~�j ;j~nj)

Prob
�
~n

���;j~nj� (16)

(shorthand for the posterior probability of the jth component of the mixture
given the vector of counts ~n)

Table 9: Index to key derivations and de�nitions.

25

A.1 Lemma 1. Prob (~n j ~p; j~nj) = �(j~nj+ 1)
Q20

i=1
p
ni
i

�(ni+1)

Proof:

For a given vector of counts ~n, with pi being the probability of seeing the ith amino acid, and j~nj =
P

i
ni,

there are j~nj!
n1!n2!:::n20 !

distinct permutations of the amino acids which result in the count vector ~n. If we allow for

the simplifying assumption that each amino acid is generated independently (i.e., the sequences in the alignment are

uncorrelated), then each such permutation has probability
Q20

i=1 p
ni
i . Thus, the probability of a given count vector ~n

given the multinomial parameters ~p is

Prob
�
~n

��� ~p; j~nj� =
j~nj!

n1!n2! : : : n20!

20Y
i=1

pnii (41)

= j~nj!

20Y
i=1

pnii
ni!

: (42)

To enable us to handle real-valued data (such as that obtained from using a weighting scheme on the sequences
in the training set), we introduce the Gamma function, the continuous generalization of the integer factorial function,

�(n+ 1) = n! : (43)

Substituting the Gamma function, we obtain the equivalent form

Prob
�
~n

��� ~p; j~nj� = �(j~nj+ 1)

20Y
i=1

pnii
�(ni + 1)

: (44)

26

A.2 Lemma 2. Prob (~p j ~�) = �(j~�j)Q20

i=1
�(�i)

Q20
i=1 p

�i�1
i

Proof:

Under the Dirichlet density with parameters ~�, the probability of the distribution ~p (where pi � 0, and
P

i
pi = 1)

is de�ned as follows:

Prob(~p j ~�) =

Q20

i=1 p
�i�1
iR

~p2P

Q
i
p�i�1
i d~p

: (45)

We introduce two formulas concerning the Beta function|its de�nition (Gradshteyn and Ryzhik, 1965, p. 948)

B(x; y) =

Z 1

0

tx�1(1� t)y�1 dt

=
�(x)�(y)

�(x+ y)
;

and its combining formula (Gradshteyn and Ryzhik, 1965, p. 285)Z b

0

tx�1(b� t)y�1 dt = bx+y�1B(x;y) :

This allows us to write the integral over all ~p vectors as a multiple integral, rearrange some terms, and obtainZ
~p2P

Y
i

p�i�1
i d~p = B(�1; �2 + : : :+ �20)B(�2; �3 + : : :+ �20) : : :B(�19; �20) (46)

=

Q
i
�(�i)

�(j~�j)
: (47)

We can now give an explicit de�nition of the probability of the amino acid distribution ~p given the Dirichlet
density with parameters ~�:

Prob(~p j ~�) =
�(j~�j)Q20

i=1
�(�i)

20Y
i=1

p�i�1
i : (48)

27

A.3 Lemma 3. Prob (~n j ~�; j~nj) = �(j~nj+1)�(j~�j)
�(j~nj+j~�j)

Q20
i=1

�(ni+�i)
�(ni+1)�(�i)

Proof:

We can substitute (44) and (48) into the identity

Prob
�
~n

��� ~�; j~nj� =

Z
~p2P

Prob
�
~n

��� ~p; j~nj�Prob(~p j ~�)d~p; (49)

giving

=

Z
~p2P

�(j~nj+ 1)�(j~�j)Q20

i=1
(�(ni + 1) �(�i))

20Y
i=1

pni+�i�1
i d~p : (50)

Pulling out terms not depending on ~p from inside the integral, using the result from equation (47), and rear-
ranging terms, we obtain

=
�(j~nj+ 1) �(j~�j)

�(j~nj+ j~�j)

20Y
i=1

�(ni + �i)

�(ni + 1)�(�i)
: (51)

28

A.4 Lemma 4. Prob (~p j ~�;~n) = �(j~�j+j~nj)Q20

i=1
�(�i+ni)

Q20
i=1 p

�i+ni�1
i

Proof:

By repeated application of the rule for conditional probability, the probability of the distribution ~p, given the
Dirichlet density with parameters ~�, and the observed amino acid count vector ~n is de�ned

Prob
�
~p

��� ~�; ~n� =
Prob

�
~p; ~�; ~n

�� j~nj�
Prob

�
~�; ~n

�� j~nj� (52)

=
Prob

�
~n
�� ~p; ~�; j~nj�Prob(~p; ~�)

Prob
�
~n
�� ~�; j~nj�Prob(~�) (53)

=
Prob

�
~n
�� ~p; ~�; j~nj�Prob �~p �� ~��
Prob

�
~n
�� ~�; j~nj� : (54)

However, once the point ~p is �xed, the probability of ~n no longer depends on ~�. Hence,

Prob
�
~p

��� ~�; ~n� = Prob
�
~n
�� ~p; j~nj�Prob �~p �� ~��

Prob
�
~n
�� ~�; j~nj� : (55)

At this point, we apply the results from previous derivations for quantities Prob
�
~n
�� ~p; j~nj� (equation 44),

Prob
�
~p
�� ~�� (equation 48), and Prob

�
~n
�� ~�; j~nj� (equation 51). This gives us

Prob
�
~p

��� ~�; ~n� =

�
�(j~nj+1)Q
i
�(ni+1)

Q
i
pnii

��
�(j~�j)Q
i
�(�i)

Q
i
p�i�1
i

�
�(j~nj+ j~�j)

Q
i
�(ni + 1)�(�i)

�(j~nj+ 1) �(j~�j)
Q

i
�(ni + �i)

: (56)

Most of the terms cancel, and we have

Prob
�
~p

��� ~�; ~n� =
�(j~�j+ j~nj)Q20

i=1
�(�i + ni)

20Y
i=1

p�i+ni�1
i : (57)

Note that this is the expression for a Dirichlet density with parameters ~�+ ~n. This property, that the posterior
density of � is from the same family as the prior, characterizes all conjugate priors, and is one of the properties that
make Dirichlet densities so attractive.

29

A.5 Lemma 5.
@ log Prob

�
~nj�;j~nj

�
@�j;i

= Prob (~�j j ~n;�)
@ log Prob

�
~nj~�j;j~nj

�
@�j;i

Proof:

The derivative with respect to �j;i of the log likelihood of each count vector ~n given the mixture is

@ log Prob
�
~n
�� �; j~nj�

@�j;i
=

1

Prob
�
~n
�� �; j~nj�

@Prob
�
~n
�� �; j~nj�

@�j;i
: (58)

Applying equation 17, this gives us

@ log Prob
�
~n
�� �; j~nj�

@�j;i
=

1

Prob
�
~n
�� �; j~nj�

@
PL

k=1
qk Prob

�
~n
�� ~�k; j~nj�

@�j;i
: (59)

Since the derivative of Prob
�
~n
�� ~�k; j~nj� with respect to �j;i is zero for all k 6= j, and the mixture coe�cients

(the qk) are independent parameters, this yields

@ log Prob
�
~n
�� �; j~nj�

@�j;i
=

qj

Prob
�
~n
�� �; j~nj�

@Prob
�
~n
�� ~�j; j~nj�

@�j;i
: (60)

We rearrange equation (16) somewhat, and replace qj=Prob
�
~n
�� �; j~nj� by its equivalent, obtaining

@ log Prob
�
~n
�� �; j~nj�

@�j;i
=

Prob
�
~�j
�� ~n;��

Prob
�
~n
�� ~�j; j~nj�

@Prob
�
~n
�� ~�j; j~nj�

@�j;i
: (61)

Here, again using the fact that @ log(f(x))
@x

= 1
f(x)

@f(x)
@x

, we obtain the �nal form

@ log Prob
�
~n
�� �; j~nj�

@�j;i
= Prob

�
~�j

��� ~n;�� @ log Prob
�
~n
�� ~�j; j~nj�

@�j;i
: (62)

30

A.6 Lemma 6.
@ log Prob

�
~nj~�;j~nj

�
@�i

= 	(j~�j)� 	(j~nj+ j~�j) + 	(ni + �i)�	(�i)

Proof:

In this proof, we use Lemma 3 giving

Prob
�
~n

��� ~�; j~nj� =
�(j~nj+ 1)�(j~�j)

�(j~nj+ j~�j)

20Y
i=1

�(ni + �i)

�(ni + 1)�(�i)
:

Since the derivative of terms not depending on �i are zero, we obtain that for a single vector of counts ~n,

@ log Prob
�
~n
�� ~�; j~nj�

@�i
=

@ log �(j~�j)

@�i
�

@ log �(j~nj+ j~�j)

@�i
+

@ log �(ni + �i)

@�i
�

@ log �(�i)

@�i
: (63)

Now, if we substitute the shorthand

	(x) =
@ log �(x)

@x
=

�0(x)

�(x)
; (64)

we have
@ log Prob

�
~n
�� ~�; j~nj�

@�i
= 	(j~�j)�	(j~nj+ j~�j) + 	(ni + �i)�	(�i) : (65)

31

A.7 Lemma 7.
@Prob

�
~nj�;j~nj

�
@Qi

=
Prob

�
~nj~�i;j~nj

�
�Prob

�
~nj�;j~nj

�
jQj

Proof:

Substituting equation (17), giving Prob
�
~n
�� �; j~nj� =Pl

j=1
qj Prob(~n j ~�j; j~nj) and replacing qj by Qj= jQj, we

obtain

@Prob
�
~n
�� �; j~nj�

@Qi

=
@
Pl

j=1
(Qj= jQj)Prob

�
~n
�� ~�j; j~nj�

@Qi

: (66)

As the derivative of a sum is the sum of the derivatives, we can use the standard product rule for di�erentiation,
and obtain

@Prob
�
~n
�� �; j~nj�

@Qi

=

lX
j=1

(Qj= jQj)

@Prob
�
~n
�� ~�j; j~nj�

@Qi

+Prob
�
~n

��� ~�j; j~nj� @(Qj= jQj)

@Qi

!
: (67)

Since
@Prob

�
~n

��~�j ;j~nj�
@Qi

= 0 for all j, this gives us

@Prob
�
~n
�� �; j~nj�

@Qi

=

lX
j=1

Prob
�
~n

��� ~�j; j~nj� @(Qj= jQj)

@Qi

: (68)

Taking the derivative of the fraction (Qj= jQj) with respect to Qi, we obtain

@(Qj= jQj)

@Qi

= jQj�1 @Qj

@Qi

+Qj

@ jQj�1

@Qi

: (69)

The �rst term, jQj�1 @Qj

@Qi
, is zero when j 6= i, and is 1

jQj when j = i. The second term, Qj
@jQj�1

@Qi
, is simply

�Qj

jQj2
.

Thus, this gives us

@Prob
�
~n
�� �; j~nj�

@Qi

=
Prob

�
~n
�� ~�i; j~nj�
jQj

�

lX
j=1

Prob
�
~n

��� ~�j; j~nj� Qj

jQj2
: (70)

Here, qj = Qj= jQj allows us to replace Qj= jQj
2 with qj= jQj, giving us

=
Prob

�
~n
�� ~�i; j~nj��Pl

j=1 qjProb
�
~n
�� ~�j; j~nj�

jQj
: (71)

At this point, we use equation 17 and obtain

@Prob
�
~n
�� �; j~nj�

@Qi

=
Prob

�
~n
�� ~�i; j~nj�� Prob

�
~n
�� �; j~nj�

jQj
: (72)

32

A.8 Lemma 8.
@ logProb

�
~nj�;j~nj

�
@Qj

=
Prob

�
~�jj~n;�

�
Qj

� 1
jQj

Proof:

Using Lemma 7, we can derive

@ log Prob
�
~n
�� �; j~nj�

@Qj

=
1

Prob
�
~n
�� �; j~nj�

@Prob
�
~n
�� �; j~nj�

@Qj

(73)

=
1

Prob
�
~n
�� �; j~nj�

Prob
�
~n
�� ~�j; j~nj�� Prob

�
~n
�� �; j~nj�

jQj
(74)

=

Prob

�
~n
�� ~�j; j~nj�

Prob
�
~n
�� �; j~nj� � 1

!
= jQj : (75)

If we rearrange equation 16, we obtain
Prob

�
~n

��~�j ;j~nj�
Prob

�
~n

���;j~nj� =
Prob(~�j j ~n;�)

qj
. This allows us to write

@ log Prob
�
~n
�� �; j~nj�

@Qj

=

�
Prob(~�j j ~n;�)

qj
� 1

�
= jQj : (76)

Now we can use the identity qj = Qj= jQj, obtaining the equivalent

@ log Prob
�
~n
�� �; j~nj�

@Qj

=
Prob

�
~�j
�� ~n;��

Qj

�
1

jQj
: (77)

33

