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ABSTRACT The SAM-T04 method for predict-
ing protein structures uses a single protocol across
the entire range of targets, from comparative model-
ing to new folds. This protocol is similar to the
SAM-T02 protocol used in CASP5, but has improve-
ments in the iterative search for similar sequences
in finding and aligning templates, in creating frag-
ment libraries, in generating protein conforma-
tions, and in scoring the conformations. The auto-
matic procedure made some improvements over
simply selecting an alignment to the highest-scoring
template, and human intervention made substantial
improvements over the automatic procedure. The
main improvements made by human intervention
were from adding constraints to build (or retain)
B-sheets and from splitting multidomain proteins
into separate domains. The uniform protocol was
moderately successful across the entire range of
target difficulty, but was somewhat less successful
than other approaches in CASP6 on the compara-
tive modeling targets. Proteins 2005;Suppl 7:135-142.
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INTRODUCTION

In previous CASP experiments, our team has concen-
trated on fold recognition using hidden Markov models
(HMMS) with fairly good results.' We have also had
some success using standard neural-net methods to pre-
dict secondary structure,* as measured by the EVA project.?
In 2000, we started incorporating secondary structure
prediction in our fold-recognition method for CASP4.2

We entered two automatic servers in CASP6, both of
which are somewhat old: the SAM-T99 and SAM-T02
servers. These servers are essentially the same as the ones
used in CASP5,° though the template library has grown
over the past 2 years. Neither server had particularly
impressive performance in CASP6. Results for an auto-
matic method were submitted for evaluation as part of our
CASP6 submissions, but the method has not yet been
implemented as a Web service, so it could not participate
in the evaluation of automatic servers.

For both the automatic and the human-assisted entries
to CASP6, we relied heavily on our fragment-packing
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program, UNDERTAKER, which has undergone substan-
tial development since CASP5. The same method was used
for all targets, independent of the degree of similarity to
any targets that we found, but we focused more of our
attention on new fold and difficult fold recognition targets,
since these were the targets where we felt we could make
the biggest gains by human intervention.

One new method for our group in CASP6 was residue-
residue contact prediction. The CASP6 evaluation of residue-
residue contacts was done at only one point: 0.2 contacts per
residue. Since we registered only fairly confident predictions,
for many targets we did not have enough contact predictions
to be evaluated by the assessors. We will not discuss contact
prediction here, but are preparing a separate article explain-
ing our method and analyzing the results.

According to the CASP6 assessors, our group had good
results in the nontemplate category, so improvements in
the fragment-packing program, UNDERTAKER, will be
the main focus of this article.

METHODS

Although it has become popular to apply different
techniques for targets with easily found templates and
targets without templates, we applied the same protocol to
all targets. This protocol consisted of fold recognition and
fragment generation using HMMs followed by conforma-
tion generation and scoring with a stochastic search
program. Human intervention consisted mainly of adding
hand-picked constraints to the cost function of the stochas-
tic search. There was little human intervention on targets
with easily found templates, as we spent most of our time
working on the hardest targets.

For each target, we submitted one or more of the fold-
recognition results (doing side-chain replacement on a
template backbone with no refinement), a fully automatic
prediction of the complete chain, and a result with some
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human intervention. In the Results and Discussion sec-
tion, we examine how much was gained by the automatic
prediction over simple side-chain replacement, and by
human intervention over the fully automatic procedure.

The SAM-T04 pipeline is very similar to the previous
generation, SAM-T02, used in CASP5°.

® Finding similar sequences with iterative search (using
SAM-T2K and SAM-T04)

® Predicting local structure properties with neural nets

® Finding possible fold recognition templates using two-
and three-track HMMs

® Making alignments to the templates

® Building a specific fragment library for the target (with
FRAGFINDER)

® Packing fragments and fold-recognition alignments to
make a three-dimensional (3D) structure (with UNDER-
TAKER).

Iterative Search

The main differences in fold recognition and alignments
were that we used a new iterative search method (SAM-
T04) in addition to the SAM-T2K method that we intro-
duced in 2000, and that we used more multitrack HMMs.

The new iterative search of the nonredundant protein
database NR” differs in several minor ways from the
SAM-T2K search. The most notable differences are in the
prefiltering and in the regularizers used for transition
probabilities.

Prefiltering

One of the biggest constraints on the SAM-T2K search
was that all sequences in the final multiple alignment had
to be found in the initial prefiltering of the database, which
was done by setting a large E-value on a BLAST search.®

In SAM-TO04, prefiltering of the database is done using
one iteration of PSI-BLAST®!® at each iteration of the
search. This change allows the search to be much more
sensitive, without requiring extremely loose thresholds on
the prefilter. The greater sensitivity of SAM-T04 can be
seen in Figure 1.

The prefilter is set to limit the number of PSI-BLAST
hits to 3000; this cutoff is clearly visible in Figure 1.
Occasionally one gets more than 3000 sequences in the
multiple alignment, because the target sequence aligns
multiple times with repeated domains in proteins (e.g.,
lugnA, one of the alleles of Lir1, has 8791 sequences in the
multiple alignment, because many of the sequences have
multiple copies of the domain).

Although SAM-T04 is generally more sensitive than
SAM-T2K, sometimes SAM-T04 gets fewer sequences.
One extreme case is 1wjpA, which has 9144 sequences in
the SAM-T2K alignment, but only 22 in the SAM-T04
alignment. Except where the reduction in size is due to the
cap on the prefilter, the reduction is generally due to
tighter thresholds on the PSI-BLAST filter than on the
older BLAST filter. It has not yet been determined whether
the reduction has more effect on false positives or true
positives.
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FIG. 1. Plots of the number of sequences in the SAM-T04 multiple

alignments versus the number in the SAM-T2K multiple alignments, for
alignments that were computed using the same version of the nonredun-
dant protein database. Note that the SAM-T04 method generally finds
more sequences to be similar, but is usually capped at 3000 sequences
by the settings of the PSI-BLAST prefilter. The SAM-T04 alignments
always contain at least two sequences, because the seed sequence is
included, as is the identical sequence found in the nonredundant protein
database.

Regularizers

The transition regularizers for SAM-T99 and SAM-T2K
were set to avoid “choppy” alignments that had frequent
insertions and deletions, sweeping the gaps together in
highly variable regions. These multiple alignments are
easier for humans to read, and are generally preferred by
biologists, but information is lost about residues that
really do correspond. In SAM-T04, a regularizer is used
that keeps the costs of gaps fairly low even in the later
iterations of the iterative search. The resulting multiple
alignments look worse but seem to work better for predict-
ing contacts, and we still have mixed results for predicting
local structure. (As always, during CASP season, we had to
press the method into service before we had time for
extensive testing.)

Local Structure Prediction

We continue to use neural networks to predict various
local structure properties.'' We are now predicting five
backbone properties, DSSP, STRIDE, STR2, a pseudotor-
sion angle, Bystroff’s partition of the Ramachandran plot,
and two burial properties, Cy coordination with a 14 A
radius sphere and a new count we call near-backbone. We
also combine the various predictions to get an averaged
prediction for a traditional three-state (strand, helix,
other) prediction.

The STR2 alphabet is based on DSSP, but the B-sheet
class is broken up into 7 classes: parallel middle strand,
antiparallel middle strand, mixed middle strand, parallel
edge strand, antiparallel edge strand with hydrogen bonds
to residue, antiparallel edge strand without hydrogen
bond, and other.

The near-backbone alphabet is a burial count that
counts all residues within a sphere near the residue. The
center of the 9.65 A radius sphere is placed in a fixed
location relative to the backbone [at position (—2.66,
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—5.15, 3.48) where C,, is at the origin, N is on the positive x
axis, and C is on the xy plane with positive y), so that the
sphere counted is independent of the residue. A different
spot, near the backbone, defines the location of the resi-
dues to count: (1.24, 0.64, 0.23). The spot locations and
sphere radius were optimized to maximize the mutual
information between the residue identity and the mea-
sured burial.

Our neural nets now have 42 inputs for each position: a
one-hot encoding of the amino acid in the target sequence
(20 inputs), a probability for each amino acid from a
multiple alignment (20 inputs), and probabilities of inser-
tion and deletion (2 inputs). The one-hot encoding of the
target sequence is new and permits slightly more precise
predictions when the target sequence differs from the
dominant amino acid in the multiple alignment.

We have not yet done extensive testing of the new neural
nets to quantify any improvement, but the combination of
using the SAM-T04 multiple alignments, the extra inputs
to the neural nets, and retrained networks appears to have
given slight improvements in prediction of local structure.

Fragment Generation

One of the most powerful operators in UNDERTAKER is
fragment replacement, in which portions of the conforma-
tion are replaced by a contiguous piece of protein struc-
ture. This fragment replacement is similar to that used in
Rosetta'® but includes not only the backbone torsion
angles but also full 3D information for all backbone and
side-chain atoms (except hydrogens) in the fragment.

The conformation generator in UNDERTAKER uses
three sources of backbone fragments for building the
models:

1. Short, generic fragments. A library of about 1300
protein structures with good resolution is read in, and
every fragment of length = 4 is indexed. These generic
fragments are used as possible replacements for exactly
matching portions of the target chain.

2. Large fragments and alignments. For each alignment
to a template found by the fold recognition process,
side-chain replacement is done and the resulting incom-
plete conformation stored. The side-chain replacement
can be done either quickly by UNDERTAKER without
optimization or by Dunbrack’s SCWRL 3.0.'*5 The
conformation generator can use the contiguous pieces of
this conformation as fragments or can replace the
entire conformation as a unit.

3. Medium-length fragments. Fragments of nine residues
are found using the FRAGFINDER program of the SAM
tool suite. For CASP6, we used three-track HMMs with
amino acid, STR2, and Cg burial alphabets for finding
medium-length fragments. The fragments are reported
as short alignments to sequences in the template li-
brary and used by UNDERTAKER in exactly the same
way as longer fragments.

The main changes in fragment generation since SAM-
T02 are that we now use three-track HMMs for finding the
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medium-length fragments, and UNDERTAKER filters the
fragments as it reads in the alignments, unaligning resi-
dues that would be in improbable parts of the Ramachand-
ran plot for that residue type. This filtering breaks some of
the fragments into smaller ones, but reduces the number
of residues predicted to be in the wrong conformation. We
are hoping to be able to improve FRAGFINDER, so that
filtering its output is not necessary.

Conformation Generation

The conformation generation in UNDERTAKER is an
adaptive genetic algorithm that currently has 35 conforma-
tion-change operators. Three of them are the fragment
replacement described above: InsertFragment for generic
fragments, InsertSpecificFragments for fragments from
fold recognition and FRAGFINDER alignments, and Insert-
Alignment for replacing multiple fragments simulta-
neously. Also related is TwoFragment, which picks two
fragments at random and replaces both. There is a stan-
dard crossover operation (CrossOver) for combining por-
tions of different conformations, and a specialized one that
does a fragment replacement at the crossover point (Cross-
AndInsert). Some operators do fragment replacement to
try to improve specific parts of the cost function: Reduce-
Clash, ReduceConstraint, and ReduceBreak.

Another group of operators is associated with trying to
close gaps in the backbone: ReduceBreak, MoveGap, Close-
Gap, HealGap, and HealPeptide (HealPeptide added after
CASP6). Several operators move side-chains without affect-
ing the backbone: OneRotamer, ClashingRotamer, and
ClusteredRotamer. Some operators do small, rigid-body
movements of disconnected portions of the chain: JiggleSeg-
ment, JiggleSubtree, OptSegment, OptSubtree, OptAllSeg-
ments, and TweakMultimer (TweakMultimer was added
after CASP6). Some operators make small changes to
torsion angles: TweakPhiSegment, TweakPhiSubtree,
TweakPsiSegment, TweakPsiSubtree, TweakPsiPhiSeg-
ment, TweakPsiPhiSubtree, and TweakPeptide (Tweak-
Peptide was added after CASP6). There are also a few
rather specialized operators: InsertSSBond, ImproveSS-
Bond, ShiftSegment, and ShiftSubtree.

The genetic algorithm keeps track of which operators
have made improvements in the conformations and how
big these improvements are, favoring the use of operators
that make large or frequent improvements.

To generate the starting conformations for the genetic
algorithm, we build a random conformation, then repeat-
edly try doing all possible alignment replacements from
our alignment library. For targets for which good tem-
plates and alignments are available, this generally gets
the core of the conformation correct, and the genetic
algorithm is mainly working on closing the loops and
repacking side-chains, even though no part of the conforma-
tion is frozen.

Cost Function

The generate-and-test method used by UNDERTAKER
relies on a cost function to guide the genetic algorithm
toward proteinlike conformations. The cost function in



138

UNDERTAKER is not an energy function, as it includes
many nonphysical terms. The cost function itselfis a linear
combination of any number of terms selected at run time.
There are currently 38 built-in cost function components,
plus several parameterizable ones that can be read in from
files. Not all the possible components were used in CASP6,
and both the set used and the weighting coefficients were
modified by hand on each target.
The fully automatic predictions used 14 terms:

® Six burial terms (wet6.5, near_backbone, way_back,
dry5, dry6.5, dry8, and dry12). Each burial term counts
residues (for near_backbone and way_back) or atoms
(for the others) within specific spheres near each resi-
due. The cost function uses negative log-probability of
the observed burial, based on residue-specific histo-
grams trained on a set of about 1300 good structures.
The near_backbone and way_back burial functions are
new; the others were used already in CASP5.

® Four hydrogen bond terms. UNDERTAKER has a fairly
sophisticated cost function for evaluating hydrogen
bonds without explicit hydrogens. The cost function
takes into account both distance and geometry, and uses
different parameters for different types of hydrogen
bonds. The different hydrogen bond terms use the same
underlying cost function but assign different weights to
different classes of H-bonds. The four terms were
hbond_geom (H-bonds), hbond_backbone (giving extra
weight for backbone-backbone H-bonds), hbond_geom-
_beta (giving still more weight for backbone H-bonds
that are not part of a helix), and hbond_geom_beta_pair
(giving even more weight for H-bonds that form part of a
ladder between B-strands).

® Two clash terms. Although UNDERTAKER does not
have a Lennard—Jones-style energy function for van der
Waals interactions, it does have a soft_clashes function
that provides increasing penalties for worse conflicts
between atoms. The definition of what constitutes a
clash can be read from a file, and the particular clash
table used for CASP6 grouped the atoms into 49 types
and had tables for minimum acceptable distance be-
tween pairs of atom types for the same residue, residues
adjacent on the backbone, and residues with separation
of two or more.

The soft_clashes cost function does not distinguish
between bonded and nonbonded atoms, so it includes a
check for bonds that are too short. UNDERTAKER does
not have any other checks on bond lengths; in particu-
lar, it does not check for bonds that are too long. Since
all bond lengths are copied from Protein Data Bank
(PDB) files, the assumption is that they are all essen-
tially good. This assumption is probably wrong, and
UNDERTAKER may need more extensive bond-length
scoring.

In addition to the soft_clashes term, we used a
backbone_clashes term that simply counted the num-
ber of pairs of backbone atoms that were closer than the
minimum acceptable distance in the clash table.
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® Break cost. One of the nonphysical terms was a penalty
for breaks in the backbone. The cost is proportional to
the distance, not to distance squared, to avoid the
potential problem of introducing many small gaps to
break up a large one.

® Constraints. Another nonphysical term is distance con-
straints between atoms. The user of UNDERTAKER
can specify specific hydrogen bonds, disulfide bonds, or
arbitrary atom—atom constraints. To simplify construct-
ing the constraints, there are also commands for specify-
ing that a particular region of the backbone is in a helix
or a strand, and that a pair of regions are adjacent
strands of a B-sheet, with the program producing appro-
priate hydrogen bond, C,, and Cg constraints.

For the automatic method, helix and strand constraints
were generated from the confident parts of the secondary
structure predictions. Much of the human intervention
consisted of adding sheet constraints to get appropriate
pairing of B-strands. We also experimented with adding
constraints based on residue-residue contact predictions.

® Predicted « torsion angle. In addition to the helix and
strand constraints, we used the local structure predic-
tions for the a torsion angle [C_(—1), C_(0), C_(1), C_(2)]
as part of the cost function. The discrete probability
vector from the neural net output was combined with
histograms of « values to produce a nearly continuous
probability distribution for each position in the chain.
The negative log probability was used as a component of
the cost function.

Two components were used, based on a predictions

from both SAM-T2k and SAM-T04 multiple alignments.

® Hydrophobic radius of gyration. To reward conformations
that were appropriately compact, with the hydrophobic
residues near the center, we included a term that was
based on the radius of gyration, with atoms weighted by a
hydrophobicity index for the residues. The particular
hydrophobicity index we used was by Cid et al.'® We
normalized the radius of gyration by the cube root of the
length of the protein, then fit the distribution of normal-
ized radii in our training set with a Gumbel distribution.
The term of the cost function was a negative log probabil-
ity of the normalized radius with this distribution.

® Side-chain quality. UNDERTAKER uses a different
approach to scoring rotamers than other new-fold pro-
grams. We do not use Dunbrack’s backbone-dependent
rotamer library,’* nor do we compute the side-chain
torsion angles. We look instead at the positions of three
atoms for each residue: C_(—1), C(+1), and the distal
atom on the side-chain. These are put in a standard
frame of reference based on the backbone atoms for the
residue N(0), C_(0), C(0). A mixture of Gaussian distri-
butions for the nine-dimensional vector is used for each
residue, and the negative log probability is used as a
cost function. Note that this cost function gives the joint
probability of the side-chain and backbone conforma-
tions for the residue, rather than a conditional probabil-
ity, as is done in the backbone-dependent rotamer
libraries.
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This rather crude cost function, which represents the
side-chain as a single point, seems to work as well as the
more complex rotamer libraries used in SCWRL and
ROSETTA on the CASP6 targets. This test may not be
meaningful, as the backbones were usually incorrect
enough that one would not expect optimal side-chains to
match the experimental structures. We have not done
any testing to see how the different rotamer representa-
tions work on backbones with only small errors.

® Bond angle at C_. Normally, the bond angles in UNDER-
TAKER conformations are copied from PDB files, so
they are usually good. One conformation-change opera-
tor, HealGap, inserts peptide planes between adjacent
C, atoms, without paying attention to the backbone
bond angle at the C_, atom. We added a cost function
based on the squared difference between the cosine of
the bond angle and the cosine of the ideal bond angle, to
penalize insertion of peptide planes that created bad
bond angles. If the UNDERTAKER cost function is to be
used for scoring conformations built by other programs,
it may be necessary to add a general term that checks all
bond angles, and not just the N-C_—C angle.

® Ramachandran plot (bys) residue propensity. We have a
simple residue-propensity score for a partition of the
Ramachandran plot. The particular partition we use is
one proposed by Bystroff et al.'” We have a neural net
that does position-specific prediction, but we are not yet
feeding this prediction into UNDERTAKER’s cost func-
tion.

Human Intervention

Human intervention was mainly in the form of changes
to the cost function—increasing or decreasing weights for
the terms and adding disulfide bonds, hydrogen bonds, or
other constraints. Human intervention was most valuable
in new-fold prediction, especially when we tried various
B-sheet topologies.

RESULTS AND DISCUSSION
Smooth GDT Measure

The Global Distance Test (GDT) score used in CASP
assessment has a moderately serious problem with quanti-
zation. That statistic averages the number of points that
can be superimposed to =1, =2, =4, <8 A, and tiny
differences can move a pair of points over one of the
thresholds, resulting in relatively large changes in the
GDT score.

We can recast the GDT score function as a normalized
sum of a goodness function:

E good[dist(2)]/[n*good(0)].

1=i=n

where n is the number of residues, dist(z) is the minimum
over all superpositions tried of the ith largest distance
between corresponding C_ atoms, and good(d) = d = 174 :
{d=2?3:[d=472:(d =8?1:0)]}.

We can define a smooth curve to replace good(d):
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Wmax d < dmax2_wmax
sgood(d) =1 O d > dpax
—logy(d/d,.) otherwise
We have used d,,.. = 12 and w,,,, = 4.5 to get results a

little bit smaller than the standard GDT method, but
without the quantization problems.

A similar measure with a slightly different goodness
function, TM-score, has recently been proposed.'® The
main difference between smooth GDT and TM-score is
that TM-score has a correction for protein length lacking
in smooth GDT.

The smooth GDT measure fixes one problem of GDT—
that of quantization error producing very different results
for only slightly different conformations. TM-score fixes
that problem and also the problem that the fraction of
superposable atoms is generally larger for small proteins
than for large, even for unrelated proteins. Neither mea-
sure addresses some of the other major problems of GDT:

® Smooth GDT and TM-score still suffer from having no
penalty for badly predicted residues; it may be better to
have a goodness function that goes slightly negative
beyond 10 or 12 A.

® Both GDT and smooth GDT tend to give too high a score
to overcompacted structures, as there is no penalty for
physically unrealizable conformations, and shrinking a
wrong conformation may make it easier to superimpose
with a correct one.

® Both smooth GDT and GDT rely on sampling many
superpositions of the conformations to compute how any
atoms can be superimposed at each distance. Different
sampling techniques can result in different results
(though smooth GDT is a little less sensitive to this
problem than GDT).

Automatic Versus Alignment

We have a fairly complicated procedure for automati-
cally creating a model from a set of alignments and
fragments using UNDERTAKER. One of the first ques-
tions to ask is whether this method is any better than just
doing side-chain replacement on the best-scoring align-
ment.

Comparing the smooth GDT scores for both (Figure 2),
we see that the automatic method helps more often than it
hurts. There is generally more improvement on the harder
models, where the best-scoring alignment is less likely to
be correct. The points along the y axis represent domains
that are not present in the best alignments, but which are
included from other alignments by the automatic method.

There are several targets for which just doing side-chain
replacement would produce better models than the auto-
matic SAM-T04 method. Let’s examine T0234, T0213,
T0223_1, T0199_2, and T0228 to see what went wrong.

In T0234, we had good alignments to 1dnlA, but the
secondary structure prediction from the neural nets was
poor, so the automatically generated constraints moved
the conformation away from the alignment. We replaced
the automatic constraints with constraints based on the
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FIG. 2. Smooth GDT scores for models built by the automatic
SAM-T04 method versus the models built by sidechain replacement using
a single alignment with no further optimization. GDT and smooth GDT are
measures of the percentage of the C_ atoms that can be made to be close
when superimposing two conformations, so the best score is 100 and the
worst is 0. See text for the difference between GDT and smooth GDT. The
points along the y axis represent domains that are missing from the
alignment chosen, but picked up from other alignments by the automatic
method.

top-scoring alignment, and improved slightly on the initial
alignment.

In T0213, the automatic run was done without 1t62A in
the template library, but the alignments were redone after
1t62A was added, so the automatic run did not mess up the
alignment—it didn’t have it to work from.

In T0223_1, we had an okay alignment to 1nox, which is
a domain-swapped dimer. Our secondary structure predic-
tions were not a good match to the template, and we would
have been better off discarding them and using just the
template. Because we had initially classified T0223 as a
comparative model (due to the strong hit to 1nox and other
templates in the same family), we did not give it the
attention it needed, and submitted a model no better than
the automatic prediction.

In T0199_2, the automatic method was applied to the
entire multidomain protein. The third domain was im-
proved, but at considerable cost to the first two domains.
For the hand prediction, we picked up some constraints
from the alignments for sheets that appeared to have been
damaged in the first two UNDERTAKER runs. We split
the protein by hand into overlapping pieces (1-133, 133—
end), that did not really match the domain boundaries
(14-87;116-142, 230-336; 145-226), but did help us find
better alignments for the second and third domains. We
recognized that the first domain ended sooner than our
first partition and created predictions, for 1-95 and 115
end. The automatic prediction for 1-95 was pasted into
predictions made for the whole model. The 115—end predic-
tions were about as good as the whole-protein predictions
for domains 2 and 3, so it does not matter that we did not
use them. Pulling out 1-95 as a separate domain did help
quite a bit on the first domain.

In T0228, we started with an adequate alignment to
1gpoA. Because the template does not quite form the
hydrogen bonds necessary to keep the sheet together,
UNDERTAKER did not manage to retain the structure.
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FIG. 3. Smooth GDT scores for models with human intervention
versus the models built by our fully automatic method.
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FIG. 4. Smooth GDT scores for models with human intervention

versus the models built by side-chain replacement using a single
alignment with no further optimization.

We manually added sheet constraints to form the sheets
seen in the top alignment, which resulted in an adequate
but not particularly good prediction.

Human Intervention Versus Automatic

Part of our human intervention was recognizing when
the automatic method had lost a B-sheet that was in the
alignments, adding constraints to retain the B-sheet.
Other human interventions were to try to create B-sheets
or helical bundles when they were not present in the
alignments. In the past, our group’s human interventions
were about as likely to hurt as to help. How well did we do
this time, and were we just repairing the damage done by
the automatic method? We compared our Model 1 submis-
sions with both the automatic method (Fig. 3) and the
best-scoring alignments (Fig. 4).

For the most part, we improved on the fully automatic
method, often substantially, but there are a few targets for
which the automatic prediction was better. What went
wrong for targets T0268_2, T0205, T0208, and T0262_1,
where our manual prediction is considerably worse than
our automatic prediction?

T0268 had a good alignment to 1m6yA. The individual
domains were not damaged much by the automatic method,
though the relationship between the domains got a bit
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worse. Very little work was done on this target, but on the
second try, we somehow added a helix between R182 and
R189, though no such helix was predicted by the neural
nets. This extraneous helix was combined with a misalign-
ment starting around E167, turning the good prediction
into a rather poor one.

T0205 started out with an adequate alignment, but the
B-sheet came apart on the second optimization run.

We stuck it back together using sheet constraints, but
we had shifts of +2 and +4 on the two final strands,
reducing the overall quality of the model. We decided not
to fuss with the alignment of the B-sheet—clearly a
mistake in retrospect.

For T0208, we worked hard to try to create a triose
phosphate isomerase (TIM)-barrel out of the alternating
strands and helices using sheet constraints, but the initial
automatic model was more nearly correct. Residue-residue
contact prediction and clustering of conserved cysteine and
histidine residues did not help much, since the incorrect
model satisfies the constraints as well or better than the
real structure.

For T0262_1, our best model was from the alignment for
the second-highest scoring template (1s29A), which did
not cover any of the second domain. One mistake we made
fairly early on T0262 was to try to cluster conserved
histidines H85, H147, H166, and H190. We partitioned the
protein in various ways, but none of them corresponded to
the correct domain boundaries. Had we figured out the
domain boundaries and attempted to cluster the conserved
residues, we might have done much better, as they clus-
tered well within each domain. More belief in our residue-
residue contact predictions might have helped, though
they were not very accurate.

There are still several targets for which our alignment to
the best-scoring template provided a better model than our
hand intervention, so we did not succeed in recognizing
and undoing all the damage done by the automatic method.
We already considered T0223_1; let’s also look at T0247_1,
where the automatic prediction is worse than the align-
ment, and the manual prediction is worse still.

For T0247, we had a decent alignment to 1pj5A, which
covered the entire protein. We observed some missing
hydrogen bonds and fixed them up with constraints,
improving slightly the third domain. We made the first
domain worse by attaching the hairpin at A16-L.28 to the
sheet, this was probably the most damaging change we
made. We tried clustering H51, E196, R224, and R228 to
make an ion-binding site (based on alignment to 1nrk),
which pulled H51 in a bit too close and got the rotamer
wrong for R228, but did no real harm to the backbone
modeling.

Two successes for our hand method relative to the
automatic method and alignments are T0222_2 and T0207.

The top alignment for target T0222 covered just the
TIM-barrel domain and not T0222_2, and the automatic
alignment did not improve the second domain much. We
initially spent our effort fixing up small problems with the
TIM barrel, and our best model for T0222_1 (try5-opt1, not
submitted) did a fairly good on the TIM barrel, but did a

terrible job on T0222_2. We then tried separate predictions
for 1-274, 236—end, and 273—end. The best model for
T0222_2 was from the 236—end predictions (try3-optl-
scwrl, not submitted) and was based on the second-best
template hit (to 1msi). We pasted together predictions
from 1-274 and 273—end, and did minor polishing for our
final submission. The domains were not properly packed
against one another, but were individually fairly good.
Breaking the target into domains was essential for the
quality of the T0222_2 prediction.

T0207 was not included in the CASP6 assessment,
because information about the structure was leaked before
the deadline. We had finished our predictions before the
leak, so our results are not contaminated, but we cannot
fairly compare with other predictors, since many predic-
tors stopped working when the leak was reported. The
initial alignment had some unfortunate gaps, but there
were enough other alignments to members of the family
for the automatic method to produce a configuration with
only a few bad breaks. We were able to improve consider-
ably on our initial alignment and automatic model, mainly
by trying to pack things tighter and resolve clashes.

CONCLUSION

We successfully used a single protocol for modeling all
targets, from the comparative modeling targets with easily
found templates to the hardest new-fold targets.

We were interested in knowing whether this protocol
was more effective for some classes of targets than others.
The assessors judged our performance on the template-
based models unexceptional, but among the top few groups
on the analogous fold and new fold targets. When we
plotted our GDT rank among all predictors provided by the
CASP6 website versus our smooth GDT score (not shown),
we found only a little correlation between our performance
relative to others and the difficulty of the targets.

We had excellent GDT ranks (= 5) on targets across the
entire spectrum of difficulty: T0199_1, T0229_1, and
T0264_2 (comparative modeling targets); T0199_2,
T0237_1, T0237_2, and T0237_3 (easy fold recognition);
T0199_3, T0230, and T0248_1 (hard fold recognition), and
T0201 and T0241_1 (new fold targets).

On the other hand we had terrible ranks (= 70) primar-
ily on comparative modeling targets: T0205, T0264, T0268
and T0268_2, T0274, T0279 and T0279_1, and T0282 (all
comparative modeling) and T0198 (hard fold recognition).

The relatively poor performance on comparative model-
ing probably has two causes: (1) We did not put much
human effort into the comparative modeling, and (2) our
fold recognition method is designed for finding remote
homologs and does not have any procedure for selecting
between templates when multiple close templates are
found.

We plan to work on improving our alignments to tem-
plates, doing a better job of selecting templates and
alignments when several templates are found, providing
improved ways to communicate information from the fold-
recognition programs to UNDERTAKER, providing more
conformation-change operators in UNDERTAKER, and
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improving UNDERTAKER’s cost function for evaluating
conformations.

A longer term goal is to use our neural nets and
UNDERTAKER to do protein design, as well as protein
structure prediction.

All our predictions, including all models generated and
all our working notes, are available at http:/www.soe.
ucsc.edu/~karplus/casp6/

ACKNOWLEDGMENTS

We are grateful to David Haussler and Anders Krogh for
starting the hidden Markov model and Dirichlet mixture
work at UCSC, as these approaches were instrumental to
our success. We are also grateful to Rachel Karchin,
Christian Barrett, Spencer Tu, Sugato Basu, Mark
Diekhans, and Jonathan Casper, who made other contribu-
tions to the techniques and software. We began work on
the first few targets while Kevin Karplus was on sabbati-
cal in David Baker’s laboratory, and conversations with
members of that laboratory were fruitful in guiding our
initial work on these targets.

REFERENCES

1. Karplus K, Sjolander K, Barrett C, Cline M, Haussler D, Hughey
R, Holm L, Sander C. Predicting protein structure using hidden
Markov models. Proteins 1997; Suppl 1:134-139.

2. Karplus K, Barrett C, Cline M, Diekhans M, Grate L, Hughey R.
Predicting protein structure using only sequence information.
Proteins 1999; Suppl 3:121-125.

3. Karplus K, Karchin R, Barrett C, Tu S, Cline M, Diekhans M,
Grate L, Casper J, Hughey R. What is the value added by human
intervention in protein structure prediction? Proteins 2001;
45(Suppl 5):86-91.

4. Karplus K, Barrett C, Hughey R. Hidden Markov models for
detecting remote protein homologies. Bioinformatics 1998;14:846 —
856.

5. Eyrich VA, Marti-Renom MA, Przybylski D, Madhusudhan MS,
Fiser A, Pazos F, Valencia A, Sali A, Rost B. EVA: continuous

10.

11.

12.

13.

14.

15.

16.

17.

18.

K. KARPLUS ET AL.

automatic evaluation of protein structure prediction servers.
Bioinformatics 2001;17:1242-1243.

. Karplus K, Karchin R, Draper J, Casper J, Mandel-Gutfreund Y,

Diekhans M, Hughey R. Combining local-structure, fold-recogni-
tion, and new-fold methods for protein structure prediction.
Proteins 2003;53(Suppl 6):491-496.

. NR (All Non-Redundant GenBank CDS Translations + PDB +

SwissProt + PIR + PRF Database. Distributed on the Internet via
anonymous FTP from ftp:/ftp.ncbi.nlm.nih.gov/blast/db. Informa-
tion on NR is available at http://www.ncbi.nlm.nih.gov/BLAST/
blast_databases.html.

. Altschul S, Gish W, Miller W, Myers E, Lipman D. Basic local

alignment search tool. J Mol Biol 1990;215:403-410.

. Altschul S, Madden T, Schaffer A, Zhang J, Zhang Z, Miller W,

Lipman D. Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic Acids Res 1997;25:
3389-3402.

Schiffer AA, Aravind L, Madden TL, Shavirin S, Spouge JL, Wolf
YI, Koonin E, Altschul SF. Improving the accuracy of PSI-BLAST
protein database searches with composition-based statistics and
other refinements. Nucleic Acids Res 2001;29:2994 -3005.
Karchin R, Cline M, Mandel-Gutfreund Y, Karplus K. Hidden
Markov models that use predicted local structure for fold recogni-
tion: alphabets of backbone geometry. Proteins 2003;51:504-514.
Karchin R, Cline M, Karplus K. Evaluation of local structure
alphabets based on residue burial. Proteins 2004;55:508-518.
Simons KT, Bonneau R, Ruczinski I, Baker D. Ab initio protein
structure prediction of CASP III targets using ROSETTA. Pro-
teins 1999;Suppl3:171-176.

Bower M, Cohen F, Dunbrack R. Prediction of protein side-chain
rotamers from a backbone-dependent rotamer library: a new
homology modeling tool. J Mol Biol 1997;267:1268-1282.
Canutescu AA, Shelenkov AA, Dunbrack RL Jr. A graph-theory
algorithm for rapid protein side-chain prediction. Protein Sci
2003;12:2001-2014.

Cid H, Bunster M, Canales M, Gazitua F. Hydrophobicity and
structural classes in proteins. Protein Eng 1992;5:373-375.
Bystroff C, Thorsson V, Baker D. HMMSTR: a hidden Markov
model for local sequence—structure correlations in proteins. J Mol
Biol 2000;301:173-190.

Zhang Y, Skolnick J. Scoring function for the automated assess-
ment of protein structure template quality. Proteins 2004;57:702—
710.



