Predicting Protein Structure using only Sequence Information
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ABSTRACT

This paper presents results of blind predictions sub-
mitted to the CASP3 protein structure prediction experi-
ment. We made predictions using the SAM-T98 method,
an iterative hidden Markov model based method for con-
structing protein family profiles. The method is purely se-
quence based—using no structural information—and yet
was able to predict structures as well as all but five of the
structure-based methods in CASP3.

1 Introduction

One method of protein sequence analysis is the iden-
tification of homologous proteins—proteins that share a
common evolutionary history and have similar overall
structure and function [5]. Here we report on the use
of SAM-T98 [11, 16], a newly developed hidden Markov
model (HMM) [13, 9] method for recognition of homologs
with low sequence similarity, and how it fared in the fold-
recognition section of the CASP3 experiment.

HwMMs combine the best aspects of weight matrices and
local sequence alignment methods, and can be used to as-
sign probabilities to proteins in database search [6]. Our
HMM fold-recognition method differs from protein thread-
ing methods [10, 19, 14, 15] in that pairwise interactions
are not modeled or used. Instead, we employ Bayesian
methods [3, 2, 17] to incorporate prior information in
the form of Dirichlet mizture densities [20] over position-
specific amino acid distributions. The components of the
mixture reflect different patterns of sequence conservation
and can be combined with data from aligned homologs to
form data-dependent estimates of amino-acid probabili-
ties.

In the CASP3 experiments, we used the recently de-
veloped SAM-T98 remote homology detection method to
compare the CASP3 targets against a database of pro-
teins whose structures are known (Section 2). We discuss
how successful this method was in finding similar struc-
tures for the targets in Section 3, and discuss the lessons
learned in Section 4.
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A prediction server using the SAM-T98 method dis-
cussed here is available on the World-Wide Web!, as is
documentation and licensing information for the SAM
hidden Markov model software suite [9].

2 Methods

Since the SAM-T98 method is fully described else-
where [11], it will only be described briefly here. The
method is purely sequence-based and does not employ any
structural information. The method iterates through the
following steps several times (four for template library, six
or seven for the target models), using the initial sequence
for input in the first iteration.

1. Build an HMM from a sequence or multiple align-
ment, using sequence weighting and Dirichlet mix-
tures. The total sequence weight is chosen to get an
appropriate level of generality in the resulting model.

2. Score a nonredundant sequence database with the
HMM and retain as a training set those sequences that
score better than some threshold value. Scoring is
based on log odds, where the likelihood of a sequence
having been generated from the HMM is compared to
the likelihood of the sequence having been generated
from some null model. For the null model we used
the reverse of the HMM—the score generated using
this null model is the same score one would get from
scoring the reversed sequence with the original HMM.
This novel null model cancels out artificially strong
scores due to length and composition biases and more
subtle sources such as conserved rare residues and
long helices.

3. Re-estimate the HMM with these sequences, using
sequence weighting and Dirichlet mixture priors [20].

4. Re-align the training set using the re-trained HMM.
This multiple alignment is used an input to the first
step in the next iteration.

During each round of iteration, the score threshold in
step 2 is made less stringent in order to capture less
similar sequences that are still, we hope, homologs. The
final multiple alignment, called the SAM-T98 alignment,
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is used to construct the HMM used for database search
and alignment.

For CASP3, we first built a SAM-T98 HMM for every
sequence in a representative set of structure templates
from PDB [4] and for every target sequence. To find
possible templates for a target sequence, we scored all of
PDB with the target HMM, scored the target sequence
with every template HMM, and summed the two scores.
The structures corresponding to the best summed scores
were then investigated manually. For most targets, we
submitted only one structure as our prediction—usually
the best-scoring one. If we had a high-scoring PDB se-
quence that was not in our template library, we sometimes
augmented the template library with an HMM built from
this PDB sequence, in order to be able compare summed
scores. We ended up with about 2100 HMMs in our tem-
plate library.

3 Results and Discussion

Since we predicted on all of the targets for CASP3, we
have divided them into three categories to simplify their
evaluation. These categories are based on the difficulty of
finding the correct structure. Those targets that had very
similar sequences of known structure have been placed in
the easy targets category, while those that had only more
distantly related known structures are members of the
moderately difficult targets category. Those targets that
had little or no similarity to known structures are in the
very difficult targets category. Table 1 shows the results
for the first two categories. Except for T0085, the multi-
heme cytochrome, a submitted cost less than -9 was a
successful prediction, though scores as strong as —27.37
would have been incorrect, had we not filtered out those
predictions by hand.

3.1 Easy Targets

For the fifteen “easy” targets—T0047, T0048, T0049,
T0055, T0057, T0058, T0060, T0062, T0064, TO06S,
T0069, T0O070, TO074, TO076, TO082—our method gave
unambiguous results: the correct structural template al-
ways had the best (most negative) cost (results not avail-
able yet for T0062 and T0069). This cost was always
less than —28, for which we expected fewer than 1% false
positives [11].

Our submitted alignments for these targets were gen-
erally the automatically produced alignments, sometimes
subject to minor hand editing. Figure 1 shows our
predicted alignment of T0074 to the template struc-
ture 2scpA. It shows that our alignment was quite ac-
curate, apart from the first region which is shifted by
two residues. The figure is also an example of one of

Easy Targets
Cost Was Correct

Target PDB Predict|Top Hit|Predict| Top [CASP3
TO0058 lakz -416.33 + + |CM
T0047 1mup -261.04 + + |CM
TO0068 lrmg -245.31 + + |CM
T0069 Irtml -244.64 ? ?

TO0060 1gifA -226.38 + + |CM
T0076 lalmC -155.88] -226.34| + + |CM
T0049 3pte -217.70 + + |CM
T0048 1dcpA -205.74] -209.62| + + |CM
T0062| 2pia+2cnd |-149.19 ? ?

TO0055 lesl -134.70 + + |CM
T0064| ladr+1lois |-102.26 + + |CM
T0082 1bol -82.19 + + |CM
T0057 1gd10 -47.30 + + |CM
T0070 2omf -44.92 + + |CM
T0074 2scpA -23.87| -25.75| + + [FR/CM

Moderately Difficult Targets
Cost Was Correct

Target PDB Predict|Top Hit|Predict| Top |CASP3
TO0085 3cyr -62.68 — — |FR
T0053 1fvkA -5.72| -27.37| - — [FR
T0083 1lmb3 -20.18| -20.51] + + [FR
T0044 leps -12.70 + + |[FR
T0059 2dri -4.89| -10.47 — — |FR/AB
T0079| 1neq+1lsan -9.70 + + |FR
T0071 1hviB -8.88 — — |FR/AB
T0075 loya -4.88 -8.12| -— — |FR/AB
T0080|1t7pB+1mugA| -4.12| -7.14] — | — |[FR/AB
T0043 NF NF| -7.14 - + |FR
T0054 NF NF| -6.97 -— — |FR
TO0077 1tif -5.90| -6.63] — — |FR/AB
T0067 1rhi2 -5.59| -6.04| -— — |FR/AB
T0081 3chy 0.54| -5.82| =+ — |FR
T0061 lamj -3.31| -5.76 — |FR/AB
T0046 2mcm -5.75  -6.49] + + |[FR
T0063 1pex -3.30] -5.65| — — |FR

Table 1: The targets are ranked by the score of
the top hit as found by the SAM-T98 method.
The third column gives the sum of costs for the
target model and template model (for T0043
and T0054 we predicted “new fold”). If we
did not submit our best-scoring template, then
its cost is also reported in column three. The
symbols +/- refer to whether the prediction
was correct/incorrect (see the text for discussion
of T0081). “CM”, “FR” and “AB” refer to
the CASP3 target classifications “Comparative
Modeling”, “Fold Recognition” and “Ab Initio.”
Structures have not been released yet for T0062
and T0069, but we are fairly confident of our
predictions.
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Figure 1: This figure presents the structural alignment of T0074 to 2scpA found by the Yale structural
aligner [7] as aligned upper-case letters. Superimposed on the alignment is our predicted alignment, as
lines connecting the residues we aligned. Slanted lines between uppercase letters indicates a shift of the
predicted alignment relative to the correct structural alignment. This hand-alignment is slightly better than
the automatic one we started from, which had the same correctly aligned residues, but the N-terminus of

T0074 was more misaligned.

the few cases where hand-editing improved on the auto-
matic alignment. In this case, the automatic alignment
had shifted the 21 residues PWAVKPEDKAYKYDAIFD-
SLS of T0074 7 residues toward the N-terminal region of
2scpA, while the hand alignment shifted them 4 residues
toward the C-terminus.

Overall, our alignments for the easy targets were usu-
ally among the best alignments submitted to CASP3,
even though we used no structure information in gen-
erating them.

Our 3D prediction for target TO076 was quite poor. We
aligned T0076 to lalmC (a theoretical model) because our
top hit, 2mysC, had a probable mistracing. We thought
that 1almC corrected this mistracing, but since it did not,
our 3D prediction was poor even though the sequence
alignment was accurate. We would have done better to
use the second-highest-scoring template (1wdcC), which
has an accurate 3D structure.

3.2 Moderately Difficult Targets

There are sixteen “moderately difficult” targets in this
category: T0043, T0044, T0046, T0053, T0054, T0059,
T0063, T0067, T0071, TO075, T0O077, TO079, T0OO8O,
T0081, T0083, T0085. We correctly predicted similar
structures for five targets: T0044, T0046, T0079, T0081,
T0083, all but T0081 of which used the top hit. Most of
the other structures in this category had costs too close
to zero to yield much confidence in our predictions.

Because of the low similarity between the targets and
templates, even the “correct” predictions had alignments

that were accurate only for portions of the target se-
quence. We used local alignment to find the folds,
but global alignment to provide the submitted align-
ment. The global alignments generally aligned more
residue pairs than the correct structural alignments, but
if we has submitted the local alignments, we would have
missed many of the residue pairs that were correctly pre-
dicted. Because RMS deviation is very sensitive to over-
prediction, our RMS scores for the entire alignment look
poor, even though we often have a well-predicted core
alignment. Determining which parts of an alignment are
worth predicting and which should be removed remains a
difficult problem for us.

Our T0085 prediction (2cthA) was an incorrect multi-
heme cytochrome, despite the high score. Matching three
heme-binding sites provided a strong similarity signal,
even though the overall fold was different. The correct
multi-heme cytochrome was in our top 6 hits (out of about
2000 templates).

For T0053, we were misled by our post-scoring sequence
analysis. We considered the correct template lakl for
T0053 (our 10th highest-scoring template), because it
scored well in one of our template libraries and was also
a chelatase. We correctly rejected our top hit (1djxB),
because it did not cluster well the known metal-binding
residues in T0053. We chose 1fvkA (our 8th highest
scoring template), because it clustered the residues well.
Unfortunately, we did not analyze the clustering on lakl.
The target HMM (which gave the erroneous high score
to 1djxB) was poor because there were only three short
matches to the target found in the non-redundant protein
database by the SAM-T98 method (other than the target
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itself), so the HMM had to generalize from very little data.
In such cases, it may be advantageous to put more weight
on the template HMM scores, but we did not attempt this.

For T0071, we were again misled by our post-scoring
sequence analysis. We looked at, but rejected, some
correct templates (leuu and 1dlhA) for the first domain
because of low scores and unconvincing alignments. We
wanted to find an SH3 domain, because the C-terminus
of EPS15 binds to T0071 and is known to bind to an SH3
domain [18, 1]. This hint from the literature was used to
decide between a small number of folds, all of which had
fairly weak scores with our method.

We were surprised that 2mcm turned out to be a
correct prediction for T0046, because the similarity to
immunoglobulins was weak and most immunoglobulins
are quite similar to each other. Our alignment turned
out to be terrible, as can be seen in Figure 2

The known active site residues for T0081 clustered well
when the target sequence was aligned to 3chy. This was
our rationale for choosing 3chy as our prediction. It turns
out that 3chy has a similar alpha-beta-alpha structure,
but threaded in a different order than T0081. If we do
a circular permutation of the chain, we can get a much
better superposition of the structures—unfortunately, our
method did not predict this circular permutation, but an
incorrect alignment. Even constructing an HMM for the
chimeric sequence 3chy followed by 3chy does not allow
our methods to find the permuted alignment. We would
have done better to predict 1rvvl, which scored better
than 3chy, and had the correct threading order. We
had rejected 1rvvl, because our alignments for it did not
cluster the aspartic acid residues, which we had expected.

During the early part of CASP3, we predicted “new
fold” for targets that produced only weak scores to tem-
plate structures. For this reason we predicted that T0043
would be a new fold, even though our top hit turned out
to be the correct fold.

There were a number of targets for which the correct
structural template was in our list of top 10-20 hits,
but we were not able to pick it out. These targets,
with the rank (out of approximately 2000) of the correct
hit in parentheses, are T0043(1), T0053(16), T0054(9),
T0059(16), T0063(10), T0067(16), T0071(6), TO085(6).
We hope that small improvements to the method, as
well as the increase in the number of homologs in the
databases will allow the method to discriminate better in
future.

The low similarity between targets and structures
in this category reduced alignment quality considerably
compared to the alignments for the easier targets in Sec-
tion 3.1. We almost always hand edited our automati-
cally generated alignments for these targets. In general,

though, hand alignment did not provide much improve-
ment, and we would have done about as well with consid-
erably less effort had we submitted our automatic align-
ments. For example, we show one of the better hand
alignments in Figure 3, but the automatic alignment it
was based on did not include the incorrect alignment at
the C terminus.

3.3 Very Difficult Targets

Almost all of the remaining “very difficult” targets can
be characterized as targets that represented new folds or
that bore similarity only to fragments of solved protein
structures. For all of the targets in this category, our
method indicated with high likelihood that there was no
similar structure.

3.4 Secondary Structure Prediction
using SAM-T98

We also used the SAM-T98 multiple alignments for the
target sequences as inputs to a neural net for secondary
structure prediction. This turned out to be one of the
best two secondary structure predictors at CASP3, al-
though we did not use the secondary structure predictions
in our fold predictions. When we had a correct fold pre-
diction, deducing the secondary structure from the pre-
dicted alignment provided more accurate secondary struc-
ture prediction than the neural net, but the neural net was
more accurate when we had an incorrect fold prediction.
We plan to combine this secondary structure predictor
with two others we are building, and put them all up on
the World Wide Web in the next six months.

4 Conclusion

We have discussed the HMM-based SAM-T98 method
for remote homology detection and how it was applied to
protein structure prediction in the CASP3 experiment.

Many of the fold-recognition methods do considerably
better on multi-domain proteins when given the domain
boundaries, but when we tested our method after CASP3
on the true domains, we gained no benefit from having
that extra information [12]. We suspect that our use
of local alignment and sum-of-all-paths scoring makes
our method rather insensitive to the inclusion of extra
domains, so there is little gain from excising them.

Perhaps the biggest lesson learned is that we do not
know enough about proteins to adjust SAM-T98 align-
ments manually. We would have been better off trusting
the programs even when they seemed wrong. Protein ex-
perts with more knowledge of the proteins would most
likely be able to adjust the alignments better than we
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Figure 2: This figure shows the correct structural superposition of T0046 and 2mcm as found by the Yale
structural aligner [7]. Lines connect the residues we predicted to be aligned. This alignment is one of our
worst alignments for a correct fold. The problem here was in our hand-editing, as the automatic alignment

we started from was much better.
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Figure 3: This figure presents the correct structural superposition of T0083 and 1lmb3 as found by the
VAST structural aligner [8]. (The Yale structural aligner provides a somewhat longer alignment, but which
agrees on the common part.) The lines connect the residues we predicted to be aligned. This alignment is
among the best alignments we submitted for the moderately difficult targets, but automatic alignment was

slightly better than this submission.

could. We do still get value from human interaction, but
mainly in including functional information or informa-
tion about known binding sites, rather than in adjusting
alignments.

The costs provided by SAM-T98 are a strong, but not
perfect, indicator of the correctness of the predictions.
Using a calibration of our method from known struc-
tures [11], many of the targets had such weak similarities
that we had little confidence in those predictions.

We believe SAM-T98 has taken sequence-only methods
about as far as they will go. For many of the “moder-
ately difficult” targets we did not select the correct struc-
ture even though it was in the top 20 hits, so even a
small amount of additional information should improve
the method significantly. We are currently investigat-
ing a few ways to include structure information: building
our template library HMMs from structural multiple align-
ments (rather than single sequences), using information
from the structure of the template to trim alignments,
and using sequence-structure compatibility measures to
evaluate alignments.
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