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Outline of Talk

e Fold-recognition

e Scoring (Bayesian statistical modeling)

e SAM-T99 and SAM-T2K methods

e Multi-track HMMs and secondary structure
e Reverse-segquence null model

e Results
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Folding Problem

TheFolding Problem
Given a protein expressed as a strihgver the alphabet of 20 amino acids

(A E {a’J C7d767 fﬂg7hﬂ?:ﬂk?l7m7n7p7Q7r7S7t7v7w7y}*)’
figure out how it folds up in 3-space.

MTMSRRNTDA ITIHSILDWI EDNLESPLSL EKVSERSGYS KWHLQRMFKK
ETGHSLGQYI RSRKMTEIAQ KLKESNEPIL YLAERYGFES QQTLTRTFKN
YFDVPPHKYR MTNMQGESRF LHPLNHYNS




Fold-recognition problem

TheFold-recognition Problem

Given a protein expressed as a strihgver the alphabet of amino acids (tla@getsequence)
and a library of proteins with known 3-D structures (teenplateibrary),

figure out which template(s) matches best, and align the target to the template.

e The backbone for the target sequence is predicted to be very similar to the backbone of the
chosen template.

e A guality measure is needed to decide when the best-matching template is still not a good r
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Remote-homology Problem

TheHomology Problem

Given a protein expressed as a strihgver the alphabet of amino acids (tta@getsequence),
and a library of proteisequences

figure out which sequencesis similar to and align them td.

e This problem is fairly easy for recently diverged, very similar sequences, but difficult for mol
remote relationships.

e No structure information is used, just sequence information.

e Technically, “homology” means that the sequences evolved from the same ancestral
sequence—Dbut this is almost always inferred from similarity of sequence, structure, or func
and not directly known.
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Bayesian Stochastic Modeling

e A modelM is a computable function that assigns a probability RPrbb A1) to each stringi.

e \When given a stringd, we want to know how likely the model is. That is, we want to compute
something like ProbM | A).

e Bayes Rule:

Prob M)

ProA)

e Problem: ProbA) and Prolp)) are inherently unknowable.

Prob(M | A) = Prob(A | M)
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Null model

e Standard solution: ask how much more likélf/is than someull hypothesigrepresented by a

null mode).
Prob(M | A)  Prob(A | M) Proq M)

Prob(N | A)  Prob(A | N) ProN)

° ';Ir,gg%)) IS theprior odds ratiq and represents our belief in the likelihood of the model before

seeing any data.

. Prolyi|4)
Prol(n|4)
after seeing the data.

IS theposterior odds ratipand represents our belief in the likelihood of the model

e \We can generalize to a forced choice among many modé|s.( ., M,)
Prob(M; | A)  Prob(A | M;) Pro(M;)

»;Prob(M; | A) x;Prob(A | M,)ProM;)
The Prolp)M;) values can be scaled arbitrarily without affecting the ratio.
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Standard Null Model

e Null model is a zero-order Markov model, that is, each letter is treated as being independer
drawn from the same distribution.

° len(4)
Prob(A | N,len(A)) = TI Prok4,).

1=1

° len(4)
Prob(A | N) = Prolstring of lengthen(A)) T[] Prol4;) .

1=1
e The length modeling is often omitted, but one must be careful then to normalize the probab
correctly.
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Target Model Method for the Fold-recognition Problem

e Find probable homologs of target sequence and make multiple alignment.
e Make secondary structure probabillity predictions based on multiple alignment.

e Build anHMM based on the multiple alignment and predicted 2ry structure (or just on multip
alignment).

e Score seguences and secondary structure sequences for all proteins that have known strus
e Select the best-scoring sequence(s) to use as templates.

e If the modeling method is well-chosen, the alignment of the target and template is available
by-product of the scoring.
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Template Library Method

e Build a model for each protein in the template library, based on the template sequence (anc
homologs you can find). The template library is selected as a subset of the PDB database
publicly released solved structures.

¢ For the fold-recognition problem, structure information can be used in building these model
(though we currently don't).

e Score target sequence with all models in the library.
e Select the best-scoring model(s) to use as templates.

e Again, the alignment of the target and template may be available as a by-product of the scc
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Combined SAM-Txx method

target sequence -
templ ate sequences
Y
Y 1
target alignment u template alignments
Y Y 1
target HMM u template HMMs
target model scores template model scores

T

combined scores

e Choose (somehow) the alignment based on the target model or the alignment based on the
template model.

e This method for fold-recognition is available (with only amino-acid targetm s, not 2-track
targetHMM S) onhttp://www.cse.ucsc.edu/research/compbio/hmm-apps/

e The library currently has 5473 templates.

/E
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Hidden Markov Models

e A hidden Markov Model{MM) is a finite-state machine with a probabillity for emitting each
letter in each state, and with probabilities for making each transition between states.

e Probabilities of letters sum to one for each state.
e Probabilities of transitions out of each state sum to one for that state.

e \We also includenull statesthat emit no letters, but have transition probabilities on their
out-edges.
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Profile Hidden Markov Model

Start a- End
al
a2 b4
A3 A4 Ab
B1 B2 B3 B5
al a2 A3 - AAd . Ab

Bl B2 B3 b4 g5

e Circles are null states.

e Sguares arenatch stateseach of which is paired with a nullelete stateWe call the
match-delete pair tat state

e Each fat state is visited exactly once on every path from Start to End.

e Diamonds arensert statesand are used to represent possible extra amino acids that are not
found in most of the sequences in the family being modeled.
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How IsHMM built?

Overview of method for building a targetvm, given a single sequence (or a seed alignment):

1. Construct a profileimm with one fat state for each letter of sequence (or column of multiple
alignment).

2. Find sequences in a large database of protein sequences that score wedl Witks is the
training set

3. RetrainM (using forward-backward algorithm) to re-estimate all probabilites, based on the
training set.

4. Make a multiple alignment (using Viterbi algorithm) of all sequences in the training set. The
multiple alignment has one alignment column for each fat state ofvhe.

5. Repeat from step 1, with thresholds in step 2 loosened.
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Some details of constructirgvm s from alignment

e Do weighting of sequences to reduce the effect of biased sampling in the database.

e Compute Proloa | s;) for match states using a Dirichlet mixture regularizer and the weighted
counts of the amino acids from the corresponding alignment column.

¢ Instead of background frequency, or normalizing the relatively few insertion counts, set
Insertion-state emission probabilities by normalizing the geometric mean of match state
frequencies.

e Set transition probabilities based on weighted counts of insertions and deletions in the
alignment, plus large pseudocounts based on transitions in many different alignments.
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Multi-track HMM s and secondary structure
We can also use alignments built using a two-track tamget

e Amino-acid track (created with script w0.5 from the SAM-T2K multiple alignment).

e Secondary-structure track (probabilities{&, H, L} or {E, B, G, H, T, L} from neural net). The
correct letters are defined by STRIDE.

e Can align template (AA+2ry) to target model.

e Don’'t have good way to create template models, nor to align targets to template models.

start m m stop

Vet et

2ry 2ry v

AA AA

2ry 2ry
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Secondary structure prediction

For 3-state prediction, neural net is 4-layer:
e 3 hidden layers of 10, 10, 6 units window size 7,11,11
e output layer of 3 units, window size 5.
e trained on SAM-T2K alignments with STRIDE assignment.

e Approximate accuracy)s; = 0.786, bits/char=0.798 for 3-state prediction. This is among the b
predictors in the world (others of comparable quality are PsiPred and J-Pred).

For 6-state prediction, neural net is 4-layer:
e 3 hidden layers of 10, 10, 7 units window size 7,11,11
e output layer of 6 units, window size 7.
e trained on 2752 x-ray structures, SAM-T2K alignments with STRIDE assignment.
e Approximate accurac{)s = 0.6836, bits/char=0.968 for 6-state prediction.

e The extra information from 6-state prediction does help (slightly) in fold recognition.
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Human input to alignments

e Alignments that scored well examined in 3D, marking aligned residues and identical residu

e Look for compactness, clustering of identical residues, striping of identical residues across
sheets, disulphide bridges, ...

e Tweak alignments to improve placement of gaps.
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Reversed model for null

e \When using the standard null model, certain sequences®rts have anomalous behavior.
Many of the problems are due to unusual composition—a large number of some usually rat
amino acid.

e For example, metallothionein, with 24 cysteines in only 61 total amino acids, scores well on
model with multiple highly conserved cysteines.

e \We avoid this (and several other problems) by using a reversed mgdas the null model.

e The probability of a sequence M" is exactly the same as the probability of the reversal of th
sequence given/.

o If we assume that/ andM" are equally likely, then
Prob(M | S)  Prob(S | M)
Prob(M7 | S) Prob(S | M7) "

e This method corrects for composition biases, length biases, and several subtler biases.

-
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Composition as source of error

A cysteine-rich protein, such as metallothionein, can matchHany that has several
highly-conserved cysteines, even if they have quite different structures:

cost in nats

model— model—
HMM seguencestandard null reversed-model
1kst 4mt2 -21.15 0.01
1kst 1tabl -15.04 -0.93
4mt2 1kst -15.14 -0.10
Amt2 1ltabl -21.44 -1.44
1tabl 1kst -17.79 -7.72
1tabl 4mt2 -19.63 -1.79
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Composition examples

Metallothionein Isoform Il (4mt2)




Composition examples

Kistrin (1kst)
%K'L £

Trypsin-binding domain of Bowman-Birk Inhibitor (1tabl)




Long helices as source of error

Long helices can provide strong similarity signals from the periodic hydrophobicity, even when the overall folds ar

quite different:

cost in nats, normalized using

HMM  sequence Null model | reversed-model
lavlA 2tmaA -22.06 2.13
lavlA 1laep -21.25 1.03
lavlA 1cii -13.67 -1.75
lavlA 1vsgA -7.89 -0.51
2tmaA 1cii -20.62 0.46
2tmaA 1lavlA -17.96 1.01
2tmaA laep -12.01 0.78
2tmaA 1vsgA -8.25 0.08
1vsgA 2tmaA -14.82 -1.20
1vsgA lavlA -13.04 -2.68
1vsgA laep -13.02 -3.52
1vsgA lcii -11.12 0.28
laep lavlA -11.30 1.79
laep 2tmaA -10.73 1.06
laep 1cii -8.35 1.38
laep 1vsgA -6.87 0.53
1cii 2tmaA -23.24 -1.48
1cii lavliA -19.49 -5.62
1cii laep -12.85 -1.77
1cii 1vsgA -10.20 -1.57
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Helix examples

Tropomyosin (2tmaA)

Colicin la (1cii)




Helix examples

Apolipophorin Il (1aep)




Discrimination Performance as a Function of Null Model

SCOP whole chains
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Fold recognition results

+=Same fold

01|

Fraction of True Positives found
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CASP4 example: T0122

e SCOP superfamily 3.31.1 with strong scores—Iike essentially all the automatic servers.

e Best scores with 1do0OA (3.31.1.12.5), rather than than 1a5t (3.31.1.12.3), 1d2nA (3.31.1.1
1gky (3.31.1.1.1), or 1nipA (3.31.1.9.3).

e Preference held for both target and template alignments, and both amino-acid only and
two-track.

e Second domain, residues 267-350, was better aligned than by other CASP4 predictors.

e Alignment essentially 2-track local alignment. Moved first segment over 1 residue and pulle
final helix from off the end of alignment, based on residue conservation.
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CASP4: T0127 sequence logo

T0127 t2k w0.5 model
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CASP4: T0O127 predicted 2ry sequence logo

T0127 t2k 2d model
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T0127 domain 2 comparison

Predicted=blue solved=red.




Web sites

UCSC bioinformatics info: http://www.cse.ucsc.edu/research/compbio/
SAM tool suite info: http://www.cse.ucsc.edu/research/compbio/sam.html
HMM servers: http://www.cse.ucsc.edu/research/compbio/hmm-apps/

SAM-T99 prediction server: http://www.cse.ucsc.edu/research/compbio/
hmm-apps/T99-query.html

These slides:http://www.cse.ucsc.edu/ karplus/papers/combioO1.pdf
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