Combining local-structure, fold-recognition, and new-fold methods

for protein structure prediction

Kevin Karplus! Rachel Karchin, Jenny Draper, Jonathan Casper,
Yael Mandel-Gutfreund, Mark Diekhans, Richard Hughey

May 29, 2003

This is a preprint of an article accepted for publication in the CASP5 special issue of

Proteins: Structure, Function, and Genetics. Copyright 2003.

Abstract

This paper presents an overview of the SAM-T02 method
for protein fold recognition and the UNDERTAKER pro-
gram for ab initio predictions.

The SAM-TO02 server is an automatic method that uses
two-track hidden Markov models (HMMs) to find and align
template proteins from PDB to the target protein. The
two-track HMMs use an amino-acid alphabet and one of
several different local-structure alphabets.

The UNDERTAKER program is a new fragment-packing
program that can use short or long fragments and align-
ments to create protein conformations. The HMMs and
fold-recognition alignments from the SAM-T02 method
were used to generate the fragment and alignment li-
braries used by UNDERTAKER.

We present results on a few selected targets for which
this combined method worked particularly well: T0129,
T0181, T0135, T0130, and T0139.

1 Introduction

In previous CASP experiments, our team has concentrated
on fold-recognition using hidden Markov models (HMMS)
with fairly good results [1, 2, 3]. We have also had some
success using standard neural-net methods to predict sec-

*email:karplus@soe.ucsc.edu Mailing address: Computer Engi-
neering Department, University of California, Santa Cruz, CA
95064 USA. Phone: 1-831-459-4250, Fax: 1-831-459-4829. Mail
to other authors may be similarly addressed.

Figure 1: A multi-track HMM has multiple emission tables
in each letter-generating (match or insert) state, but is
otherwise similar to the standard profile HMMs used in the
SAM package [7]. The multi-track HMMs model the amino
acids and local structure as conditionally independent,
conditioned on the state of the model.

ondary structure [4], as measured by the EVA project [5].
In 2000, we started incorporating secondary structure
prediction in our fold-recognition method for casp4 [3].

We entered two automatic servers in CASP5 and
CAFASP3: the old SAM-T99 server and a new server,
SAM-T02. SAM-TO02 incorporated the most important
of the fold-recognition improvements we had made in
CASP4: multi-track HMMs, in which each match node con-
tains emission probabilities of predicted local structure
information, in addition to amino-acid emission probabil-
ities [3, 6]. The two-track HMM is illustrated in Figure 1.

Since both servers used the same protein sequence
database and the same templates from PDB [8], any im-
provement in performance could be attributed to im-

provements in the method, rather than in the underlying
databases. The multi-track HMMs we used in CASP4 relied
on a helix-strand-coil description of secondary structure,
while those used in CASP5 use a variety of local structure
descriptions.

For our human-assisted entry to cAsp5, we added a
new fragment-packing program, UNDERTAKER, to our tool
set. The program was added in order to make predictions
in the new-fold and difficult-fold-recognition areas, where
we previously had had no success. The same method was
used for all targets, independent of the degree of similarity
to any targets that we found.

According to the CASP5 assessors, our group had good
results in the new-fold category and the analogous fold-
recognition category, so the new fragment-packing pro-
gram, UNDERTAKER, will be the main focus of this paper.

2 Methods

Our overall structure-prediction method can be conve-
niently divided into several parts:

e finding similar sequences with iterative search (using
SAM-T2K);

e predicting local structure properties with neural
nets;

e finding possible fold-recognition templates using 2-
track HMMs (the SAM-T02 method);

e making alignments to the templates;

e building a specific fragment library for the target
(with FRAGFINDER); and

e packing fragments and fold-recognition alignments to
make a 3D structure (with UNDERTAKER).

The overall structure of the process is outlined in Figure 2.

The iterative search method was exactly the same as
the SAM-T2K method used in cAsP4—the only change
was in the size of the NR database searched [9)].

We predicted local structure with the same neural-net
software as in CASP4, but with newly trained nets and
different local structure alphabets. For CcAsP4, we used
the standard EHL alphabet that is assessed in cAsp. For
CASPb5 we used four local structure alphabets: EBGHSTL

target sequence

template sequences m

sam-t2k sam-t2k

predict-2nd

target alignment

template alignments

local structure wO.5
prediction ’ wo.5
target HMM template HMMs "

hmmscore
hmmscore
target model template model
scores scores
combined
scores
hmmscore

alignments Il

undertaker

2nd-rdb-t del

fragfinder

fragment library

|

undertaker
hmmscore

PDB file

Figure 2: The SAM-TO02 prediction process consists of
several parts: building a multiple alignment for the
target sequence using the SAM script target2k, pre-
dicting secondary structure with predict-2nd, build-
ing HMMs for the target sequence with the SAM script
w0.5, scoring the template library against the target
HMMs using the SAM program hmmscore, scoring the tar-
get sequence against the template HMMs with hmmscore,
combining scores to select templates, choosing target-
template alignments, generating fragments with the SAM
program fragfinder, and doing fragment-packing with
UNDERTAKER.

based on DsSP labeling [10], EBGHTL based on STRIDE
labeling [11], an extension to DSSP (STR) that divided the
beta strands into six classes (see Figure 3) [6], and an
11-letter alphabet (alphall) based on the torsion angle
formed by four successive C, atoms [6]. We also pro-
vided a reduction to the 3-letter EHL alphabet for casp
assessment, but did not use this reduced alphabet for any
other purpose.

As in cAsP4 we used multi-track HMMs for target
models, and amino-acid-only HMMs for template models.
Since we now had five different target models (amino-
acid-only and four different two-track HMMs correspond-
ing to the four local structure alphabets), we did a
weighted combination of scores for the template-based
and target-based searches. Weights were chosen arbitrar-

E

Figure 3: Six letters in the STR alphabet, which expand
on the DSSP “E” or strand state. The strand of the residue
being assigned is indicated with a bold arrow. In a beta
sheet, this strand is either surrounded by two parallel
partners “P”, two anti-parallel partners “A”, or one anti-
parallel and one parallel partner “M”. Edge strands (that
have only one beta-strand partner) have either a parallel
partner “Q” or an anti-parallel partner “Z”. Finally, we
retain the “E” label for strand residues to which DSsP
assigns no partners (generally beta bulges).

ily, based on our assumptions about how well the methods
would work. The combined weights were used to select
templates.

The SAM-T02 automatic server did not include the
alphall torsion-angle predictions and HMMs, but was
otherwise the same as the template-selection step in our
hand predictions. The automatic server made no attempt
to produce 3D structures, but returned alignments to the
templates based on a single two-track target HMM. The
alignment HMM used our new STR alphabet as the local-
structure track, since that method had performed best
in our alignment tests [6]. Because our template library
is highly redundant, the server attempted to remove
duplication and report five distinct predictions. In some
cases, we managed to get decent predictions for multiple
domains as different models (for example, for T0184 with
T0184_1 as models 1 and 2 and T0184_2 as models 3
and 4), even though the server did not explicitly consider
domains.

Our SAM-T02-human method did not use a single
alignment to the template. Instead we generated about 25
alignments for each template, using the different target-

and template-based HMMs and different alignment op-
tions (global vs. local, Viterbi vs. posterior decoding).
In addition to fold-recognition alignments, we also used
FRACGFINDER, a new tool in our SAM tool suite, to find six
fragments of length 9 for each position in the sequence.
The fragments were found with a two-track HMM that
uses the STR local structure alphabet, taking the best six
gapless matches in the template library for each position.

Although we have not yet optimized the FRAGFINDER
method nor done extensive testing, we expect that the
use of two-track HMMs for finding fragments will be a big
help when the local structure prediction is accurate and
will be comparable to other fragment-finding techniques
when the local structure prediction is weak. The HMMs
will cause serious problems when the local structure pre-
diction is confident, but wrong.

The alignments and specific fragment library were
given to UNDERTAKER, along with a generic fragment li-
brary containing all 1-, 2-,; 3-, and 4-residue fragments
indexed by their amino acid strings from a training set
of 448 monomeric protein chains. UNDERTAKER used the
alignments to get an initial conformation, then applied
many rounds of a genetic algorithm with randomly ap-
plied conformation-change operations to minimize a cost
function.

The following subsections will describe some of the
internals of UNDERTAKER.

2.1 Conformation representation

Selection of a conformation representation and data struc-
ture is critical to effective fragment packing, as it affects
the computation time, the possible conformation-change
operators, and the possible cost functions. UNDERTAKER
represents protein conformations as the 3D coordinates
for all heavy atoms (not hydrogens). Using a full 3D
representation for all heavy atoms, rather than a more
compact one such as ¢-1p angles or side-chain centroids,
slows down conformation generation slightly, but allows
much more flexibility in defining cost functions. One
decision we plan to revisit is whether to include ex-
plicit hydrogens—having explicit hydrogens would make
hydrogen-bond scoring simpler, but increases the size of
the conformational space, since torsion angles for the NHg
and OH groups would then need to be set. We could opti-
mize the torsion angles after determining that an H-bond

was desired, but this does not seem to offer much advan-
tage over the current implicit hydrogens.

UNDERTAKER does not require the backbone to be con-
tiguous, but allows breaks between residues. This allows
us to represent directly the multiple-segment information
we get from fold-recognition alignments, bringing fold-
recognition and new-fold techniques into a unified frame-
work. For homology modeling with UNDERTAKER, un-
like Rosetta [12], we do not pick a single alignment and
freeze the backbone for the core residues, but allow many
alignments to be sampled and parts of different ones to
be combined. For distant target-template relationships,
mixing several alignments can help find the correct parts,
but for closer relationships, choosing a single alignment
that is most likely to be good avoids adding noise to the
search.

Our poor performance on comparative modeling tar-
gets (relative to our automatic server) is probably due in
large part to not freezing the core.

Allowing broken backbones introduces a problem that
is not present in programs (like Rosetta) that use a frozen
core or contiguous backbone: what is the relationship
between unconnected parts of the backbone? what moves
when a backbone fragment is replaced?

To solve this problem in UNDERTAKER, we represent
the protein as a tree with segments as leaves, where each
segment is a contiguous piece of the protein with prop-
erly formed peptide bonds. When we do fragment re-
placement within a segment, the transformation does not
propagate across the gap between segments. To preserve
3D relationships between segments, we add edges between
segments, called tertiary edges, that indicate which pairs
of atoms are thought of as holding the segments together.
These are usually chosen to be the closest pair of atoms
in the two segments, such as a disulfide bond or Van der
Waals contact.

Any two residues in the protein chain are connected by
a unique path through the tree. Removing a peptide bond
or a tertiary edge breaks the tree into two trees each of
which can be rigidly transformed, maintaining the struc-
ture within that subpart of the protein, without requiring
a contiguous backbone or a frozen core. The rigid trans-
formations may result from any of several conformation
changing operations, described in Section 2.2.

Note that a subtree may consist of segments that are
widely separated along the protein chain, as would be

necessary for holding together a domain while another
inserted domain changes shape.

2.2 Conformation-changing operators

We have implemented several conformation-changing
operations in UNDERTAKER, beginning with the frag-
ment replacement operation introduced by Simons and
Baker [13]. Fragments to use for replacement came from
three sources: very short ones (14 residues) from a
generic fragment library, which must match exactly on
all residues, medium-length ones (9-12 residues) found
by FRAGFINDER, and variable-length ones that come from
fold-recognition alignments. We also used an operator
for replacing two fragments simultaneously, to allow for
hinge-like motions of part of the conformation, though
there is currently no constraint that the conformation
change actually be hinge-like.

In addition to fragment replacement, UNDERTAKER has
alignment replacement, which replaces several segments
at once, keeping them in the same physical relationships
as they have in the template they are copied from. This
operator allows us to import complete fold-recognition
results into our fragment-packing optimization.

UNDERTAKER includes a number of operators that
attempt to improve some part of our cost function—
reducing breaks, forming or improving disulfide bonds,
reducing clashes, reducing the cost of user-specified con-
straints, and so forth. Many of these operators work by
trying a small number of potential fragment replacements
and computing for each the effect that it would have on
only part of the cost function, selecting the fragment re-
placement that appears to make the most improvement.

UNDERTAKER also has operators for repositioning sub-
trees. It can either jiggle them a small amount or try
to find the optimal placement for them, given the con-
straints and peptide bonds on the segments in the tree.
There are various ways of splitting the tree into subtrees,
which move larger or smaller sections of the protein. On a
smaller scale, the method also has operators for changing
the rotamers of the residues without changing the back-
bone, to improve packing or reduce clashes.

Since UNDERTAKER uses a genetic algorithm for the
stochastic search, the method also includes crossover op-
erators that combine parts of two conformations to get a
new one.

2.3 Stochastic search

As mentioned above, UNDERTAKER uses a genetic algo-
rithm to search conformational space. We start from
a set of conformations (random conformations, based
on fold-recognition alignments, or from previous runs of
UNDERTAKER), and randomly apply operators to generate
new conformations. New conformations that score well
are added to the pool for the next generation, and poorly
scoring older conformations are eliminated. To make sure
that the pool mixes rapidly, we keep no more than 40%
of the conformations from the previous generation.

We keep track of the success rate for each operator (how
often it results in a conformation being kept in the pool)
and adjust the probability of applying the operators based
on their success. The adaptation scheme we are currently
using is rather crude and sometimes gets stuck applying
only one or two of the operators, if it has initial success
with them.

We use the results of several runs of the genetic al-
gorithm to seed the pool for another run, often getting
noticeable reduction in cost from applying crossover op-
erators to conformations from different runs.

2.4 Cost function

Substantial effort was put into making the cost function in
UNDERTAKER easy to modify and extend, as it was quite
clear that much future work would be put into different
scoring functions. Much less effort has been put into mak-
ing a good first version of the cost function. For example,
our cost function does not yet include a hydrogen-bonding
term, but such a term is essential for forming beta sheets.
For close fold recognition targets and for alpha-helical
proteins, the compactness of the right structure usually
held it together in the subsequent optimization of the
cost, but for more distant folds and new folds, beta sheets
often came apart during optimization, even if they were
present in the initial conformation. We often had to add
desired hydrogen bonds as manual constraints in the cost
function.

The cost function can be defined at run time as a
linear combination of any subset of a large number of
different basic cost functions, and the basic cost functions
themselves can be parameterized at run time. New basic
cost functions are very easily added to the code, and they

add no computational cost unless they are specifically
requested in the linear combination specified at runtime.
Currently, we have over two dozen basic cost functions,
and there are several more that we believe we should
implement and test.

One of UNDERTAKER’s most important cost functions,
indeed the one that gives the method its name, is the
burial function. This is a parameterized function that
counts the number of atoms within a given radius for each
residue and scores the sphere based on the probability of
seeing that number of atoms. The sphere is referred to as
a spot, and the number of atoms whose centers are within
the sphere as the burial of the spot. The parameter files
for a burial function include a specification of where the
center of the sphere is relative to the residue, the size of
the sphere, and the smoothed probability distribution of
burial for each residue type.

The UNDERTAKER program includes functionality for
optimizing the spot locations. We define dry spots as
those for which burial has been maximized, wet spots as
those for which burial has been minimized, and generic
spots whose location does not depend on the type of
residue. For generic spots, we maximize the mutual
information between the burial and the residue identity.

UNDERTAKER also has basic cost functions that can
accept the predicted probabilities over a local structure
alphabet for a target and score the conformation using
them (currently working only for the ALPHA1l torsion-
angle alphabet).

One important basic score function accepts user-
specified distance constraints on pairs of atoms and tries
to satisfy these constraints while generating conforma-
tions. These constraints can come either from educated
guesses by the user of the program or from experimental
data (such as NMR experiments or cross-linking experi-
ments). The use of constraints turned out to be essential
for our CASP5 predictions.

3 Results and Discussion

Since our human-assisted prediction method began with
essentially the same fold-recognition process as was used
by our SAM-T02 automatic server, it is instructive to look
at the differences in performance between the two. For
the comparative modeling targets, the server did better

(according to the GDT score) on 76% of the targets—
our use of UNDERTAKER without freezing the core re-
sulted in an overall loss of model quality for the closer
homologs. For the easier fold-recognition targets (classes
CM/FR and FR(H)), the server did better on about a
third of the targets, and the additional input, either
by the UNDERTAKER program or by hand, made im-
provements on the remaining two-thirds. For the diffi-
cult targets (FR(A), NF/FR, and NF), the hand-assisted
UNDERTAKER program did better than the automatic
server on about 84% of the targets.

We looked at the results of the automatic servers regis-
tered with CAFASP, and often included the models gen-
erated by Robetta (the automatic server produced by the
Baker group using Rosetta [14]) as possible conformations
in the initial pool for our genetic algorithm.

On most of the new-fold targets, we did not come up
with anything resembling a correct structure. This is not
surprising, given the crude nature of our cost function
and the amount of handwork necessary to get vaguely
protein-like conformations. We will discuss only the rarer
successes in this paper.

We did reasonably well for the new-fold targets T0129
and T0181. There was also an FR(A) target that we did
well on (T0135), and a CM/FR target that was popular
with most of the speakers at CASP5 (T0130). One target
that was withdrawn from CASP5, T0139, deserves some
comment. Each of these targets will be discussed below.

3.1 New fold: T0129

Target T0129 was the first target to be released, and so
we had plenty of time to look at it and to adjust the scor-
ing function of UNDERTAKER to produce more protein-like
conformations. Our secondary structure predictor gave
strong predictions for seven helices and for an extended
piece. It turned out that our secondary-structure predic-
tion was reasonably accurate (Q3=82%), which helped in
assembling the protein.

The first three helices of the N-terminal domain were
usually packed by the fragment-assembly quite consis-
tently, but we had difficulty with the C-terminal domain.
We mentally partitioned the target into two domains, but
mistakenly grouped helix 4 in the second domain instead
of the first, which resulted in mispacking both domains.
The program was not informed of our domain division,

but we selected ten hand-created constraints: four to try
to keep helices 4-7 straight and six to try to form an up-
down bundle of the four helices plus the extended piece
from F80 to G85. We would have done better not to
constrain the N-terminal end of helix 4.

Our best model was model 3, whether the domains were
considered separately or together. This model was one
where we liked the (incorrect) packing of helix 4 with he-
lices 6 and 7, but did not like the way that helix 5 was
messed up. Although we had included conformations pro-
vided by the Robetta server in some of our optimizations,
they had not been included in the optimizations leading
to models 2 and 3.

3.2 New fold: T0181

Our model 2 for target T0181 had the N-terminus basi-
cally right, but we had trouble getting the third strand of
the sheet (which we had correctly predicted as a strand)
to join the sheet, probably because of the large number of
residues between the second and third strands. We tried
adding constraints by hand to position the third strand,
but we could not simultaneously form the sheet and keep
the backbone contiguous. Because of the bad break in
the backbone, we never submitted any of our models that
had the complete sheet—these might very well have been
better than what we did submit.

We had some weak fold-recognition results for T0181,
but since we still have not seen the correct structure, it
is difficult to decide what went right and wrong.

3.3 Fold-recognition (analogous): T0135

We submitted only one model for T0135, which we ob-
tained through a combination of fold-recognition and
new-fold techniques. Our fold-recognition method by it-
self had the correct fold in third place in its list of hits,
but the E-value of 9.6 gave us no confidence in the result,
and there were several other folds that scored essentially
as well. We had no way of choosing the correct fold using
just our fold-recognition methods.

When UNDERTAKER was run with no hand-added con-
straints, the sheet was not assembled. To assemble it, we
tried to find topologies that were consistent with our pre-
dictions that strand 1 would be an anti-parallel or mixed
middle strand, strand 2 would be an anti-parallel edge

strand, strand 3 would be a parallel strand, and strand 4
would be a mixed middle strand (using a neural net with
our extended STR alphabet). We also wanted strands 1
and 2 to be oriented the same way, since we had pre-
dicted a single helix between them. We did not find
any topologies that met all our predictions, so we exper-
imented with adding constraints for various topologies.
The most promising one was a 4132 anti-parallel sheet.
We obtained a model that looked roughly like a protein
to us, so we submitted it to the VAST web server [15] to
see if any existing proteins had a similar structure. We
got excellent alignments to proteins with a ferredoxin-
like fold, probably because our library of fragments and
fold-recognition alignments contained templates with this
fold.

We edited VAST’s structural alignments to add more
fold-recognition alignments for this fold to UNDERTAKER’S
collection. Several runs of UNDERTAKER, both with and
without constraints on the sheets, resulted in models with
different flaws. We superimposed the models and did cut-
and-paste editing to put together a model with better
features, which we then reoptimized. We fiddled with
hand-added constraints and cut-and-paste editing, to try
to close gaps and pack the helices against the sheet. The
final run did not use the packing constraints, but did
include constraints corresponding to the hydrogen bonds
of the predicted sheet, since our score function still does
not include a hydrogen-bonding term.

For target T0135, the new-fold methods allowed us to
recognize and align a fold that was just a little too remote
for our fold-recognition methods alone to manage. Our
success on this target is exactly what we were hoping for
by combining methods, but several other targets in the
FR(A) category were not nearly as successful.

3.4 Comparative modeling/fold recogni-
tion: T0130

Target T0130 is one that almost all the presenters at
CASP5 felt obligated to present—indeed, one could al-
most have selected the speakers for CASP5 just based on
their performance on this target!

Recognizing the nucleotidyltransferase fold was easy
(almost all the fold-recognition servers got it), but get-
ting a good alignment was harder. Most of the servers
(including both of ours) did not have the third aspartic

acid of the catalytic triad (D46, D48, D79)—there was
excellent sequence conservation up to residue 1, but a
hairpin had to be deleted from the templates to get the
third strand reasonably aligned.

We added constraints by hand to keep this triad prop-
erly spaced (based on the triads in 1bpyA, 1fa0A, and
1fa0B). These constraints managed to get most of the
fold for us, but we incorrectly predicted a helix for the
final strand. UNDERTAKER consistently unwound the he-
lix, but we did not think to question the rather weak
predictions of the neural net on this segment and try to
attach it as a strand. Instead we kept adding constraints
to try to force the incorrectly-predicted helix to form and
to pack against the sheet.

3.5 Withdrawn: T0139

Target T0139 had a picture of its structure published just
a week before the CASP5 deadline [16]. We found the pic-
ture about 24 hours before the CASP5 deadline. We tried
estimating constraints from the picture and adding these
constraints to the UNDERTAKER score function. There
were a number of problems creating these constraints (un-
labeled atoms, mislabeled residues, and distances that
were difficult to guess). We ended up adding about 40
rather loose distance constraints. Just adding these noisy
constraints was not enough to get a good solution—helix 4
ended up on the wrong side of the cluster of helices 1, 2,
and 3. We ended up moving the helix by hand to the other
side and re-optimizing, as our move set seemed unwilling
to unfold the conformation enough to change which side
the helix was on, and we did not have enough time to start
over from a random configuration. This re-optimization
resulted in a roughly correct structure, so we did some
further optimization without the constraints from the ar-
ticle. This re-optimization did not make many changes
(our model 1 submission included the distance constraints
and our model 2 submission did not).

In short, we got a good model for target T0139 (4.86
¢Angstrom for all CA atoms) by adding about 40 cor-
rect but noisy distance constraints and knowledge of the
chirality of the helix bundle. This was, of course, cheat-
ing, and so we informed the organizers that target T0139
should be removed from the CASP5 evaluation. Much
more information could have been extracted from the
article—Alexey Murzin managed to get a 3.84 Angstrom

CA-RMSD model using the same article. We were en-
couraged to see how little extra information was needed
to go from a rather bad model to quite a good one, as one
of our hopes is that the UNDERTAKER program will be use-
ful for aiding structure determination from data sets that
would normally be insufficient or of too low quality for
the purpose.

4 Conclusion

The CASP5 experiment this year let us test both our
new use of local-structure alphabets in fold recognition
(comparing the SAM-T02 server to the older SAM-T99
server) and our new fragment-packing method.

Almost universally, the SAM-T02 server made better
predictions than the older SAM-T99 server, showing that
the use of predicted local structure is valuable in fold
recognition.

Hand-assisted fragment packing did substantially bet-
ter than the fold-recognition server on the more difficult
targets, but worse on the easiest (comparative modeling)
targets. This loss of performance is almost certainly due
to having a large number of alignments to various tem-
plates, with no information given to UNDERTAKER about
the scores of the alignments. UNDERTAKER’s crude cost
function was not able to pick out the best template and
alignment reliably from the set it was presented with, and
the fragment packing often resulted in some movement of
the core residues.

Our future work will concentrate on improving the
cost function in UNDERTAKER, adding new conformation-
change operators, and providing a way to preserve good
conformations from fold recognition without having to
freeze the core.

Acknowledgments

This work was supported in part by NSF grants DBI-
9808007 and EIA-9905322, DOE grant DE-FG0395-
99ER62849, and a National Physical Sciences Consortium
graduate fellowship. We are grateful to David Haussler
and Anders Krogh for starting the hidden Markov model
and Dirichlet mixture work at UCSC, as these approaches
were instrumental to our success. We are also grateful
to Christian Barrett and Spencer Tu Basu, who imple-

mented earlier versions of our prediction server, and who
made other contributions to the techniques.

We began work on T0129 and T0130 while Kevin
Karplus was on sabbatical in David Baker’s lab and
conversations with members of that lab were fruitful in
guiding our initial work on these targets.

References

[1] Kevin Karplus, Kimmen Sjolander, Christian Barrett,
Melissa Cline, David Haussler, Richard Hughey, Liisa
Holm, and Chris Sander. Predicting protein structure
using hidden Markov models. Proteins: Structure, Func-
tion, and Genetics, Suppl. 1:134-139, 1997.

[2] Kevin Karplus, Christian Barrett, Melissa Cline, Mark
Diekhans, Leslie Grate, and Richard Hughey. Predict-
ing protein structure using only sequence information.
Proteins: Structure, Function, and Genetics, Supplement
3(1):121-125, 1999.

[3] Kevin Karplus, Rachel Karchin, Christian Barrett,
Spencer Tu, Melissa Cline, Mark Diekhans, Leslie Grate,
Jonathan Casper, and Richard Hughey. What is the value
added by human intervention in protein structure pre-
diction? Proteins: Structure, Function, and Genetics,
45(S5):86-91, 2001.

[4] Kevin Karplus, Christian Barrett, and Richard Hughey.
Hidden Markov models for detecting remote protein ho-
mologies. Bioinformatics, 14(10):846-856, 1998.

[5] V.A. Eyrich, M.A. Marti-Renom, D. Przybylski, M.S.
Madhusudhan, A. Fiser, F. Pazos, A. Valencia, A. Sali,
and B. Rost. EVA: continuous automatic evaluation
of protein structure prediction servers. Bioinformatics,
17(12):1242-1243, December 2001.

[6] Rachel Karchin, Melissa Cline, Yael Mandel-Gutfreund,
and Kevin Karplus. Hidden Markov models that use
predicted local structure for fold recognition: alphabets
of backbone geometry. Proteins: Structure, Function,
and Genetics, 51(4):504-514, June 2003.

[7] Richard Hughey, Kevin Karplus, and Anders Krogh.
SAM: Sequence alignment and modeling software sys-
tem, version 3. Technical Report UCSC-CRL-99-11,
University of California, Santa Cruz, Computer En-
gineering, UC Santa Cruz, CA 95064, October 1999.
Available from http://www.soe.ucsc.edu/research/
compbio/sam.html.

(8]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

F.C. Bernstein, T. F. Koetzle, G. J. Williams, E. E.
Meyer, M. D. Brice, J. R. Rodgers, O. Kennard, T. Shi-
manouchi, and M. Tasumi. The Protein Data Bank: a
computer-based archival file for macromolecular struc-
tures. Journal of Molecular Biology, 112:535-542, 1977.

NR (All non-redundant GenBank CDS transla-
tions+PDB+SwissProt+PIR+PRF Database) Dis-
tributed on the Internet via anonymous FTP from
ftp://ftp.ncbi.nlm.nih.gov/blast/db. Information
on NR is available at http://www.ncbi.nlm.nih.gov/
BLAST/blast_databases.html.

W. Kabsch and C. Sander. Dictionary of pro-
tein secondary structure: pattern recognition of

hydrogen-bonded and geometrical features. Biopolymers,
22(12):2577-2637, Dec 1983.

Dimitrij Frishman and Patrick Argos. Knowledge-based
protein secondary structure assignment. Proteins: Struc-
ture, Function, and Genetics, 23:566-579, 1995.

Richard Bonneau, Jerry Tsai, Ingo Ruczinski, Dylan
Chivian, Carol Rohl, Charlie E. M. Strauss, and David
Baker. Rosetta in CASP4: progress in ab initio protein
structure prediction. Proteins: Structure, Function, and
Genetics, 45(55):119-126, 2001.

Kim T. Simons, Rich Bonneau, Ingo Ruczinski, and
David Baker. Ab initio protein structure prediction of
CASP III targets using ROSETTA. Proteins: Structure,
Function, and Genetics, Supplement 3(1):171-176, 1999.

Kim T. Simons, Charles Kooperberg, Enoch Huang, and
David Baker. Assembly of protein tertiary structures
from fragments with similar local sequences using simu-
lated annealing and Bayesian scoring functions. Journal
of Molecular Biology, 268:209-225, 1997.

J. Gilbrat, T. Madej, and S. Bryant. Surprising similari-
ties in structure comparison. Current Opinion in Struc-
tural Biology, 6:377-85, 1996.

K. Fukushima, J. Kikuchi, S. Koshiba, T. Kigawa,
Y. Kuroda, and S. Yokoyama. Solution structure of the
DFF-C domain of DFF45/ICAD. a structural basis for
the regulation of apoptotic DNA fragmentation. Journal
of Molecular Biology, 321(2):317-327, August 9 2002.

