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Outline of Talk

� What is a null model?

� Why use the reverse-sequence null?

� Two approaches to statistical signi�cance.

� What distribution do we expect for scores?

� Fitting the distribution.

� Does calibrating the E-values help?
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Scoring hmms and Bayes Rule

� The model M is a computable function that assigns a probability

Prob (A jM) to each string A.

� When given a string A, we want to know how likely the model is. That is,

we want to compute something like Prob (M j A).

� Bayes Rule:

Prob (M j A) = Prob (A jM)
Prob(M)

Prob(A)
:

� Problem: Prob(A) and Prob(M) are inherently unknowable.
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Null models

� Standard solution: ask how much more likely M is than some null

hypothesis (represented by a null model).

Prob (M j A)

Prob (N j A)
=

Prob (A jM)

Prob (A j N)

Prob(M)

Prob(N)
:

� Prob(M)

Prob(N)
is the prior odds ratio, and represents our belief in the likelihood

of the model before seeing any data.

�
Prob

�
MjA

�

Prob
�
NjA

� is the posterior odds ratio, and represents our belief in the

likelihood of the model after seeing the data.

� We can generalize to a forced choice among many models (M1; : : : ;Mn)

Prob (Mi j A)
P
j Prob (Mj j A)

=
Prob (A jMi) Prob(Mi)

P
j Prob (A jMj) Prob(Mj)

:

The Prob(Mj) values can be scaled arbitrarily without a�ecting the ratio.
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Standard Null Model

� Null model is an i.i.d (independent, identically distributed) model, that is,

each letter is treated as being independently drawn from the background

distribution.

�
Prob (A j N; len (A)) =

len(A)Y
i=1

Prob(Ai) :

�
Prob (A j N) = Prob(string of length len (A))

len(A)Y
i=1

Prob(Ai) :

� The length modeling is often omitted, but one must be careful then to

normalize the probabilities correctly.
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Reversed model for null

� When using the standard null model, certain sequences and hmms have

anomalous behavior. Many of the problems are due to unusual

composition|a large number of some usually rare amino acid.

� For example, metallothionein, with 24 cysteines in only 61 total amino

acids, scores well on any model with multiple highly conserved cysteines.

� We avoid this (and several other problems) by using a reversed model M r

as the null model.

� The probability of a sequence in M r is exactly the same as the probability

of the reversal of the sequence given M .

� If we assume that M and M r are equally likely, then

Prob (M j S)

Prob (M r j S)
=

Prob (S jM)

Prob (S jM r)
:

� This method corrects for composition biases, length biases, and several

subtler biases.
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Composition as source of error

A cysteine-rich protein, such as metallothionein, can match any HMM that

has several highly-conserved cysteines, even if they have quite di�erent

structures:

cost in nats

model � model �

HMM sequence standard null reversed-model

1kst 4mt2 -21.15 0.01

1kst 1tabI -15.04 -0.93

4mt2 1kst -15.14 -0.10

4mt2 1tabI -21.44 -1.44

1tabI 1kst -17.79 -7.72

1tabI 4mt2 -19.63 -1.79
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Composition examples

Metallothionein Isoform II (4mt2)

Kistrin (1kst)
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Composition examples

Kistrin (1kst)

Trypsin-binding domain of Bowman-Birk Inhibitor (1tabI)

9



Long helices as source of error

Long helices can provide strong similarity signals from the periodic hydrophobicity,

even when the overall folds are quite di�erent:

cost in nats, normalized using

HMM sequence Null model reversed-model

1av1A 2tmaA -22.06 2.13

1av1A 1aep -21.25 1.03

1av1A 1cii -13.67 -1.75

1av1A 1vsgA -7.89 -0.51

2tmaA 1cii -20.62 0.46

2tmaA 1av1A -17.96 1.01

2tmaA 1aep -12.01 0.78

2tmaA 1vsgA -8.25 0.08

1vsgA 2tmaA -14.82 -1.20

1vsgA 1av1A -13.04 -2.68

1vsgA 1aep -13.02 -3.52

1vsgA 1cii -11.12 0.28

1aep 1av1A -11.30 1.79

1aep 2tmaA -10.73 1.06

1aep 1cii -8.35 1.38

1aep 1vsgA -6.87 0.53

1cii 2tmaA -23.24 -1.48

1cii 1av1A -19.49 -5.62

1cii 1aep -12.85 -1.77

1cii 1vsgA -10.20 -1.57
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Helix examples

Tropomyosin (2tmaA)

Colicin Ia (1cii)

Flavodoxin mutant (1vsgA)

11



Helix examples

Apolipophorin III (1aep)

Apolipoprotein A-I (1av1A)
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Discrimination Performance as a Function of Null Model
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What is Statistical Signi�cance?

� The statistical signi�cance of a hit, P1, is the probability of getting a score

as good as the hit \by chance," when scoring a single \random" sequence.

� When searching a database of N sequences, the signi�cance is best

reported as an E-value|the expected number of sequences that would

score that well by chance: E = P1N .

� Some people prefer the p-value: PN = 1� (1� P1)
N , For large N ,

PN � 1� e�E , so PN is essentially the same as E for small E-values.

� I prefer to use E-values, because our best scores are often not signi�cant,

and it is easier to distinguish between E-values of 10, 100, and 1000 than

between p-values of 0.999955, 1 � 4E-44, and 1 � 5E-435

14



Two Approaches to Statistical Signi�cance

� (Markov's inequality) For any scoring scheme that uses

ln
Prob (seq jM1)

Prob (seq jM2)

the probability of a score better than T is less than e�T for sequences

distributed according to M2. This method is independent of the actual

probability distributions. We have had good results with this method.

� (Classical parameter �tting) If the \random" sequences are not drawn

from the distribution M2, but from some other distribution, then we can

try to �t some parameterized family of distributions to scores from a

random sample, and use the parameters to compute P1 and E values for

scores of real sequences.
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What family should we use for reverse-sequence null?

Bad assumption 1: The scores with a standard null model are distributed

according to an extreme-value distribution:

P (ln Prob (seq jM) > T ) � Gk;�(T ) = 1� exp(�ke�T ) :

Bad assumption 2: The scores with the model and the reverse-model are

independent of each other.

Result: The scores using a reverse-sequence null model are distributed

according to a sigmoidal function:

P (score > T ) = (1� e�T )�1 :
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Derivation of sigmoidal distribution

(Derivation for costs, not scores, so more negative is better.)

P (cost < T ) =
Z
1

�1

P (cM = x)
Z
1

x�T
P (cM 0 = y)dydx

=
Z
1

�1

P (cM = x)P (cM 0 > x� T )dx

=
Z
1

�1

k� exp(�ke�x)e�x exp(�ke�(x�T ))dx

=
Z
1

�1

k�e�x exp(�k(1 + e��T )e�x)dx

If we introduce a temporary variable to simplify the formulas:

KT = k(1 + exp(��T )), then

P (cost < T ) =
Z
1

�1

(1 + e��T )�1KT�e
�x exp(�KTe

�x)dx

= (1 + e��T )�1
Z
1

�1

KT�e
�x exp(�KTe

�x)dx

= (1 + e��T )�1
Z
1

�1

gKT ;�(x)dx

= (1 + e��T )�1
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Fitting �

� The � parameter simply scales the scores (or costs) before the sigmoidal

distribution, so � can be set by matching the observed variance to the

theoretically expected variance.

� The mean is theoretically (and experimentally) zero.

� The variance is easily computed, though derivation is messy:

E(c2) = (�2=3)��2 :

� � is easily �t by matching the variance:

� � �

vuuutN=(3
N�1X
i=0

c2i ) :
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Two-parameter family

� We made two dangerous assumptions: extreme-value and independence.

� To give ourselves some room to compensate for deviations from these

assumptions, we can add another parameter to the family.

� We can replace ��T with any strictly decreasing odd function.

� Somewhat arbitrarily, we chose

� sign(T )j�T j�

so that we could match a \stretched exponential" tail.
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Fitting a two-parameter family

� For two-parameter symmetric distribution, we can �t using 2nd and 4th

moments:

E(c2) = ��2=�K2=�

E(c4) = ��4=�K4=�

where Kx is a constant:

Kx =
Z
1

�1

yx(1 + ey)�1(1 + e�y)�1dy

= ��(x + 1)
1X
k=1

(�1)k=kx :

� The ratio E(c4)=(E(c2))2 is independent of � and monotonic in � , so we

can �t � by binary search.

� Once � is chosen we can �t � using E(c2).
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Example for single-track HMM
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Example for two-track HMM
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Fold recognition results
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Wave hands and say \but we can �x that"

� Why did calibrated fold recognition fail for 2-track HMMs?

� \Random" secondary structure sequences (i.i.d. model) are not

representative of real sequences.

� Fixes:

{ Better secondary structure decoy generator.

{ Use real database, but avoid problems with contamination by true

positives by taking only costs > 0 to get estimate of E(cost2) and

E(cost4).
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