Information-theoretic dissection of pairwise contact potentials
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Abstract

Pairwise contact potentials have a long, successful history in protein structure prediction. They pro-
vide an easily-estimated representation of many attributes of protein structures, such as the hydrophobic
effect. In order to improve on existing potentials, one should develop a clear understanding of precisely
what information they convey. Here, using mutual information, we quantified the information in amino
acid potentials, and the importance of hydropathy, charge, disulfide bonding, and burial. Sampling error
in mutual information was controlled for by estimating how much information cannot be attributed to
sampling bias. We found the information in amino acid contacts to be modest: 0.04 bits per contact. Of
that, only 0.01 bits of information could not be attributed to hydropathy, charge, disulfide bonding, or

burial.

1 Introduction

Contact potentials, first invented in 1975 by Levitt and Warshel [1], are an essential component of many
methods for protein structure design, protein structure prediction, and docking prediction [2, 3, 4]. Contact
potentials are generally estimated according to the frequencies of residue contacts observed in a reference
database of protein structures. While there are many different types of potentials, this paper focuses on amino
acid potentials which estimate the probability of contact according to the statistical likelihood of finding two
amino acids within a certain pairwise distance. These potentials are sometimes called Miyazawa-Jernigan
potentials [5].

What makes these contact potentials effective? The general view is that they provide an easily-calculated
representation of many aspects of protein structure, such as hydropathy, electrostatics, disulfide bonding,
and stacking of aromatic side-chains. Hydropathy is the largest component of pairwise potentials [6, 7], and
pairwise potentials show a strong statistical relation to hydropathic indices [8, 9]. Simple Hydrophobic-Polar
(HP) potentials, which reflect only the hydropathy of the amino acids, perform respectably compared to

potentials which reflect amino acid identity [10, 11, 12].
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Unfortunately, pairwise potentials also reflect data collection artifacts. Thomas and Dill [12] observed
that the likelihood of H-P and P-P contacts are underestimated due to the dominance of H-H contacts and
limitations imposed by chain connectivity and excluded volume. Pairwise potentials also reflect the size [13],
secondary structure composition [13], and stability [14] of the proteins in the reference database. Further,
there appears to be more to protein structure than is captured in amino-acid pairing frequencies. There are
proteins for which no simple pairwise potential could predict all actual contacts successfully [15, 16]. Sunyaev
et. al. [17] tested statistical pairwise preferences in the context of backbone conformation, accessibility, and
pairwise distances, and showed that most of the signal comes from roughly half of the amino acids. The
other half appear to be “average”, with no marked preference for any contact or environment.

While pairwise amino acid potentials have limitations, they have also been the basis of many successful
methods. Thus, rather than dismiss pairwise potentials, we should study their behavior for the purpose of
devising better potentials. Exactly what information do pairwise potentials represent? To what extent do
they encode hydropathy, burial, electrostatics, and disulfide bonding, and to what extent do they encode
further information?

We addressed these questions using mutual information, an information-theoretic measure that quantifies
how much knowing one quantity reveals about another [18]. With mutual information, we analyzed amino
acid contacts according to specific amino acid characteristics, and quantified the amount of the pairwise
signal that could be derived from these characteristics alone.

One pitfall of mutual information is that it is prone to sampling error [19]. To avoid this pitfall, we
estimated the mutual information that we would expect if sampling error were the only source of observed
mutual information. This allowed us to test and reject the hypothesis that interacting amino acids were
distributed independently, and to measure how much information was present between interacting amino

acids beyond that which could be attributed to sampling error.



2 Methods

2.1 Dataset of Pairwise Contacts

Our dataset consisted of the pairwise contacts observed in the structures of 208 proteins, most of which
were cytosolic. From these structures, we extracted a set of 22,707 amino acid contacts. In the tradition
of threading algorithms, we used only the contacts between residues in secondary structural elements: a-
helices or f-strands. All contacts had a Cy distance of eight angstroms or less, and were separated in the
polypeptide chain by four or more residues, precluding contacts between adjacent turns in a-helices. While
we also studied contacts between adjacent turns of a-helices, they appeared to be less informative (data not
shown). These 22,707 contacts were made by 18,198 residues, for an average of approximately 1.25 contacts
per residue.

For each residue in each pairwise contact, the dataset described the residue’s amino acid type and its
solvent exposure. Solvent exposure is an accessibility measure designed for threading algorithms. Compared
to other measures of accessibility and burial, it retains less indirect information about the protein sequence.
First, the side chains of all amino acids were replaced with that of Alanine. Then, to avoid spurious holes in
the interior of the protein, the radii of Cg and the water sphere were both increased, to 2.1 angstroms and

2.4 angstroms respectively. Finally, Eisenberg’s algorithm [20] was used to calculate the accessible area [21].

2.2 Mutual information

The mutual information I(X,Y) of two discrete random variables X and Y quantifies the amount of infor-

mation that either variable reveals about the other[22, 18]. It as calculated as follows:
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where the sum is over all possible pairs of values z and y of the variables X and Y, and E[.] is the expected
value. If X and Y are independent, their mutual information is zero. Otherwise, mutual information is
positive, with larger values indicating greater dependency. When calculated with base 2 logarithms, mutual
information is expressed in units of bits.

Let x and y represent the amino acid types of two residues in contact, and let P(x,y) represent the
probability of their contact. If pairwise interactions were independent of amino acid type, then P(z,y)
would be P(z)P(y). By making this substitution in the formula for mutual information, we see that the
mutual information I(X,Y) would be zero. On the other hand, suppose pairwise interactions depended
entirely on amino acid type, with amino acid type z interacting only with amino acid type y. Then, the
chance of seeing any (z,y) pair would be P(z,y) = P(z). By making this substitution in mutual information

formula, we see that I(X,Y’) would be }, , P(z)log, ﬁ, which works out to approximately 3.9 bits.

2.3 Residue alphabets

Measuring mutual information generally requires assigning each residue into some category. The most
obvious set of categories is the twenty amino acid types. Mutual information measured according to amino
acid type tells us the extent to which pairwise contacts are determined by the many factors related to amino
acid properties: hydropathy, aromaticity, electrostatics, and so forth.

There are other categories associated with other amino acid attributes. Measuring mutual information
according to these categories quantifies the importance of the corresponding attributes. For example, we
might wish to ask whether charge explains most of the information in pairwise contacts, or other attributes
are also important. To analyze the importance of charge, one could group residues according to charge:
positive, negative, and neutral. Then, by measuring mutual information with this three-letter alphabet and
comparing it to that measured with the twenty-letter amino acid alphabet, one can estimate the importance of
charge to pairwise contacts. If pairwise contacts contained a large amount of information besides charge, then
mutual information measured according to charge, I.(X,Y), would be small compared to that measured by
amino acid type, [4(X,Y). This is because mutual information is calculated from the likelihood of pairwise

contacts, P(X,Y). If contact likelihood depended on more than charge, then assessing contact likelihood



Alphabet | Contents
I Cys and Other
II Positive, Negative, Other
11 Hydrophobic and Polar
v Cys, Positive, Negative, Other Polar, Other Hydrophobic
A% The standard alphabet of amino acid types
Alphabet Category | Contents
I Cys | Cys
Other | All Others
Positive | Arg, His, Lys
II Negative | Asp, Glu
Neutral | All Others
11 Hydrophobic | Ala, Cys, Gly, Ile, Met, Phe, Pro, Trp, Tyr, Val
Polar | Arg, Asn, Asp, Glu, Gln, His, Lys, Ser, Thr
Cys | Cys
Positive | Arg, His, Lys
v Negative | Asp, Glu
Other Polar | Asn, Gln, Ser, Thr
Other Hydrophobic | Ala, Gly, Ile, Leu, Met, Phe, Pro, Tyr, Val

Table 1: This table describes the five alphabets used to relate amino acid contact patterns to biochemical
forces, and details the amino acids assigned to each alphabet.

using charge alone would account for only part of the total signal encoded in pairwise contacts. On the other
hand, if contact likelihood depended mostly on charge, then little information would be lost by estimating
contact likelihood from charge, and Io(X,Y’) would be close compared to I4(X,Y).

Using mutual information, we assessed the importance of hydropathy, disulfide bonding, and charge. For
hydropathy, the twenty amino acids were classified as either hydrophobic or polar. For disulfide bonding,
they were classified as Cys or other. For charge, they were classified as positive, negative, or neutral. To
measure the cumulative importance of these attributes, they were classified as Cys, positive, negative, other

polar, or other hydrophobic. Table 1 details these classifications.

2.4 Mutual information with finite sample sizes

There is one problem with this approach. One cannot directly compare the mutual information obtained with
the 20-letter alphabet to that obtained with a smaller alphabet because mutual information is over-estimated

with small sample sizes [19]. With larger alphabets, this over-estimation becomes more pronounced.
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Figure I: This figure illustrates why mutual information is over-estimated with small sample sizes. At the
left is the actual probability distribution of random variables X and Y, with a mutual information of zero.
At the right is the probability distribution computed with three observations, yielding an observed mutual
information of 1.585 bits.

Consider the example in Figure I. Here, we assume we are given a random sample D = {(21,¥1), -+, (Zn,Yn) }
of n independent observations from the joint probability distribution of X and Y. We let P(z,y) be the
fraction of times the pair (z,y) occurs in D, P(z) the fraction of times z occurs in i, ...,z,, and P(y)
the fraction of times y occurs in yi, ..., y,- At the left, the actual probability distribution for X and Y has
mutual information of zero. At the right, a probability distribution estimated with n = 3 has observed
mutual information of 1.585 bits. In the estimated joint probability distribution, sampling error will tend
to suggest an artificial pairwise dependence. This artificial dependence will be more pronounced when the
alphabet is larger and the probability distributions are more complex and the observations per parameter
fewer in number. Therefore, the mutual information measured with the 20-letter alphabet will be more
inflated than that measured with a 2-letter or 3-letter alphabet. This problem will occur to some extent
with any finite-sized set of observations, or finite-sized database of reference protein structures.

Assume D = {(z1,¥1),---, (Zn,Yn)} are n independent observations of two discrete random variables X
and Y. Assume that P(X) and P(Y) are their respective empirical probability distributions, and P(X,Y)

is their empirical joint probability distribution. Consider two hypotheses:



Null Hypothesis Ho: X and Y are independent and distributed according to P(X,Y) = P(X)P(Y)
Alternative Hypothesis Hy: X and Y are dependent and distributed according to P(X,Y) # P(X)P(Y)
Let E denote expectation over the distribution P(X ,Y) in hypothesis H;. A general test of the Hypothesis

Hj is the log ratio test, using the statistic 1(X,Y) = I(X,Y|D)
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where, as before, the last sum is over all possible pairs of values z and y of the variables X and Y. Thus, the
log ratio test statistic I (X,Y) is the observed mutual information between X and Y, estimated according
to the empirical joint probability distribution of X and Y.

nI(X,Y) is known as the g-statistic, a statistic used in tests of independence [23] and similar in purpose
to the more familiar though less effective [24] chi-square statistic T(X,Y):

f’(w)P(y))Z
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Theory shows that for a sufficiently large sample size, both statistics nf(X,Y) and T(X,Y) have approxi-
mately the same distribution: approximately chi-square with (M — 1)? degrees of freedom, where M is the
size of the alphabet [24, 25]. For large sample sizes, if nI(X,Y) (or respectively T'(X,Y’)) exceeds the 99th
percentile of the chi-square distribution with (M —1)? degrees of freedom, one can reject the null hypothesis

of independence between X and Y with 99% confidence. In this case, the difference between nI(X,Y) (or



T(X,Y)) and the chi-square distribution yields an estimate of the dependence between X and Y.

Both nl (X,Y) and T(X,Y) are ineffective for smaller sample sizes, because they do not yield a good
approximation of the chi-squared distribution. More specifically, both statistics are biased in that their
expected values, when estimated from a finite sample size, can differ substantially from their actual values.
This can be demonstrated for T'(X,Y) as it was for I(X,Y) in Figure I. A rule of thumb is that there should
be five or more observations of every possible pair of values (z,y) for the approximation to be valid [26].
Unfortunately, we did not have this much data in all cases.

To solve this problem, we used an alternate approach aimed at smaller sample sizes. Rather than making
a chi-squared approximation to n(X,Y’), we estimated the distribution of I(X,Y") empirically, using random
independent permutations of X and Y, as follows. Suppose the observed data is D = {(z1,y1), ---s (Tn,Yn)}s
and consider a permutation o of the numbers 1,...,n, which reorders the observations of Y with respect
to X. Under the null hypothesis that X and Y are independent, for any permutation o, the permuted
data 0(D) = {(21,Y5(1))s - (Tn>Yo(n))} Would have the same probability as D. We calculated an empirical
distribution of I (X,Y) using the observed data set D as follows. Let oy, ...,0, be N random permutations

of the numbers 1,...,n. Then, for any value v, we estimated

{i:1<i<N and I(X,Y]|o;(D)) > v}

In other words, the probability that I (X,Y) exceeds v is estimated as the fraction of N permutations for
which this happens. We used this empirical distribution in place of the chi-squared distribution in our
analysis. In particular, for a given dataset D, if v = f(X,Y|D) and P(I(X,Y) > v) < 0.01, then we
rejected the null hypothesis that X and Y are independent with a confidence of 99%. In other words, if
I(x, Y|D) > Ix, Y|oi(D)) for at least 99% of the random permutations o;,1 < i < n, then we rejected the
null hypothesis with a confidence of 99%. Similar random permutation analysis is seen in genotyping, where
it is used to analyze haplotype frequencies [27].

The number of random permutations N needed for this analysis was determined empirically, as follows.

In informal terms, there are enough samples to yield a statistically-viable result when the observed results are



stable, and adding more observations does not change the results. We observed that 1,000 samples yielded
a stable estimate of I (X,Y), so we chose a slightly larger N of 5,000 in a spirit of caution.
Define the independent information I;(X,Y) as the expected value of I(X,Y|o(D)), or the average

mutual information observed in the permuted observation sets:
1 XN
I(X,Y) = [;(X,Y|o(D)) = NZ (X,Y|os(D))

Here, I;(X,Y) represents the bias in the empirical estimation of I(X,Y").
In cases when we rejected the null hypothesis, we measured the dependence of X and Y according to the

excess information Ig(X,Y):
In(X,Y) = Ip(X,Y|D) = I(X,Y|D) — I;(X,Y|D)
Ip(X,Y) describes the amount of information between X and Y in excess of the sampling bias.

2.5 Conditioning mutual information on burial

Conventional wisdom states that much of the information in amino-acid contact potentials stems from
hydropathy, and the burial or exposure of hydrophobic residues. To quantify this effect, we factored out the

burial/exposure signal by conditioning mutual information on burial, as follows:

1. According to a specific solvent exposure threshold, we classified each pair as either buried (B) or
exposed (E) according to the more-buried residue. We empirically determined the probability of burial

and exposure, P(B) and P(E), according to the proportion of pairs classified as buried.

2. For the buried pairs only, we estimated two quantities: the excess mutual information for the buried
set, Ig(A1, A2|B); and our confidence in rejecting the null hypothesis Hg, that that A; and A, are

independent in buried contacts.

3. We repeated Step 2 for the exposed pairs, estimating Ir(A41, A2|E) and an analogous confidence level.
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4. We estimated the excess information conditioned on burial according to the results of the previous

steps, yleldlng IE (Al, A2|C) = IE (Al, A2|B)P(B) + IE(Al, A2|E)P(E)

The next question was what solvent exposure value to use as a threshold. We tested all possible threshold
values, graphing conditioned excess mutual information as a function of solvent exposure threshold. The
lowest point on this graph represents the exposure/burial threshold at which hydropathy explains the greatest
amount of the pairwise information. This amount is the difference between the unconditioned and conditioned

excess information.

3 Results

3.1 Information content of amino acid contacts

Our first question was how much information is contained in pairwise amino acid contact potentials. To
assess this, we grouped the amino acid contacts according to amino acid type and measured their observed
mutual information 7(A;, As). As described in Section 2 we estimated their independent mutual information
I; (A, As), the amount of mutual information we would expect from sampling error if that was the only
source of observed mutual information, and their excess mutual information Ig(A;, As), the amount of
mutual information observed beyond independent information.

Table 2 shows this mutual information. While the observed mutual information was approximately 0.06
bits, about one-fifth of that was probably an artifact of sampling error. The excess mutual information was
approximately 0.04 bits. This is modest. At approximately 1.25 contacts per residue, an average of 0.04
bits of information per contact corresponds to 0.05 bits per residue. For contrast, one sequence of close
homology yields approximately three bits of information per residue [28]. However, the amino acid contact
signal is almost certainly real. Following the steps in Section 2, we observed that in at least 4995 of 5000
trials, the observed mutual information I (X,Y|D) in the original dataset D was greater than that in the
permuted dataset o(D), I(X,Y|o(D)). Thus, we rejected the null hypothesis Hy that the two amino acids

are independent with a confidence of at least 99%.
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Mutual Information
Alphabet Observed | Independent | Excess
Amino Acid Type (V) 0.0605 0.0205 0.0400

Table 2: Shown is the amount of information found in pairwise contacts, estimated according to amino
acid type. While observed mutual information is the simplest measure, it is affected by sampling error;
Independent information describes the amount likely to result from sampling error. Excess information
describes how much information was observed beyond what could be attributed to sampling error, and is
the more reliable indicator of how much information is truly present.

3.2 Quantifying the importance of specific contact classes

Given the mutual information in amino acid contact potentials, our next question concerned where that
information comes from. The likelihood that two residues interact is influenced by biochemical properties
including hydropathy, charge, and disulfide bonding. To assess their importance, we grouped the amino acid
contacts into corresponding contact alphabets as shown in Table 1 : Cys and Other (I); Positive, Negative,
and Neutral (IT); and Hydrophobic and Polar (IIT). We assessed their cumulative effect by grouping the
residues according to their combination: Cys, Positive, Negative, Other Polar, and Other Hydrophobic (IV).
For each alphabet, we followed the steps outlined in Section 2 to measure the observed, independent, and
excess mutual information, and to see if we could reject the null hypothesis Hy. Table 3 shows the mutual
information of each alphabet, and compares it to the 20-element alphabet of amino acid types (V).

In terms of observed mutual information, the amino acid alphabet (V) appeared to convey far more
information than any other. However, this was the most complex alphabet, with twenty values for each row
and column term, and the most affected by sampling error. Looking at excess mutual information, which
was less sensitive to this error, the gap between the amino acid alphabet and the others shrinks considerably.

Half of the 0.04 bits of information in the 20-element amino acid alphabet (V) was conveyed in the
2-element HP alphabet (IIT). Cys and Other (I) accounted for 0.005 bits of information, or approximately
one-eighth of the information of the amino acid alphabet. While this number might seem small, one should
note that less than one-twentieth of the pairs in the dataset contained a Cys residue. So, while Cys-Cys pairs
are infrequent, they represented a strong signal when they were present. Contacts between charged residues
accounted for approximately one-fourth of the amino acid signal. For all alphabets, the observed information

I(X,Y|D) exceeded the permuted information I(X,Y|o(D)) in more than 99% of all permutations o(D).
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Alphabet | Contents
I Cys and Other
II Positive, Negative, Other
11 Hydrophobic and Polar
v Cys, Positive, Negative, Other Polar, Other Hydrophobic
A% The standard alphabet of amino acid types

Mutual Information (bits)
Alphabet | Size | Observed | Expected | Excess
I 2x2 0.0055 0.0001 0.0054
I 3x3 0.0105 0.0002 0.0103
111 2x2 0.0197 5.6x1075 | 0.0197
v 5x5 0.0306 0.0010 0.0296
A% 20x20 0.0605 0.0205 0.0400

Table 3: This table estimates the importance of specific biochemical properties that influence contact like-
lihood: hydropathy, charge, and disulfide bonding. Alphabet IV estimates their cumulative importance.

Thus, in all alphabets, we rejected the null hypothesis Hy with a confidence of 99%.

Alphabet IV in Table 3 illustrated the cumulative effect of hydropathy, charge, and disulfide bonding
on contact information. Altogether, three-quarters of the amino acid contact signal was described by the
combined effect of hydropathy, charge, and disulfide bonding. Note that due to overlapping information,
these contributions are not additive. For example, the physiochemical attraction between two polar residues

of opposite charge is one component of both the charge signal and hydropathic signal.

3.3 Burial of hydrophobic residues

To estimate the importance of burial in pairwise contacts, we conditioned excess mutual information on
burial as described in Section 2.5. Figure I depicts excess mutual information conditioned on burial for the
five alphabets and for solvent exposure thresholds ranging from zero (fully buried) to 100 (fully exposed).
When conditioned excess mutual information on burial, most alphabets showed a drop in excess mutual
information at almost every threshold. Only Cys and Other (I) appeared not to be affected, reflecting that
disulfide bonding is not dependent on burial. For contrast, the amino acid alphabet (V) showed a substantial
drop, reaching its lowest point at a solvent exposure threshold of 24. The HP alphabet (III) showed a drop of

similar magnitude, reflecting the major importance of burial in the hydropathic signal. The charge alphabet
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Significant mutual information as affected by burial
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Figure II: Excess mutual information conditioned on burial and exposure, as a function of the solvent exposure
threshold. Each point on this graph was obtained by dividing the contact pairs into buried and exposed
subsets according to a solvent exposure threshold, estimating the excess mutual information for each subset,
and combining the two measures according to the fraction or probability of exposure and burial, as defined
in Section 2.5.
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Excess mutual information (bits)
Alphabet | Unconditioned | Conditioned | Difference
I 0.0054 0.0049 0.0006
I 0.0103 0.0057 0.0046
111 0.0197 0.0096 0.0101
v 0.0296 0.0194 0.0102
v 0.0400 0.0308 0.0082

Table 4: This table compares the unconditioned excess mutual information to that conditioned on burial
with a solvent exposure threshold of 24. At this threshold, conditioned mutual information was at its lowest,
as shown in Figure II, and roughly 60% of all pairs were classified as buried.

(IT) dropped less than most of the others. This reflects the lesser importance of charge in exposed positions,
where the residues can interact with other molecules. In all cases, a solvent exposure threshold of 24 yielded
the most marked decrease in excess mutual information. At this threshold, approximately 60% of the contacts
were classified as buried. Table 4 shows the excess mutual information conditioned on this threshold.

Table 4 shows that the HP (IIT), cumulative (IV), and amino acid (V) alphabets all lost approximately
0.01 bits of information when conditioned on burial. The charge alphabet (II) lost approximately half of its
signal, while the Cys-Other alphabet (I) showed little change.

One might ask why the HP alphabet (III) did not lose more information when conditioned on burial.
There are two reasons. First, we used a simple binary classification of hydrophobic and polar, and of
exposed and buried. A more detailed classification might show a greater change. Second, as observed
previously [12], not all hydrophobic residues can be buried or polar residues exposed due to limitations from
chain connectivity, excluded volume, and the dominance of the H-H contacts. Thus, the effect of burial on
the HP signal is limited by structural constraints.

Finally, Table 4 shows a gap of 0.01 bits between the amino acid (V) and cumulative (IV) alphabets.
This implies that pairwise amino acid contacts contained 0.01 bits of information that were not explained
by hydropathy, charge, disulfide bonding, or burial. In summary, the familiar amino acid potentials convey
0.04 bits of information that could not be attributed to sampling bias. 0.01 bits can be attributed directly
to burial. Of the remaining 0.03 bits, approximately 0.02 bits could be attributed to three amino acid

properties: hydropathy, charge, and disulfide-bonding.
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4 Conclusion

To improve contact potentials, and the many methods that use them, one must first understand how existing
potentials work. We decomposed the signal present in pairwise amino acid contacts using mutual information.
Mutual information is heavily influenced by sampling error; to avoid this problem, we have focused on ezcess
mutual information, the amount of information beyond what we might expect from sampling error.

The amount of information found in amino acid contacts seems modest: 0.04 bits, less than one-twentieth
of one bit. With an average of 1.25 contacts per residue, this corresponded to an average of 0.05 bits of
information per residue. However, we observed this signal to be statistically significant. We rejected the
null hypothesis Hy that the two amino acids are independent with confidence of 99%. Of the 0.04 bits of
information, three-fourths of this information can be explained by three amino acid properties: hydropathy,
charge, and disulfide bonding.

Amino acid potentials have been seen to carry artifacts of the size [13], secondary structure composi-
tion [13], and stability [14] of the proteins in the reference database. We cannot yet speak to the utility of
the additional 0.01 bits of information conveyed in amino acid potentials: perhaps they reflect such artifacts,
or perhaps they convey genuine and valuable information. The effects of such artifacts will likely diminish
as the number of known protein structures grow. At that time, we shall be able to assess better the utility

of this apparent extra information.
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