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Abstract

This paper presents results of blind predictions submitted
to the CASP4 protein structure prediction experiment.
We made two sets of predictions: one using the fully au-
tomated SAM-T99 server, and one using the improved
SAM-T2K method with human intervention. Both meth-
ods use iterative hidden Markov model-based methods for
constructing protein family pro�les, using only sequence
information. While the SAM-T99 method is purely se-
quence based, the SAM-T2K method uses the predicted
secondary structure of the target sequence and the known
secondary structure of the templates to improve fold-
recognition and alignment.

In this paper we try to determine what aspects of the
SAM-T2K method were responsible for its signi�cantly
better performance in the CASP4 experiment, in the
hopes of producing a better automatic prediction server.
The use of secondary structure prediction seems to be the
most valuable single improvement, though the combined
total of various human interventions is probably at least
as important.
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1 Introduction

For CASP4, the University of California, Santa Cruz
bioinformatics group entered two related prediction meth-
ods: a fully automated server (SAM-T99) and a more
experimental method (SAM-T2K) that included consid-
erable human intervention. We were interested in seeing
how much bene�t we gained from the various improve-
ments to the method and whether the human intervention
o�ered any advantages. We were particularly concerned
about the quality of human intervention, because it was
done by people trained as computer scientists, not protein
chemists.

In the CASP fold-recognition assessment [1, Sippl-eval],
the SAM-T99 server did only adequately (45th overall
and 9th of the servers), but the SAM-T2K method with
human intervention did quite well (4th overall). In this
paper we attempt to analyze what improvements and
interventions caused this improved performance, in the
hope of improving the next generation of the automatic
server.

2 Methods

Both SAM-T99 and SAM-T2K are upgraded versions
of the SAM-T98 method that we used in CASP3[2, 3].
Given a single target sequence, these algorithms itera-
tively build a hmm and multiple alignment of the sequence
and its homologs. Rather than search the entire NR pro-
tein database [4], subsets to search are extracted with
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wu-blast [5, 6].
Each iteration

� takes a multiple alignment, a sequence search set,
and a score threshold;

� builds a hmm from the multiple alignment (using
sequence weighting, Dirichlet mixture and transition
regularizers);

� does hmm scoring of the search set;

� retrains the hmm using only sequences in the search
set which score above the threshold; and

� aligns these sequences to the new hmm.

The new alignment is input to the next iteration. (The
initial multiple alignment is the trivially aligned target
sequence.) Four rounds of database searching and model
building produce the �nal hmm used in fold recognition.
To predict the fold of a target sequence, we use bi-

directional scoring. An hmm is built from the target
sequence and scored against all sequences in a struc-
tural database. The target is also scored against a pre-
built hmm structure library. The template-to-target and
target-to-template scores are averaged, and fold predic-
tion is based on the top scoring target-template pair.
SAM-T99 is a re-parameterized version of SAM-

T98 [2]. SAM-T98 uses a tightly thresholded search set
of close homologs (E-value � 0:00003) on iteration 1,
and a loosely thresholded search set of potential homologs
(E-value � 500) on subsequent iterations. In SAM-
T99, more close homologs (E-value � 0:0005) and fewer
potential homologs (E-value � 300) are allowed in the
search sets. The hmm scoring thresholds are relaxed after
each iteration in both methods, but SAM-T99 expresses
the thresholds di�erently, using E-value rather than raw
score. The threshold used on the �rst iteration is looser
than in SAM-T98 and the threshold on the last iteration
is tighter. SAM-T99 also uses di�erent Dirichlet mixture
priors and transition priors for hmm building.
In SAM-T2K, a new sequence search set is produced for

each iteration with a series of progressively relaxed wu-

blast thresholds (0.01, 1.0, 10, and 400), rather than us-
ing just two search sets. The hmm score thresholds used
to allow sequences into the multiple alignments have been
changed from SAM-T99's E-values of (0.00001, 0.0001,

0.001, and 0.01) to (0.00001, 0.0002, 0.001, and 0.005).
The fourth iteration's hmm score threshold was tightened
to reduce number of false positives in the �nal alignment.
The �nal alignment is computed with posterior decoding,
rather than Viterbi dynamic programming [7, 8]. SAM-
T2K also returned to using recode3.20comp as the Dirich-
let mixture prior.

Finally, we have implemented several changes in se-
quence weighting. Weights are now varied for each it-
eration of model building to get more generalization on
later iterations. To build the �nal hmm, both SAM-T99
and SAM-T2K use the w0.5 script, which thins the align-
ment to 80% residue identity, uses an entropy weighting
method with the target savings set to 0.5 bits/column,
and uses the recode3.20comp Dirichlet mixture prior.

Fold-recognition tests indicate that hmms built from
SAM-T2K multiple alignments are better than ones built
from SAM-T99 multiple alignments (unpublished), but
not by enough to account for the di�erence in in perfor-
mance seen in CASP4.

Two-track hmms

In SAM-T2K, fold recognition performance has improved
slightly due to better multiple alignments, which results
from changes in threshold parameters, regularizers, and
some internal details of our basic algorithm. The most
signi�cant performance improvement between SAM-T99
and SAM-T2K involves the use of two-track hmms. Al-
though SAM-T99 makes a secondary structure prediction
for the target sequence, this information is not used in
SAM-T99's fold recognition and alignment.

SAM-T2K uses a neural net to produce a vector of
three predicted probabilities (helix, sheet, and coil) for
each residue in the target. These are included as emis-
sion probabilities in the match states of the target's hmm,
so that each match state contains a distribution of amino
acid probabilities and a distribution of three-state sec-
ondary structure probabilities. All templates in our struc-
ture library are then scored as sequence pairs (amino acid
sequence and secondary structure sequence) with the two-
track hmm. Our two-track hmm software was not ready
until mid-summer, so we were able to apply this new
method only to some of the targets.
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Figure 1: This picture shows graphically how the two-
track hmm is organized. The only change from the
pro�le hmms used previously with SAM is the addition of
predicted emission probabilities for secondary structure
to the match states|the insertion states get background
probabilities for secondary structure and the transition
probabilities are identical to the amino-acid-only hmms.
A real hmm has as many match states as alignment
columns in the multiple alignment (for SAM-T2K, the
number of residues in the target sequence). The \AA"
and \2ry" labels in the boxes refer to emission-probability
tables for amino acids and secondary structure labels,
respectively.

3 Results and Discussion

One of the �rst analyses we did was to compare the oÆcial
assessment of our results to those of the other groups
ranked near the top. We wanted to know whether our
methods were stronger at alignment or at fold-recognition
(using the other top groups as a comparison base to factor
out the diÆculty of di�erent targets).

For most of the fold-recognition predictions, our SAM-
T2K alignments were similar in quality to Baker's predic-
tions with Rosetta and Rychlewski's with Bioinfo, though
there were particular targets on which one or another of
the methods did signi�cantly better. Where Rosetta did
better overall was in making somewhat reasonable predic-
tions for new folds, where our methods, predictably, had

domain SAM-T99 SAM-T2K di�erence
121-2 4 4
100 0 3.5 3.5
95-2 0 3 3
110 0 3 3
118 0 1.5 1.5
101 2 3 1
116-4 1.5 2.5 1
127-2 1.5 2.5 1
87-1 0 1 1
107 0 1 1
109 0 1 1
96-1 3.5 4 0.5
87-2 0.5 0.5
95-1 0 0.5 0.5
114 0 0.5 0.5
127-1 3 3 0

Table 1: CASP4 fold-recognition targets for which either
SAM-T99 or SAM-T2K received a non-zero evaluation
by Manfred Sippl. The second and third columns re-
port Sippl's evaluation, with blanks indicating that the
prediction did not include the speci�ed domain. The
last column gives the di�erence in evaluation between the
methods. Note that SAM-T2K is consistently better than
SAM-T99. The domains are sorted by the di�erence in
evaluation score.

no success. Both Murzin and Sternberg had higher qual-
ity alignments than SAM-T2K, but did not have quite as
many successful fold predictions.

We submitted two sets of predictions to CASP4: a
fully automated set using the SAM-T99 server, and a
set involving human intervention (SAM-T2K). The SAM-
T2K predictions were good [1, Sippl-eval]|much better
than the SAM-T99 predictions. Table 1 lists all the fold-
recognition domains that got a non-zero score for either
technique in Sippl's evaluations, sorted by the di�erence
in score.

From the table, we can clearly see that SAM-T2K
consistently outperforms SAM-T99, and the rest of this
section will try to analyze, for each domain, what we did
di�erently in SAM-T2K to get the superior performance.
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Domain 121-2

SAM-T2K's better performance on domain 2 of ketose re-
ductase/sorbitol dehydrogenase (T0121) is not surprising.
The protocol we used with the automatic server simply
reported the best hit, which was for domain 1. No at-
tempt was made to consider the residues not included in
that prediction. For SAM-T2K, we created a new target
consisting of just the C-terminus of T0121 (past residue
240). With this target, both the standard hmm and the
2-track hmm found 1b9mA as the best template. Further-
more the conserved residues in the 2-track local alignment
occurred in regular stripes across the beta strands of the
barrels, increasing our con�dence in the quality of the
alignment.

Domain 100

Target T0100 (pectin methylesterase) was a beta helix
(SCOP superfamily 2.75.1 [9]), which SAM-T99 had as
the eighth-ranked protein (third-ranked fold). This eighth
ranked protein for SAM-T99 was pectate lyase, which we
decided to examine more closely, since it binds a similar
substrate as the target protein. We also noted that the
CAFASP servers were generally in agreement that the
domain was 2.75.1 [10, CAFASP2], and this agreed with
our secondary structure prediction.

We spent a lot of e�ort attempting to align T0100 with
various beta helices, but were only moderately successful.

At the time we had to submit our predictions for T0100,
the two-track hmm scoring was not working yet, but later
scoring showed that the right superfamily would have
been at the top for two-track hmms. Since this is the
only target discussed in this paper for which the two-
track hmms were unavailable by the target expiration,
and since we could get the right fold either by matching
the function or by using 2-track hmms, we have given
credit for both in Table 2.

Domains 95-1 and 95-2

SAM-T99 was seriously handicapped for the alpha(E)-
catenin fragment (T0095), since the template used by
SAM-T2K was not available in pdb by the deadline for
the CAFASP submission. The di�erence in results for
this target does not re
ect a di�erence in the methods,

but a di�erence in the submission deadlines. SAM-T2K
got a good alignment for the second domain, but not for
the �rst domain.

Domain 110

The ribosome binding factor A (T0110) got no hits with
template models in our T99 library and only one weak
hit with the SAM-T99 target model, which turned out to
be incorrect. We rejected this hit manually, since it was a
zinc-binding protein, but none of the cysteines that coor-
dinated the zinc were present in the target. The CAFASP
servers did not o�er any obvious consensus targets. We
generated a few more candidates by considering the top
few hits from the 2-track target hmm. We also noted
that the protein functioned as a cold-shock protein, so we
included a number of templates from SCOP superfamily
2.38.4 (OB-fold, nucleic-acid-binding proteins) [9].
We ended up with 31 templates to consider. We ranked

these according according to the Viterbi scores of align-
ment by various hmms (target, template, template hmm
from FSSP alignment) with various alignment options,
then examined the alignments manually. Several of the
top-scoring ones were rejected because they aligned to a
beta sheet but omitted an interior strand of the sheet. We
also rejected a few possibilities for very poor secondary
structure matches. We did not examine all the alignments
produced, not bothering with the ones that scored very
poorly.
We ended up with two possibilities: pieces of 1egaA

and 1lehA, which were the 4th and 1st hit with the 2-
track hmm. We rejected the second hit (1mml) because
the predicted strands were in di�erent domains, rather
than being in the same sheet, and the third hit (1cf9A)
because the predicted structure was not compact.
The alignments with 1egaA and 1lehA overlapped:

1egaA had secondary structure elements helix-strand-
strand-helix-strand, with the strands part of an untwisted
beta sheet, and 1lehA had elements strand-strand-helix-
strand-helix with a similar untwisted beta sheet. The
strand-strand-helix-strand sections were very similar in
both structures. Since the pieces of 1lehA and 1egaA did
not con
ict, we tried combining the two predictions using
Undertaker, our experimental fragment-packing program
to make a helix-strand-strand-helix-strand-helix predic-
tion. It turned out that this combination did not improve
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our prediction, as the �nal helix that 1lehA added is not
resolved in the solved structure, and the prediction based
on 1egaA alone was closer to the solved structure than
our combined prediction was.
The overall prediction was good, though the �rst helix

was misaligned by two turns. For this target, the hand-
selection of compact beta structures was crucial, but the
2-track hmms greatly reduced the number of alignments
we had to consider (from 31 down to 4).

Domain 118

Our prediction for Endodeoxyribonuclease I (T0118) was
not an exceptionally good prediction, but the target was
diÆcult (only four groups did better than SAM-T2K).
Since 5 catalytically essential residues had been iden-

ti�ed for Endonuclease I: E20, E35, D55, E65, and D74,
and the last 9 residues were known to be essential for
DNA binding [11], we tried improving our hmm by us-
ing a two-sequence alignment as our initial seed. One
sequence was the target sequence, the other had Xs is all
positions except the 14 key residues.
The other sequences in the multiple alignment gener-

ated by SAM-T2K using this seed (the expanded align-
ment) were the same as in the SAM-T2K alignment from
just the target (the original alignment), but the extra se-
quence with the active site residues did increase (slightly)
the conservation expected in those columns. The sec-
ondary structure prediction with the expanded alignment
provided more reasonable helix and strand lengths than
the one from the original alignment (and turned out to
be somewhat more accurate).
The best alignments with the 2-track hmm built from

the expanded alignment were to 1opr (SCOP superfamily
3.56.1) and 1avqA (3.47.1). The 1opr alignment was
missing an interior strand of a beta sheet, but the 1avqA
alignment could be plausibly extended to a full-length
alignment and, with a little editing, could cluster 4 of the
5 active site residues|this is the alignment we submitted.
The best of the CASP4 predictions used 1pviA as a
template, which is in the same SCOP superfamily as
1avqA, but a di�erent family|we had 2pviA (the same
sequence as 1pviA) as our fourth best hit, but did not
have time to examine it manually.
The addition of the key residues to the multiple align-

ment moved 1avqA from superfamily 3.47.1 from the 5th

position with the 2-track hmms to the second position.
The amino-acid-only hmm also bene�tted from the ad-
dition of the key residues, moving sequence 2pviA (the
correct superfamily) from very far down the list to sec-
ond position. Increasing the weight on the key residues
decreases the E-value for 1avqA, but even for fairly high
weights on the key residues, the incorrect match to 1opr
scores slightly better.

Domain 101

The pectate lyase (T0101) was easily recognized as a beta-
helix, and both SAM-T99 and SAM-T2K used 1dbgA as
the template (as did most of the servers in CAFASP). The
better evaluation for SAM-T2K results entirely from bet-
ter alignment. The alignment submitted is basically the
local alignment using the 2-track target hmm, but some
hand-editing was done to try to improve the conservation
pattern along the highly conserved turns in the beta he-
lix. The hand editing moved few residues and those only
by a few positions|the unedited alignment would have
scored almost as well.

Domain 116-4

For the MutS DNA mismatch repair protein (T0116),
we had a strong match for SCOP domain 3.31.1 using
template models (particularly 2reb). We did not �nd any
strong matches with the amino-acid-only target model,
but the 2-track target hmm had hits to domain 3.31.1 in
the top four, making it quite promising. Other than the
2reb match (a strand-helix alternation making a 5- or 6-
strand sheet), none of the top-scoring alignments looked
particularly good|they tended to have large gaps both
in the sequence and in three dimensions.
With 811 residues in the target, it seemed clear that

this was a multi-domain protein. Our match to 2reb
started at about residue 576, and we had a weak match
to 1bkdS up to about residue 470, so we tried a three-way
overlapping split: 1-500, 400-600, 500-765. The domain
split made by the assessors is 1-128, 129-249, 250-542,
543-765.
For the 500-765 subtarget, we had strong hits for the

2reb template model, and moderate strength ones with
the target model. Other sequences from the same SCOP
domain, 1b0uA and 1cr1A, also scored well either with
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the template model or the 2-track target model. We
hand-edited the 1b0uA global 2-track alignment to shrink
the gaps where there were substantial deletions. This
alignment placed the domain boundary in the right place
(within 1 or 2 residues), and was apparently a good
alignment (within the top 4 predictions for this domain).
Although we tried doing further splitting of sequence

(1-300, 201-500), we were not successful in identifying the
other domains of T0116. We submitted an alignment to
1tgoA, which might have been ok for the second domain,
but our alignment was about 80 residues o�, rendering it
useless.
The 2-track alignment was important for our getting

a good alignment for domain 116-4 and domain splitting
somewhat less important, as we managed to recognize
the right fold (with a poorer alignment) without domain
splitting.
For some reason, we overlooked the submitters' com-

ment that the C-terminus was homologous to ABC trans-
porter ATPase (1b0uA)|using that hint could have
saved us some time in choosing the right template from
the superfamily.

Domain 127-2

For the magnesium chelatase (T0127), we found many
strong hits with the target models for SCOP superfam-
ily 3.31.1 (as did essentially all the automatic servers
in the CAFASP experiment). The 2-track hmm also
scored sequences from this superfamily well. One tem-
plate, 1do0A, consistently scored the best with target
and template models and the two-track target model. Al-
though some hand editing was done (mainly moving a few
residues from the second domain to the �rst domain), the
alignment was essentially that provided by the 2-track
hmm alignment. Using an amino-acid-only hmm did not
give as good an alignment of domain 127-2 as the 2-track
hmm.
It turned out that our submitted alignment was the

best alignment predicted for this domain. Note that no
attempt was made to split the target into two domains
and predict them separately, though hand inspection of
the predicted structure showed a clear domain boundary.
Our alignment for the �rst domain was good (compa-

rable to several other good predictions), but not as good
as that submitted by SBFold [12].

Domains 87-1 and 87-2

Although the SAM-T2K predictions were mediocre for
PPase (T0087) (seven groups did better on the �rst do-
main, and at least 30 groups did better on the second do-
main), they were better than the SAM-T99 predictions.
The main advantage came from splitting the target into
two domains (1-180 and 181-310)|a domain split that
was only a little di�erent from that done after the struc-
ture was known (1-194, 195-310). The domain split was
done based on the match to the Pfam DHH domain [13].
Scores with the two-track hmms were weak and were

not used for selecting templates. The alignment of Do-
main 1 to 8abp was obtained by hand-editing a 2-track
global alignment. The alignment of Domain 2 to 1be1
was obtained by extensive hand editing of the global tar-
get model alignment (not using a 2-track hmm).

Domain 107

The prediction for family 9 carbohydrate-binding module
(T0107) was poor for SAM-T2K|what slight advantage
it had over SAM-T99 is probably attributable to the 2-
track hmm.

Domain 109

The prediction for oligoribonuclease (T0109) was poor for
SAM-T2K. We selected the template based on function
and on the predictions of other servers in the CAFASP
experiment. The functional matching was just for ribonu-
cleases and DNA polymerases (the most common func-
tions for the Swissprot matches in the SAM-T2K multiple
alignment). We got the right fold, but the alignment was
poor, perhaps because of inaccuracies in the secondary
structure prediction.

Domain 96-1

The �rst domain of FadR (T0096) was the easiest of the
targets in the fold-recognition category, with most groups
that predicted for it getting at least the right fold. We
got hits for 1lea and 2cgpA with both target and template
models. Both of these are winged-helix DNA-binding
domains (SCOP 1.4.4). Since the target is a DNA-binding
protein, this seemed like a good hit functionally, though
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we did not really need this functional information to make
a con�dent prediction.

Because we had no good hits to the second domain
and the submitters gave us the information that the acyl-
coenzyme-A-binding domain had no structurally similar
sequences in pdb, we did not examine that domain fur-
ther, but looked only at the �rst domain.

With the two-track target hmm, the top-scoring six
sequences were all from SCOP superfamily 1.4.4, giving
us more con�dence than we had with the amino-acid-only
hmms. We submitted the third-best scoring alignment
(to 1qbjA), because it had fewer insertions and deletions
than the higher-scoring ones, but we edited it to move
the insertion away from the DNA, putting the insertion
in the same place as the automatic alignment for 1bi0.
We chose 1qbjA as the template, because the insertion is
smaller in 1qbjA than in 1bi0. Murzin produced a better
alignment to 2dtr, which is the same sequence as 1bi0 for
this domain. It is not clear how we could have chosen
1bi0 over 1qbjA with the information we had.

Domain 114

Neither the SAM-T99 nor the SAM-T2K methods found
any homologs for T0114 in building the multiple align-
ments, so the target models and the secondary structure
predictions were made from a single sequence.

Although secondary structure prediction from a single
sequence is inaccurate, the template we selected (1hoe)
was chosen because it was a 6-strand structure, not be-
cause it scored particularly well.

We correctly predicted that the structure would be a
beta sandwich, and we got a few of our predicted strands
to align to real strands, but the topology of our predicted
sandwich was not correct, so the overall prediction was
incorrect even for SAM-T2K. The di�erence in evaluation
between the two probably amounted to bonus points for
getting a beta sandwich of roughly the right size with
SAM-T2K.

Summary of di�erences between SAM-T99

and SAM-T2K

In Table 2 we have attempted to tabulate what made the
SAM-T2K alignments better than the SAM-T99 ones.

The single most important di�erence is the use of two-
track hmms in SAM-T2K, though splitting into domains
and the use of functional information were also helpful.
Overall, the the 2-track hmms and the combined manual
interventions were about equally valuable.

4 Conclusion

The hand intervention was successful in improving the
protein fold recognition, but was very labor intensive.
Many of the tasks done in the hand intervention are
automatable, and we intend to put as many as we can
into the next automatic server (SAM-T01).
Many of the improvements in SAM-T2K are automat-

able. The most valuable of them, the 2-track hmms,
are already programmed|we just have to tune param-
eters and provide some calibration of the E-values. We
are planning to do some automatic checking of function
based on keyword matches, perhaps using the methods of
SAWTED [14]. Our template library is now updated fre-
quently (about every two weeks|more frequently during
CASP season), so additions to pdb are quickly incorpo-
rated.
Domain splitting remains a more challenging problem.

We do not expect to do fully automatic domain predic-
tion, but we may automate resubmission of the remainder
of a target when one domain is strongly matched.
We frequently observe several templates for the same

fold or superfamily scoring well in our predictions, but
we have not used this clustering of results in automatic
prediction. We are looking into using the product-of-p-
values method [15] for combining information from mul-
tiple templates.
We do not expect to automate the screening that we do

by looking at the predicted three-dimensional structure,
though the removal of non-compact predictions or predic-
tions that skip interior strands of a beta sheet would be
useful. We have also not committed to automating the
use of key-residue information, since the information is
rarely available in a machine-readable form.
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domain 2-track hmm domains function library interior strand active site other
121-2 x
100 x x
95 x
110 x x x
118 x x
101 x
116-4 x x
127-2 x
87 x x
107 x
109 x
96-1 x
114 x
total 8 3 2 1 2 1 2

Table 2: For each domain, the \x" marks the reason(s) we believe the SAM-T2K alignment with human intervention
was superior to the SAM-T99 automatic one. We have not attempted a �ner quantization of how much improvement
each technique made, though the contribution varies from target to target. Although many targets involved some
hand-editing of the alignment, we have not attempted to assess how much bene�t was obtained from this editing.
For T100, we have given credit to the 2-track hmms, which would have given the correct fold, had they been available
at the time.
The single most important change is the addition of 2-track hmms using the secondary structure predictions, though
the combined e�ect of splitting into domains, looking at the function of the protein, using a newer template library,
checking for missing interior strands of beta sheets, and using active-site information may be at least as important.

99ER62849, and a National Physical Sciences Consortium
graduate fellowship. We are grateful to David Haussler
and Anders Krogh for starting the hidden Markov model
and Dirichlet mixture work at UCSC, as these approaches
were instrumental to our success.

References

[1] Manfred J. Sippl, Peter Lackner, Francisco S. Domingues,
Andreas Prli�c, Rainer Maik, Antonina Andreeva, and
Markus Wiederstein. Assessment of the CASP4 fold
recognition category. Proteins: Structure, Function, and
Genetics, 2001.

[2] Kevin Karplus, Christian Barrett, and Richard Hughey.
Hidden markov models for detecting remote protein ho-
mologies. Bioinformatics, 14(10):846{856, 1998.

[3] Kevin Karplus, Christian Barrett, Melissa Cline, Mark
Diekhans, Leslie Grate, and Richard Hughey. Predict-
ing protein structure using only sequence information.

Proteins: Structure, Function, and Genetics, Supplement
3(1):121{125, 1999.

[4] NR (All non-redundant GenBank CDS transla-
tions+PDB+SwissProt+PIR+PRF Database) Dis-
tributed on the Internet via anonymous FTP from
ftp://ftp.ncbi.nlm.nih.gov/blast/db. Information
on NR is available at http://www.ncbi.nlm.nih.gov/

BLAST/blast databases.html.

[5] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and
D. J. Lipman. A basic local alignment search tool. JMB,
215:403{410, 1990.

[6] WU-BLAST WWW archives.
http://blast.wustl.edu/.

[7] I. Holmes and R. Durbin. Dynamic programming align-
ment accuracy. Jour. Comp. Biol., 5(3):493{504, 1998.

[8] Richard Hughey, Kevin Karplus, and Anders Krogh.
SAM: Sequence alignment and modeling software sys-
tem, version 3. Technical Report UCSC-CRL-99-11,

8



University of California, Santa Cruz, Computer En-
gineering, UC Santa Cruz, CA 95064, October 1999.
Available from http://www.cse.ucsc.edu/research/

compbio/sam.html.

[9] T. Hubbard, A. Murzin, S. Brenner, and C. Chothia.
scop: a structural classi�cation of proteins database.
NAR, 25(1):236{9, January 1997.

[10] Dani Fisher? CAFASP2? Proteins: Structure, Function,
and Genetics, 2001.

[11] M. Janine Parkinson, J. Richard G. P�ohler, and David
M. J. Lilley. Catalytic and binding mutants of the
junction-resolving enzyme endonuclease I of bacterio-
phage T7: role of acidic residues. NAR, 27(2):682{689,
1999.

[12] K. K. Koretke, R. B. Russell, R. R. Copley, and A. N.
Lupas. Fold recognition using sequence and secondary
structure information. Proteins: Structure, Function,
and Genetics, Supplement 3(1):141{8, 1999.

[13] E.L.L Sonnhammer, S.R. Eddy, and R. Durbin. Pfam: A
comprehensive database of protein families based on seed
alignments. Proteins: Structure, Function, and Genetics,
28:405{420, 1997.

[14] Robert M. MacCallum, Lawrence A. Kelley, and Michael
J. E. Sternberg. SAWTED: Structure assignment with
text description-enhanced detection of remote homo-
logues with automated SWISS-PROT annotation com-
parisons. Bioinformatics, 16(2):125{129, February 2000.

[15] Timothy L. Bailey and William N. Grundy. Classifying
proteins by family using the product of correlated p-
values. In Int. Conf. Computational Molecular Biology
(RECOMB99), pages 10{14. ACM Press, April 11-14
1999.

9


