Estimating Statistical Significance for Reverse-sequence Null Models

Kevin Karplus

University of California, Santa Cruz

Supported in part by NSF grant DBI-9808007, DOE grant DE-FG03-99ER62849, and NSF grant EIA-9905322

- What is a null model?
- Why use the reverse-sequence null?
- Two approaches to statistical significance.
- What distribution do we expect for scores?
- Fitting the distribution.
- Does calibrating the E-values help?

- The model M is a computable function that assigns a probability $\operatorname{Prob}(A \mid M)$ to each string A.
- When given a string A, we want to know how likely the model is. That is, we want to compute something like Prob $(M \mid A)$.
- Bayes Rule:

$$\operatorname{Prob}\left(M\mid A\right)=\operatorname{Prob}\left(A\mid M\right)\frac{\operatorname{Prob}(M)}{\operatorname{Prob}(A)}\;.$$

• Problem: Prob(A) and Prob(M) are inherently unknowable.

• Standard solution: ask how much more likely M is than some null hypothesis (represented by a $null\ model$).

$$\frac{\operatorname{Prob}(M \mid A)}{\operatorname{Prob}(N \mid A)} = \frac{\operatorname{Prob}(A \mid M)}{\operatorname{Prob}(A \mid N)} \frac{\operatorname{Prob}(M)}{\operatorname{Prob}(N)}.$$

- $\frac{\operatorname{Prob}(M)}{\operatorname{Prob}(N)}$ is the *prior odds ratio*, and represents our belief in the likelihood of the model before seeing any data.
- $\frac{\operatorname{Prob}(M|A)}{\operatorname{Prob}(N|A)}$ is the *posterior odds ratio*, and represents our belief in the likelihood of the model after seeing the data.
- We can generalize to a forced choice among many models (M_1, \ldots, M_n)

$$\frac{\operatorname{Prob}(M_i \mid A)}{\Sigma_i \operatorname{Prob}(M_j \mid A)} = \frac{\operatorname{Prob}(A \mid M_i) \operatorname{Prob}(M_i)}{\Sigma_i \operatorname{Prob}(A \mid M_j) \operatorname{Prob}(M_j)}.$$

The $Prob(M_i)$ values can be scaled arbitrarily without affecting the ratio.

- Null model is an i.i.d (independent, identically distributed) model, that is, each letter is treated as being independently drawn from the background distribution.
- Prob $(A \mid N, \text{len } (A)) = \prod_{i=1}^{\text{len}(A)} \text{Prob}(A_i)$.
- Prob $(A \mid N) = \text{Prob}(\text{string of length len}(A)) \prod_{i=1}^{\text{len}(A)} \text{Prob}(A_i)$.
- The length modeling is often omitted, but one must be careful then to normalize the probabilities correctly.

- When using the standard null model, certain sequences and HMMs have anomalous behavior. Many of the problems are due to unusual composition—a large number of some usually rare amino acid.
- For example, metallothionein, with 24 cysteines in only 61 total amino acids, scores well on any model with multiple highly conserved cysteines.
- We avoid this (and several other problems) by using a reversed model M^r as the null model.
- The probability of a sequence in M^r is exactly the same as the probability of the reversal of the sequence given M.
- If we assume that M and M^r are equally likely, then

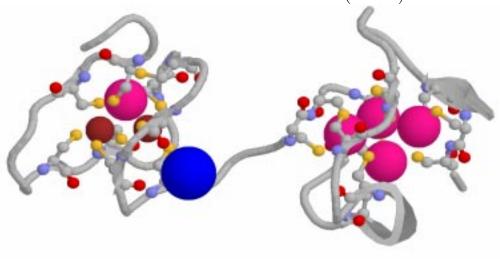
$$\frac{\operatorname{Prob}(M \mid S)}{\operatorname{Prob}(M^r \mid S)} = \frac{\operatorname{Prob}(S \mid M)}{\operatorname{Prob}(S \mid M^r)}.$$

• This method corrects for composition biases, length biases, and several subtler biases.

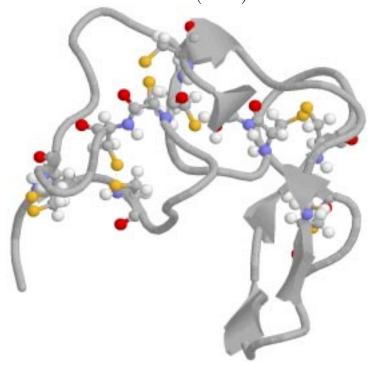
A cysteine-rich protein, such as metallothionein, can match any HMM that has several highly-conserved cysteines, even if they have quite different structures:

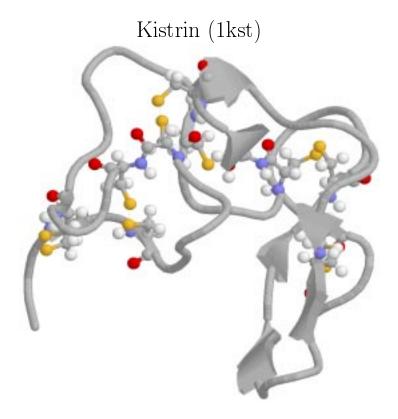
		cost in nats	
		model –	model –
HMM	sequence	standard null	reversed-model
1kst	4mt2	-21.15	0.01
1kst	1tabI	-15.04	-0.93
4mt2	1kst	-15.14	-0.10
4mt2	1tabI	-21.44	-1.44
1tabI	1kst	-17.79	-7.72
1tabI	4mt2	-19.63	-1.79

Metallothionein Isoform II (4mt2)

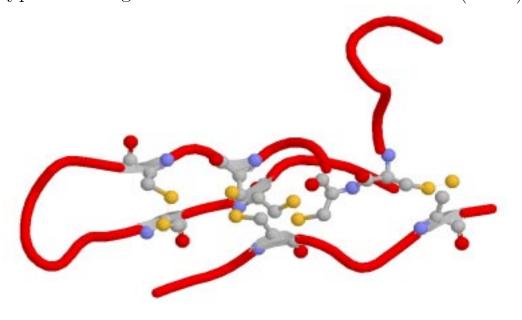


Kistrin (1kst)





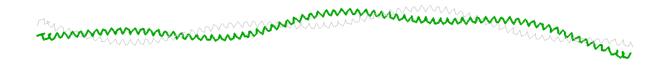
Trypsin-binding domain of Bowman-Birk Inhibitor (1tabI)



Long helices can provide strong similarity signals from the periodic hydrophobicity, even when the overall folds are quite different:

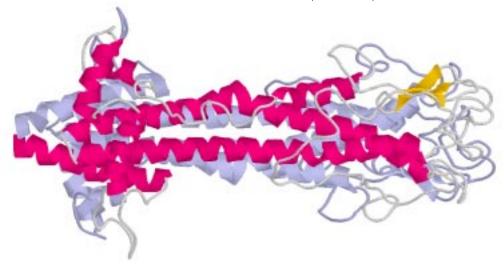
		cost in nats, normalized using	
$_{\mathrm{HMM}}$	sequence	Null model	${\rm reversed\text{-}model}$
1av1A	2tmaA	-22.06	2.13
1 av 1A	1aep	-21.25	1.03
1 av 1 A	1cii	-13.67	-1.75
1 av 1 A	1 vsgA	-7.89	-0.51
2tmaA	1cii	-20.62	0.46
2 tmaA	1 av 1 A	-17.96	1.01
2 tmaA	1aep	-12.01	0.78
2 tmaA	1 vsgA	-8.25	0.08
1vsgA	2tmaA	-14.82	-1.20
1 vsgA	1 av 1 A	-13.04	-2.68
1 vsgA	1aep	-13.02	-3.52
1 vsgA	1cii	-11.12	0.28
1aep	1av1A	-11.30	1.79
1aep	2 tmaA	-10.73	1.06
1aep	1cii	-8.35	1.38
1aep	1 vsgA	-6.87	0.53
1cii	2tmaA	-23.24	-1.48
1cii	1 av 1 A	-19.49	-5.62
1cii	1aep	-12.85	-1.77
1cii	1 vsgA	-10.20	-1.57

Tropomyosin (2tmaA)

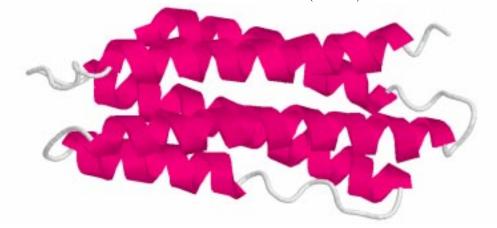


Colicin Ia (1cii)

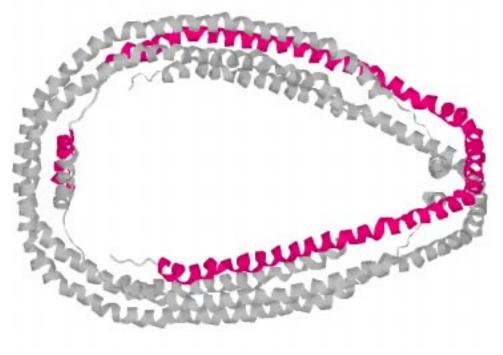
Flavodoxin mutant (1vsgA)

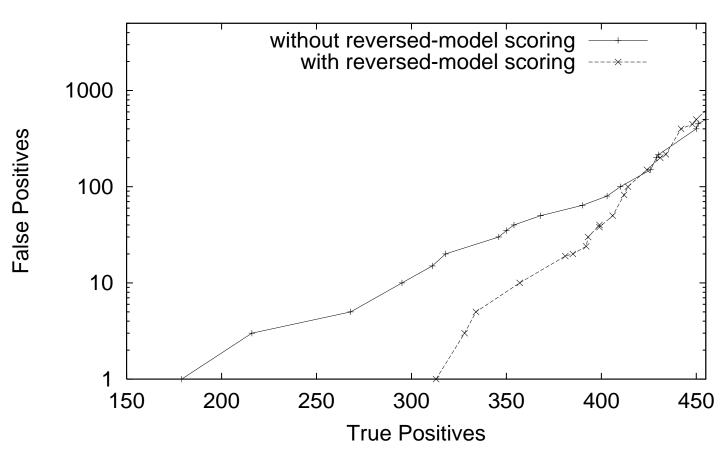


Apolipophorin III (1aep)



Apolipoprotein A-I (1av1A)





- The statistical significance of a hit, P_1 , is the probability of getting a score as good as the hit "by chance," when scoring a single "random" sequence.
- When searching a database of N sequences, the significance is best reported as an E-value—the expected number of sequences that would score that well by chance: $E = P_1 N$.
- Some people prefer the p-value: $P_N = 1 (1 P_1)^N$, For large N, $P_N \approx 1 e^{-E}$, so P_N is essentially the same as E for small E-values.
- I prefer to use E-values, because our best scores are often not significant, and it is easier to distinguish between E-values of 10, 100, and 1000 than between p-values of 0.999955, 1-4E-44, and 1-5E-435

• (Markov's inequality) For any scoring scheme that uses

$$\ln \frac{\text{Prob}\left(\text{seq} \mid M_1\right)}{\text{Prob}\left(\text{seq} \mid M_2\right)}$$

the probability of a score better than T is less than e^{-T} for sequences distributed according to M_2 . This method is independent of the actual probability distributions. We have had good results with this method.

• (Classical parameter fitting) If the "random" sequences are not drawn from the distribution M_2 , but from some other distribution, then we can try to fit some parameterized family of distributions to scores from a random sample, and use the parameters to compute P_1 and E values for scores of real sequences.

Bad assumption 1: The scores with a standard null model are distributed according to an extreme-value distribution:

$$P(\ln \text{Prob}(\text{seq} \mid M) > T) \approx G_{k,\lambda}(T) = 1 - \exp(-ke^{\lambda T})$$
.

Bad assumption 2: The scores with the model and the reverse-model are independent of each other.

Result: The scores using a reverse-sequence null model are distributed according to a sigmoidal function:

$$P(\text{score} > T) = (1 - e^{\lambda T})^{-1}$$
.

(Derivation for *costs*, not *scores*, so more negative is better.)

$$P(\cot < T) = \int_{-\infty}^{\infty} P(c_M = x) \int_{x-T}^{\infty} P(c_{M'} = y) dy dx$$

$$= \int_{-\infty}^{\infty} P(c_M = x) P(c_{M'} > x - T) dx$$

$$= \int_{-\infty}^{\infty} k \lambda \exp(-ke^{\lambda x}) e^{\lambda x} \exp(-ke^{\lambda(x-T)}) dx$$

$$= \int_{-\infty}^{\infty} k \lambda e^{\lambda x} \exp(-k(1 + e^{-\lambda T}) e^{\lambda x}) dx$$

If we introduce a temporary variable to simplify the formulas: $K_T = k(1 + \exp(-\lambda T))$, then

$$P(\cot < T) = \int_{-\infty}^{\infty} (1 + e^{-\lambda T})^{-1} K_T \lambda e^{\lambda x} \exp(-K_T e^{\lambda x}) dx$$

$$= (1 + e^{-\lambda T})^{-1} \int_{-\infty}^{\infty} K_T \lambda e^{\lambda x} \exp(-K_T e^{\lambda x}) dx$$

$$= (1 + e^{-\lambda T})^{-1} \int_{-\infty}^{\infty} g_{K_T, \lambda}(x) dx$$

$$= (1 + e^{-\lambda T})^{-1}$$

- The λ parameter simply scales the scores (or costs) before the sigmoidal distribution, so λ can be set by matching the observed variance to the theoretically expected variance.
- The mean is theoretically (and experimentally) zero.
- The variance is easily computed, though derivation is messy:

$$E(c^2) = (\pi^2/3)\lambda^{-2}$$
.

 \bullet λ is easily fit by matching the variance:

$$\lambda \approx \pi \sqrt{N/(3\sum_{i=0}^{N-1}c_i^2)}$$
.

- We made two dangerous assumptions: extreme-value and independence.
- To give ourselves some room to compensate for deviations from these assumptions, we can add another parameter to the family.
- We can replace $-\lambda T$ with any strictly decreasing odd function.
- Somewhat arbitrarily, we chose

$$-\operatorname{sign}(T)|\lambda T|^{\tau}$$

so that we could match a "stretched exponential" tail.

• For two-parameter symmetric distribution, we can fit using 2nd and 4th moments:

$$E(c^2) = \lambda^{-2/\tau} K_{2/\tau}$$

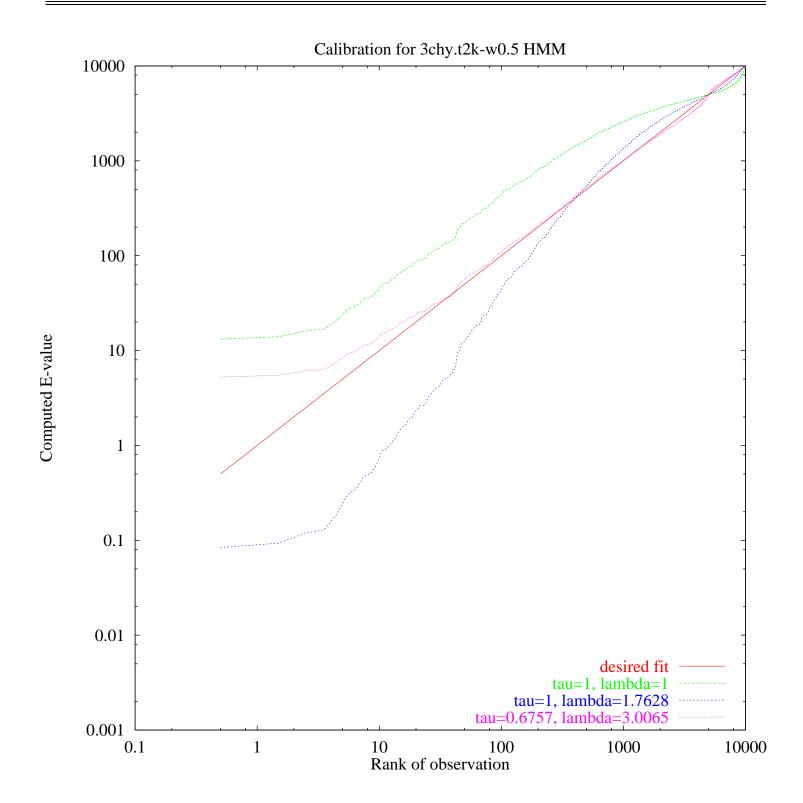
 $E(c^4) = \lambda^{-4/\tau} K_{4/\tau}$

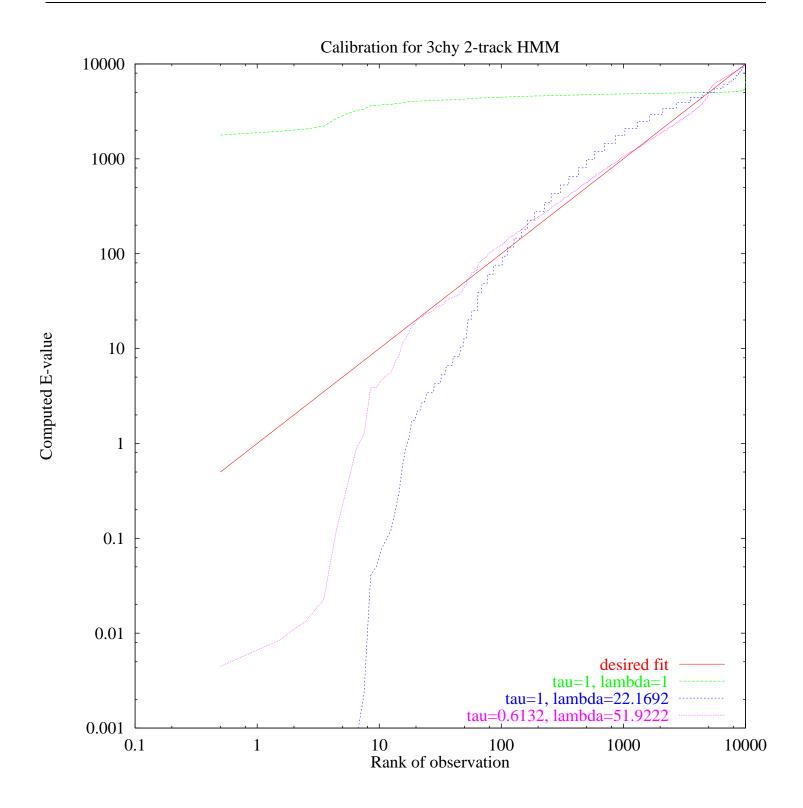
where K_x is a constant:

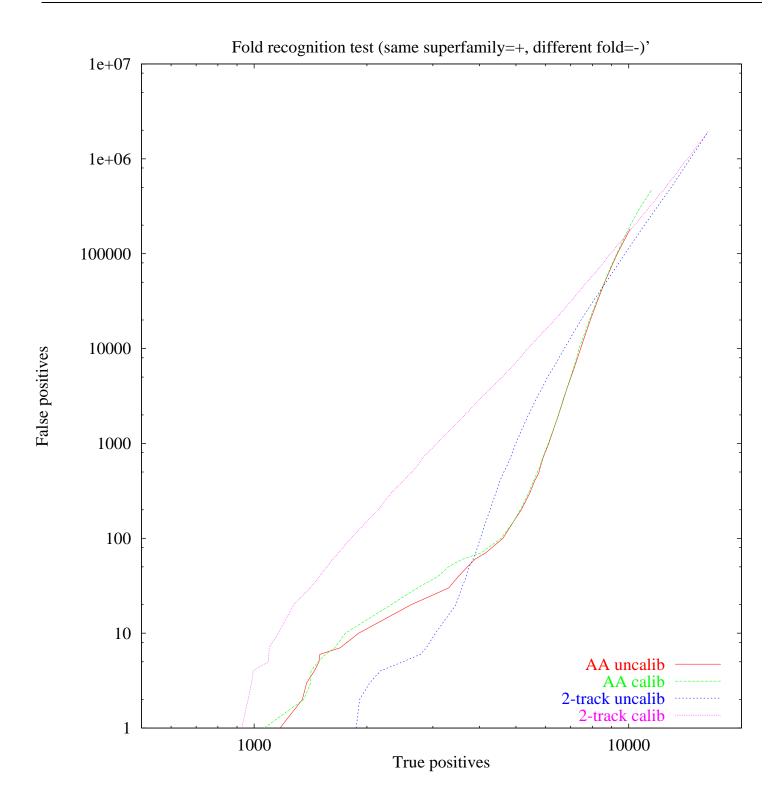
$$K_x = \int_{-\infty}^{\infty} y^x (1 + e^y)^{-1} (1 + e^{-y})^{-1} dy$$

= $-\Gamma(x+1) \sum_{k=1}^{\infty} (-1)^k / k^x$.

- The ratio $E(c^4)/(E(c^2))^2$ is independent of λ and monotonic in τ , so we can fit τ by binary search.
- Once τ is chosen we can fit λ using $E(c^2)$.







- Why did calibrated fold recognition fail for 2-track HMMs?
- "Random" secondary structure sequences (i.i.d. model) are **not** representative of real sequences.
- Fixes:
 - Better secondary structure decoy generator.
 - Use real database, but avoid problems with contamination by true positives by taking only costs > 0 to get estimate of $E(\cos^2)$ and $E(\cos^4)$.

