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Outline of Talk

e What is a null model?

e Why use the reverse-sequence null?

e T'wo approaches to statistical significance.
e What distribution do we expect for scores?
e itting the distribution.

e Does calibrating the E-values help?

P
[l

-




Scoring HMMs and Bayes Rule

e The model M is a computable function that assigns a probability
Prob (A | M) to each string A.

e When given a string A, we want to know how likely the model is. That is,

we want to compute something like Prob (M | A).

e Bayes Rule:
Prob(M)
Prob(A)

e Problem: Prob(A) and Prob(M) are inherently unknowable.

Prob (M | A) = Prob (A | M)
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Null models

e Standard solution: ask how much more likely M is than some null
hypothesis (represented by a null model).
Prob (M | A)  Prob (A | M) Prob(M)
Prob (N | A)  Prob(A | N) Prob(N)

o 7%))?82((%)) is the prior odds ratio, and represents our belief in the likelihood

of the model before seeing any data.

Prob(a|4) . : : e
° M is the posterior odds ratio, and represents our belief in the
Prob(n|4)

likelihood of the model after seeing the data.

e We can generalize to a forced choice among many models (M, ..., M,)

»;Prob (M; | A) £, Prob (A | M;)Prob(M;)
The Prob(M;) values can be scaled arbitrarily without affecting the ratio.




Standard Null Model

e Null model is an i.i.d (independent, identically distributed) model, that is,
each letter is treated as being independently drawn from the background
distribution.

¢ len(A)
Prob (A | N,len (A)) = I Prob(4;) .
i=1

¢ len(a)
Prob (A | N) = Prob(string of length len (A)) Prob(A;) .
—1

]

e The length modeling is often omitted, but one must be careful then to

normalize the probabilities correctly.




Reversed model for null

e When using the standard null model, certain sequences and HMMs have
anomalous behavior. Many of the problems are due to unusual

composition—a large number of some usually rare amino acid.

e For example, metallothionein, with 24 cysteines in only 61 total amino

acids, scores well on any model with multiple highly conserved cysteines.

e We avoid this (and several other problems) by using a reversed model M"

as the null model.

e The probability of a sequence in M" is exactly the same as the probability

of the reversal of the sequence given M.

o If we assume that M and M" are equally likely, then
Prob (M | S)  Prob (S| M)
Prob (M7 | S)  Prob (S| M) "

e This method corrects for composition biases, length biases, and several

subtler biases.




Composition as source of error

A cysteine-rich protein, such as metallothionein, can match any HMM that

has several highly-conserved cysteines, even if they have quite different

structures:
cost in nats

model — model —
HMM sequence | standard null | reversed-model
lkst  4mt2 -21.15 0.01
lkst  1tabl -15.04 -0.93
4mt2  1kst -15.14 -0.10
4mt2  1tabl -21.44 -1.44
1tabl  1kst -17.79 -7.72
Itabl 4mt2 -19.63 -1.79

P
[l

-




Composition examples

Metallothionein Isoform IT (4mt2)




Composition examples

Kistrin (1kst)

Trypsin-binding domain of Bowman-Birk Inhibitor (1tabl)




Long helices as source of error

Long helices can provide strong similarity signals from the periodic hydrophobicity,

even when the overall folds are quite different:

cost in nats, normalized using
HMM  sequence | Null model | reversed-model
lavlA  2tmaA -22.06 2.13
lavlA  laep -21.25 1.03
lavlA  lcii -13.67 -1.75
lavlA  1vsgA -7.89 -0.51
2tmaA  lcii -20.62 0.46
2tmaA  lavlA -17.96 1.01
2tmaA  laep -12.01 0.78
2tmaA  lvsgA -8.25 0.08
lvsgA  2tmaA -14.82 -1.20
lvsgA  lavlA -13.04 -2.68
lvsgA  laep -13.02 -3.52
lvsgA  lcii -11.12 0.28
laep lavlA -11.30 1.79
laep 2tmaA -10.73 1.06
laep lcii -8.35 1.38
laep lvsgA -6.87 0.53
1cii 2tmaA -23.24 -1.48
lcii lavlA -19.49 -5.62
lcii laep -12.85 -1.77
lcii lvsgA -10.20 -1.57




Helix examples

Tropomyosin (2tmaA)

Colicin Ta (1cii)




Helix examples

Apolipophorin III (1aep)




Discrimination Performance as a Function of Null Model
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What is Statistical Significance?

e The statistical significance of a hit, P, is the probability of getting a score

as good as the hit “by chance,” when scoring a single “random” sequence.

e When searching a database of N sequences, the significance is best
reported as an E-value—the expected number of sequences that would
score that well by chance: £ = P|N.

e Some people prefer the p-value: Py =1 — (1 — P;)¥, For large N,

Py ~1—eF so Py is essentially the same as E for small E-values.

e | prefer to use E-values, because our best scores are often not significant,
and it is easier to distinguish between E-values of 10, 100, and 1000 than
between p-values of 0.999955, 1 — 4E-44, and 1 — 5E-435




Two Approaches to Statistical Significance

e (Markov’s inequality) For any scoring scheme that uses

Prob (seq | M)
Prob (seq | Ms)

In

the probability of a score better than 7 is less than e~ for sequences
distributed according to Ms. This method is independent of the actual
probability distributions. We have had good results with this method.

e (Classical parameter fitting) If the “random” sequences are not drawn
from the distribution Ms, but from some other distribution, then we can
try to fit some parameterized family of distributions to scores from a
random sample, and use the parameters to compute P; and E values for

scores of real sequences.




What family should we use for reverse-sequence null?

Bad assumption 1: The scores with a standard null model are distributed

according to an extreme-value distribution:
P (InProb (seq | M) > T) ~ GpA(T) = 1 — exp(—ke) .
Bad assumption 2: The scores with the model and the reverse-model are
independent of each other.

Result: The scores using a reverse-sequence null model are distributed

according to a sigmoidal function:

P(score > T) = (1 — )71,
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Derivation of sigmoidal distribution

(Derivation for costs, not scores, so more negative is better.)

P(cost < T) = /_OZO P(cy = ) /xofT P(cyr = y)dydx
= /_OZO P(cyr =) Pleyy > o — T)dx
= /_OZO kX exp(—ke ) e exp(—ke 1)) dz
= /_OZO ke exp(—k(1 + e M)eM)dx

If we introduce a temporary variable to simplify the formulas:
Kp = k(1 + exp(=AT)), then

P(cost < T) = /_ozo(l + e "N Ko e exp(— Kre)da
(14 e )71 /_o; Krhe™ exp(—Krpe)dx
= (141 /_o; i (T)dx

(1+eM)!




Fitting A

e The A\ parameter simply scales the scores (or costs) before the sigmoidal
distribution, so A can be set by matching the observed variance to the

theoretically expected variance.
e The mean is theoretically (and experimentally) zero.

e The variance is easily computed, though derivation is messy:
E(c*) = (7?/3)A 2.

e )\ is easily fit by matching the variance:

N-1
zWJN/(B > ).
i=0




Two-parameter family

e We made two dangerous assumptions: extreme-value and independence.

e To give ourselves some room to compensate for deviations from these

assumptions, we can add another parameter to the family.
e We can replace —AT with any strictly decreasing odd function.
e Somewhat arbitrarily, we chose
— sign(T)|\T|"

so that we could match a “stretched exponential” tail.




Fitting a two-parameter family

e For two-parameter symmetric distribution, we can fit using 2nd and 4th

moments:

E(c®) = XKy,
E(c) = XKy,

where K, 1s a constant:
K, = /_O; Yy (14+e)) (1L +e ) tdy

— D(z+1) é(—nk/w .

e The ratio E(c?)/(E(c?))? is independent of A and monotonic in 7, so we

can fit 7 by binary search.

e Once 7 is chosen we can fit \ using E(c?).
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Example for single-track HMM

Calibration for 3chy.t2k-w0.5 HMM
10000 . . . .

1000 ]

100 v __

Computed E-value

0.01 .
desired fit ——

tau=1, lambda=1.7628
tau=0.6757, lambda=3.0065
0001 * * —L : . 1 . M- . . L .
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Rank of observation
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Example for two-track HMM

Calibration for 3chy 2-track HMM
10000 . . . .

1000 ' ’

100 | )

Computed E-value

0.1 r ]

0.01 B ]
| desired fit ———

‘ tau=1, lambda=22.1692 -
: tau=0.6132, lambda=51.9222
0001 * * —L - | . - . . L1 \

0.1 1 10 100 1000 10000
Rank of observation

"

e il
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Fold recognition results

Fold recognition test (same superfamily=+, different fold=-)’
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Wave hands and say “but we can fix that”

e Why did calibrated fold recognition fail for 2-track HMMs?

e “Random” secondary structure sequences (i.i.d. model) are not

representative of real sequences.
e Hixes:

— Better secondary structure decoy generator.

— Use real database, but avoid problems with contamination by true

positives by taking only costs > 0 to get estimate of F(cost?) and
E(cost?).
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