
Proteins: Structure, Function, and Bioinformatics
Copy of e-mail Notification z7e1599

    
Your article ( 02212003 ) from "Proteins: Structure, Function, and Bioinformatics" is available for 
download
=====
RE: Your article ( 02212003 ) from "Proteins: Structure, Function, and Bioinformatics" is available for 
download

Proteins: Structure, Function, and Bioinformatics Published by John Wiley & Sons, Inc.

Dear Sir or Madam,

PDF page proofs for your article are ready for review.

Please refer to this URL address

http://rapidproof.cadmus.com/RapidProof/retrieval/index.jsp

Login:  your e-mail address
Password:    ----

The site contains 1 file. You will need to have Adobe Acrobat Reader software to read these files. This is 
free software and is available for user downloading at 
http://www.adobe.com/products/acrobat/readstep.html.

This file contains:

Author Instructions Checklist
Adobe Acrobat Users - NOTES tool sheet
Reprint Order form
Copyright Transfer Agreement
Return fax form
A copy of your page proofs for your article 

After printing the PDF file, please read the page proofs carefully and:

1) indicate changes or corrections in the margin of the page proofs;
2) answer all queries (footnotes A,B,C, etc.) on the last page of the PDF proof;
3) proofread any tables and equations carefully;
4) check that any Greek, especially "mu", has translated correctly.

Within 48 hours, please return the following to the address given below:

1) original PDF set of page proofs,
2) Reprint Order form,
3) Return fax form

Return to:

     Marc Nadeau
     Journals Editorial/Production
     John Wiley & Sons, Inc.



Proteins: Structure, Function, and Bioinformatics
Copy of e-mail Notification z7e1599

     111 River Street
     Hoboken, NJ 07030
     U.S.A.

Your article will be published online via our EarlyView service within a few days of correction receipt.  
Your prompt attention to and return of page proofs is crucial to faster publication of your work. 
If you experience technical problems, please contact Doug Frank (e-mail: frankd@cadmus.com, phone: 
800-238-3814 (X615).

If you have any questions regarding your article, please contact me.  PLEASE ALWAYS INCLUDE 
YOUR ARTICLE NO. ( 02212003 ) WITH ALL CORRESPONDENCE. 

This e-proof is to be used only for the purpose of returning corrections to the publisher. 

Sincerely,

Marc Nadeau
Associate Production Editor
John Wiley & Sons, Inc.
E-mail: mnadeau@wiley.com
Tel: 201.748.6716
Fax: 201.748.6052



 
111  RI V E R  S T R E E T ,  H O B O K E N ,  NJ    07030    

***IMMEDIATE RESPONSE REQUIRED*** 
Your article will be published online via Wiley's EarlyView® service (www.interscience.wiley.com) shortly after receipt of 

corrections. EarlyView® is Wiley's online publication of individual articles in full text HTML and/or pdf format before release of 
the compiled print issue of the journal.  Articles posted online in EarlyView® are peer-reviewed, copyedited, author corrected, 

and fully citable via the article DOI (for further information, visit www.doi.org).  EarlyView® means you benefit from the best of 
two worlds--fast online availability as well as traditional, issue-based archiving. 

 
Please follow these instructions to avoid delay of publication. 

 
 READ PROOFS CAREFULLY 

 -  This will be your only chance to review these proofs.  Please note that once your corrected article is posted 
online, it is considered legally published, and cannot be removed from the Web site for further corrections.  

 - Please note that the volume and page numbers shown on the proofs are for position only. 
 

 ANSWER ALL QUERIES ON PROOFS (Queries for you to answer are attached as the last page of your proof.)  
- Mark all corrections directly on the proofs.  Note that excessive author alterations may ultimately result in delay of 

publication and extra costs may be charged to you. 
 

 CHECK FIGURES AND TABLES CAREFULLY (Color figure proofs will be sent under separate cover.) 
 - Check size, numbering, and orientation of figures.   
 - All images in the PDF are downsampled (reduced to lower resolution and file size) to facilitate Internet delivery.  -----

 These images will appear at higher resolution and sharpness in the printed article. 
 - Review figure legends to ensure that they are complete. 
 - Check all tables.  Review layout, title, and footnotes. 

 
 COMPLETE REPRINT ORDER FORM 

 - Fill out the attached reprint order form.  It is important to return the form even if you are not ordering reprints.  You 
may, if you wish, pay for the reprints with a credit card.  Reprints will be mailed only after your article appears in 
print.  This is the most opportune time to order reprints. If you wait until after your article comes off press, the 
reprints will be considerably more expensive. 

 
RETURN PROOFS 
  REPRINT ORDER FORM 
  CTA (If you have not already signed one) 
 
RETURN IMMEDIATELY AS YOUR ARTICLE WILL BE POSTED ONLINE SHORTLY AFTER RECEIPT; 
FAX PROOFS TO 201-748-6052 
 
QUESTIONS?    Marc Nadeau, Associate Production Editor 
     John Wiley & Sons, Inc. 
     111 River Street 
     Hoboken, NJ 07030 
     Phone: 201-748-6716 
     E-mail: mnadeau@wiley.com 
     Please refer to journal acronym and article production number  

 





**International orders must be paid in U.S. currency and drawn on a U.S. bank

❑  Please send me __________ reprints of the above article at....................... $____________

Please add appropriate State and Local Tax {Tax Exempt No.__________________} $____________
Please add 5% Postage and Handling.............................................................. $____________
TOTAL AMOUNT OF ORDER**  ............................................................. $____________

Please check one:        ❑  Check enclosed ❑  Bill me ❑  Credit Card
If credit card order, charge to:    ❑  American Express ❑  Visa ❑  MasterCard ❑  Discover
Credit Card No._____________________________ Signature____________________________ Exp. Date___________

Bill To: Ship To:
Name  Name

Address/Institution Address/Institution

 Purchase Order No. ____________________________ Phone                           Fax

                                                                                     E-mail:

** REPRINTS ARE ONLY AVAILABLE IN LOTS OF 100.  IF YOU WISH TO ORDER MORE THAN 500 REPRINTS,

PLEASE CONTACT OUR REPRINTS DEPARTMENT AT (201)748-8789 FOR A PRICE QUOTE.

REPRINTS  8 1/4 X 11

No. of Pages 100 Reprints 200 Reprints 300 Reprints 400 Reprints 500 Reprints
  $   $   $   $   $

   1-4 336  501 694 890 1,052
   5-8 469 703 987 1,251 1,477
  9-12 594 923 1,234 1,565 1,850
 13-16 714 1,156 1,527 1,901 2,273
 17-20 794 1,340 1,775 2,212 2,648
 21-24 911 1,529 2,031 2,536 3,037
 25-28 1,004 1,707 2,267 2,828 3,388
 29-32 1,108 1,894 2,515 3,135 3,755
 33-36 1,219 2,092 2,773 3,456 4,143
 37-40 1,329 2,290 3,033 3,776 4,528

   VOLUME_____ ISSUE_____

REPRINT BILLING DEPARTMENT  •  111 RIVER STREET  •  HOBOKEN,  NJ 07030
PHONE: (201) 748-8789; FAX: (201) 748-6326

E-MAIL: reprints @ wiley.com

PREPUBLICATION REPRINT ORDER FORM

Please complete this form even if you are not ordering reprints.  This form MUST be returned
with your corrected proofs and original manuscript.  Your reprints will be shipped approximately
4 weeks after publication.  Reprints ordered after printing are substantially more expensive.

JOURNAL: PROTEINS: Structure, Function, and Genetics

TITLE OF MANUSCRIPT_____________________________________________________________

MS. NO.                             NO. OF  PAGES______ AUTHOR(S)______________________________



Evaluation of Local Structure Alphabets Based on
Residue Burial
Rachel Karchin,*1 Melissa Cline,2 and Kevin Karplus3

1Department of Biopharmaceutical Sciences, University of California, San Francisco, California
2Affymetrix, Inc., Emeryville, California
3Center for Biomolecular Science and Engineering, Baskin School of Engineering, University of California, Santa Cruz,
California

ABSTRACT Residue burial, which describes a
protein residue’s exposure to solvent and neighbor-
ing atoms, is key to protein structure prediction,
modeling, and analysis. We assessed 21 alphabets
representing residue burial, according to their pre-
dictability from amino acid sequence, conservation
in structural alignments, and utility in one fold-
recognition scenario. This follows upon our previ-
ous work in assessing nine representations of back-
bone geometry.1 The alphabet found to be most
effective overall has seven states and is based on a
count of C� atoms within a 14 Å-radius sphere
centered at the C� of a residue of interest. When
incorporated into a hidden Markov model (HMM),
this alphabet gave us a 38% performance boost in
foldrecognition and 23% in alignment quality.
Proteins 2004;00:000–000. © 2004 Wiley-Liss, Inc.

Key words: protein structure prediction; fold recog-
nition; local structure alphabet; solvent
accessibility; neighborhood counts; resi-
due burial; hidden Markov model; multi-
track HMM

INTRODUCTION

Residue burial has been associated with rates of evolu-
tionary change in a residue position,2,3 with mutations
linked to changes in protein function and disease states,3,4,5

and with enthalpy changes during protein folding.6,7 Com-
parative modeling, threading, and de novo structure predic-
tion all rely on potential functions to distinguish the native
structure from other configurations. Most potential func-
tions rely on burial either directly or indirectly. Many
successful methods, such as Rosetta, use burial as an
important component of their potential functions.8 Other
methods use amino acid-based potentials, which derive
much of their signal from burial and hydrophobicity.9,10

Developing a more accurate potential function, especially
as related to burial, is considered a vital step toward
further improvement in such methods.11 To this aim, we
have investigated many representations of residue burial
to assess their value in protein structure prediction and
analysis.

Burial is typically measured either in terms of decreas-
ing solvent-accessible surface area or as an increasing
number of intra-protein atomic contacts. In monomeric
globular proteins, a surface residue has high solvent

exposure and few contacts; a residue in the protein core
has low (or zero) solvent exposure and many contacts.

Algorithms for computing solvent-accessible surface area
have been developed by many groups.12–18 Contact counts
can be determined by computing actual van der Waals
contacts for each residue,19,20 but most researchers work
with an approximation based on neighborhood counts of
protein atoms within a spherical cutoff of the residue of
interest (often called the contact or coordination num-
ber).21,22,23 This is both computationally cheaper than
determining van der Waals contacts and more robust to
noise in protein structure data.

Our work builds on previous studies by Burkhard Rost
and co-workers, which concluded that three-state relative
solvent accessibility (buried, intermediate, exposed) is
much less conserved than secondary structure in proteins
with significant sequence identity (25–90%), that ten-state
relative solvent accessibility is more predictable than
three-state, and that both secondary structure and solvent
accessibility are conserved in distant homologs (less than
20% sequence identity). They suggested that more con-
served descriptions of a residue’s relative position within a
protein structure might exist but did not attempt to
characterize them.24

We have done a detailed study to identify predictable
alphabets of residue burial that are most conserved in
distant homologs and to explore whether these alphabets
are useful in recognizing and aligning proteins with simi-
lar folds. Our study is not focused on developing improved
prediction methods for residue burial alphabets but on
learning what is the most interesting description of resi-
due burial to predict.

The residue burial alphabets are compared with the
backbone-geometry alphabets explored in our earlier pa-
per.1 In accordance with Rost and Sander,24 residue-burial
alphabets are found to be consistently less conserved and
predictable than backbone-geometry alphabets.

Grant sponsor: Department of Energy; Grant number: DE-FG0395-
99ER6249.

*Correspondence to: Rachel Karchin, University of California, San
Francisco, Mission Bay Genentech Hall, 600 16th Street, Suite
N474-U, San Francisco, CA 94143-2240. rachelk@salilab.org

Received 1 June 2003; Accepted 7 September 2003

Published online 00 Month 2004 in Wiley InterScience
(www.interscience.wiley.com). DOI: 10.1002/prot.20008

PROTEINS: Structure, Function, and Bioinformatics 00:000–000 (2004)

© 2004 WILEY-LISS, INC.

tapraid5/z7e-protein/z7e-protein/z7e00404/z7e1599-04g heckt S�9 12/24/03 8:00 Art: 02212003

AQ: 2

AQ: 1



These alphabets are also found to represent substan-
tially different information about local protein structure
than backbone geometry alphabets. We have confirmed
that the two-track HMM methods for protein fold-recogni-
tion and alignment described in our previous paper can be
further improved by including tracks for both backbone
geometry and residue burial information in a three-track
HMM.

MATERIALS AND METHODS

We assessed 21 alphabets of residue burial according to
their conservation and predictability. We compared the
alphabets to each other to assess the extent of their
overlap.1 Finally, we applied the alphabets in a remote-
homology-recognition scenario to provide perspective on
their utility for template selection and target-template
alignment.

Alphabet conservation measures the extent to which
residue burial, as described in the alphabet, is consistent
between structurally-similar proteins. For an alphabet to
be useful in homology modeling or fold recognition, its
level of conservation should be high. We assessed alphabet
conservation by computing the average mutual informa-
tion of letter pairs observed in the columns of FSSP
structural alignments.26,27 If letters a and b are both
observed in an alignment column, mutual information
describes how much the likelihood of observing b was
influenced by the observation of a. The average mutual
information is computed as follows:

M�a, b� � �
a,b

p�a, b�log
p�a, b�

p�a�p�b�
, (1)

where p(a) and p(b), the probabilities of individual letters
a and b, are estimated by the frequency with which they
appear in the representative set of the FSSP alignments
and their joint probability p(a,b) is estimated by the
frequency with which a and b appear together in an
alignment column. Simpler measures of alignment conser-
vation, such as average percent identity and entropy,
describe the consistency of letters in an alignment column,
but fail to describe the similarity between differing letters
in the column. For instance, in the amino acid alphabet,
the amino acids isoleucine, valine, and methionine are
similar and often substitute for each other. Thus, a biolo-
gist would consider a column of these three amino acids to
be more conserved than a column of three differing amino
acids, such as isoleucine, glutamine, and proline. The
average mutual information in the first case would be
higher than the second, yet the average percent identity
and entropy would both be equivalent.

Mutual information was also used to compare the alpha-
bets to each other. In this case, for residue r, a represents r
under the first alphabet, b represents r under the second,
and M (a, b) quantifies the similarity between the two

alphabets. If M (a, b) is low, the interpretation is that each
alphabet represents distinct information.

For most of our applications, residue burial cannot be
measured, but must be predicted from the amino acid
alphabet. Thus, an alphabet’s value will be influenced by
its predictability. We assessed alphabet predictability by
predicting burial from the amino acid sequence using
feed-forward neural networks. These neural networks
were built and trained as detailed in our previous work.1

For each residue r, represented by b in the burial alphabet,
the predictability of b was assessed by the average of the
log likelihood ratios between the probability with which
neural network predicted b, Pn(b), and the background or
prior probability of b, Pp(b). This log likelihood ratio,
referred to as information gain G, is computed as follows:

G � log2

Pn�b�

Pp�b�
. (2)

For our purposes, we have found this measure advanta-
geous over other measures, including percent residues
predicted correctly (QN), segment overlap measure, and
correlation coefficient.28,24,29,30,31,23 Correlation coeffi-
cient between observed and predicted alphabet strings and
QN favor smaller alphabets, as a smaller alphabet in-
creases the chance of making a correct prediction ran-
domly. Thus they are not useful in comparing predictions
of different-sized alphabets. The segment overlap mea-
sure,32 developed to assess secondary structure predic-
tions, is not applicable here because residue burial alpha-
bets may not contain segments of repeated letters the way
secondary structure strings do.

We assessed the utility of each alphabet in remote
homology recognition as follows. We estimated a set of
two-track HMMs for each alphabet, with the first track
representing the amino acid sequence and the second
track representing the burial alphabet. We compared the
performance of each set of HMMs at fold recognition and
alignment accuracy.2 We assessed fold recognition perfor-
mance by constructing ROC curves, a plot of true positive
fraction versus true negative fraction using a sliding score
threshold. The total area under the ROC curve gives the
probability of a correct classification.33 Because of the very
large number of true negatives in a typical database
search, the area is usually calculated under a truncated
ROC curve, with a fixed ROC number (ROCN), where N is
the number of true negatives used in the calculation. For
instance, ROC1298 describes the probability of correct
classification at a threshold that permits a total of 1298
false positives in the full database query. As there are 1298
proteins in the query set, this corresponds to an average of
one false positive per query.

We assessed the quality of the alignments predicted by
the two-track HMMs using mean shift score (MSS). This
measure is 97% correlated with percentage of residues
aligned correctly (PRAC); unlike PRAC, it incorporates

1A detailed comparison of the burial alphabets’ overlap with each
other and with backbone-geometry alphabets is available online.25

2For more detail about these tests, see our earlier paper on
backbone-geometry alphabets.1

2 R. KARCHIN ET AL.
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penalties for misalignment, under- and over-alignment
into a single number.34 For two alignments, A and B
(where A contains i aligned positions and B contains j
aligned positions), the formula for shift-score is

shift-score �

�
i � A

s�A�i�� � �
j � B

s�B� j��

�A� � �B� . (3)

For a given pair of alignments, the alignment shift of a
residue at position i ranges from �N to N, where N is the
length of the longer alignment. Shift is not used directly in
the formula for shift-score, but is scaled to a related
quantity called s(i), which is 1 for 0 shifts and approaches
�ε (ε is typically set at 0.2) for large shifts:

s�i� � � 1 � ε
1 � �shift�i�� � ε if shift(i) is defined

0 otherwise
�. (4)

The scaling of shift(i) to s(i) avoids having a mean
shift-error term dominated by large positive or negative
shifts.

With ε set at 0.2, shift-score ranges from �0.2 (worst) to
1.0 (best), achieved when two alignments are identical.

Residue Burial Calculations

To compare a selection of burial alphabets, we investi-
gated a variety of approaches for measuring burial. We
calculated an estimate of residue absolute solvent accessi-
bility (number of water molecules in direct contact with a
residue) using the DSSP program.35,12 Relative solvent
accessibility was computed by dividing this area by maxi-
mum solvent-accessible area for a residue of interest,
using values given by Rost.24

Most researchers compute neighborhood counts as the
number of residues within a sphere centered at C� or C�,
with each residue represented by its C� or C�.22,23,5,36 The
C� or C� may be referred to as the interaction center. We
explored alternate locations for spheres using stochastic
search methods, and varied sphere radii from 6 to 16 Å.

Computations were done with an in-house software pack-
age called UNDERTAKER and a training set of 448 protein
chains (the monomeric-50-pc dataset described in the
“Data set” section).

To identify the location of the most-occupied sphere (dry
spot) for each side-chain type, we began with a randomly-
chosen position in the neighborhood of each side-chain in
the training set and tabulated the neighborhood counts.
Positions were moved randomly and the tabulations re-
peated for a few thousand iterations over the training set.
At the end of the search, the locations of the most-occupied
spheres for each side-chain type were identified. The
search was similar for the least-occupied spheres (wet
spots), with the added constraint that spheres could not
drift beyond a fixed distance from the side-chain of inter-
est.

An alternate sphere location, known as the generic spot,
was designed to be a more informative alternative to C� or
C�. It was selected to be at a position on or near the side
chain where the mutual information between amino acid
type and sphere occupancy is maximized. This spot was
obtained through a stochastic search process similar to
that of the wet and dry spots, but at each candidate
position, a table relating side-chain types to neighborhood
counts was constructed and their mutual information was
computed. After a few thousand iterations over the train-
ing set, the sphere location defining the largest mutual
information was identified.

Alphabet Descriptions

We explored a set of alphabets for residue burial, testing
some major alphabets from the literature as well as some
of our own design. We designed 27 alphabets by construct-
ing histograms of burial properties, using the fssp-x data-
set (see “Data sets” section) and partitioning into seven
equal-frequency bins. Each bin was assigned one alphabet
letter.

An earlier study of solvent accessibility alphabets29

showed that uneven partitioning can produce mislead-
ingly high prediction accuracy, while uniform partitioning
simplifies the comparison of different prediction methods

Fig. 1. Examples of seven-class, equal-sized alphabets of residue burial. Each bin in the histogram is assigned a letter so that a residue can be
mapped to one of the seven states and a protein can be represented as a one-dimensional string of residue-burial states. Bin ranges are: A � 0,0 � B �
� 17, 17 � C � � 24,. . . and A � � 27, 27 � B � � 34,. . ..

PLEASE SUPPLY WORDING 3
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and alphabets. We set out to maximize the number of bins,
as fine-grained partitioning of accessibility values has
been shown to be more predictable and conserved than
coarse-grained partitioning.24 Since absolute solvent acces-
sibility has one-seventh of the data at zero (completely
buried), we chose to use seven bins. Figure 1 shows an
example of two of these alphabets.

Table I presents the tested solvent accessibility alpha-
bets. Table II presents the tested neighborhood- count
alphabets. For the latter, the burial measure is based on
number of atoms within a spherical cut-off of a centroid
atom. We did not explore real-valued burial measures
because we tested the measures using a fold-recognition
framework that requires discrete burial states.

Alphabet Evaluations

The alphabets were evaluated with a protocol described
in our previous paper.1 Appendix A contains brief descrip-
tions of five alphabets of backbone-geometry analyzed in
that paper.

Datasets

FSSP-X. all X-ray structures that are representatives in
FSSP.27

MONOMERIC-50-PC. 448 monomeric protein whole
chains, taken from one of Roland Dunbrack’s high-quality
culled PDB lists37 with maximum sequence identity of
50%, maximum crystallographic resolution of 2.0 Å, and
maximum R-factor cut-off of 0.2.

DUNBRACK-IN-SCOP. a high-quality set of 1298 non-
homologous chains containing SCOP (version 1.55) do-
mains. This is a modified version of the Dunbrack culled
PDB set, with sequence identity cut-off of 20%, resolution
cut-off of 3.0 Å and R-factor cut-off of 1.0.37

PCEF.TARGET97.FSSP.PAIRS. moderate difficulty
alignment test set. It contains 170 pairs of protein chains
with low sequence identity (7% to 27%) but significant
structural similarity (DALI Z-score � 6).

TWILIGHT.PAIRS. difficult alignment test set. It con-
tains 200 pairs of protein chains with low sequence

TABLE I. Description of the Solvent-Accessibility Alphabets

Name Accessibility Letters Selection

REL-SA-224 Relative 2 RelAcc: �16%:buried
RelAcc: �16%: exposed

REL-SA-324 Relative 3 RelAcc: �9%: buried
RelAcc: 9–36%: intermediate
RelAcc: �36%: exposed

REL-SA-1024 Relative 10 Class � int(�100*RelAcc)
REL-SA-7 Relative 7 Equal-sized classes
ABS-SA-7 Absolute 7 Equal-sized classes

TABLE II. Description of the Neighborhood-Count Alphabets. Generic, Wet, and Dry Spots are Explained
in the “Residue Burial Calculations” section

Name Centroid Radii Atoms counted Classes Selection

BURIAL-C�-6.5-7 C� 6.5–14 Å respectively C� 7 Equal-sized classes
BURIAL-C�-8-7 C�

BURIAL-C�-10-7 C�

BURIAL-C�-12-7 C�

BURIAL-C�-14-7 C�

BURIAL-C�-6.5-7 C� 6.5–16 Å respectively C� 7 Equal-sized classes
BURIAL-C�-8-7 C�

BURIAL-C�-10-7 C�

BURIAL-C�-12-7 C�

BURIAL-C�-14-7 C�

BURIAL-C�-16-7 C�

BURIAL-GEN-6.5-7 Generic spot 6.5–12 Å respectively All atoms 7 Equal-sized classes
BURIAL-GEN-8-7 Generic spot
BURIAL-GEN-9-7 Generic spot
BURIAL-GEN-10-7 Generic spot
BURIAL-GEN-12-7 Generic spot
BURIAL-WET-6.5-7 Wet spot 6.5–12 Å respectively All atoms 7 Equal-sized classes
BURIAL-WET-8-7 Wet spot
BURIAL-WET-10-7 Wet spot
BURIAL-WET-12-7 Wet spot
BURIAL-DRY-6.5-7 Dry spot 6.5–14 Å respectively All atoms 7 Equal-sized classes
BURIAL-DRY-8-7 Dry spot
BURIAL-DRY-10-7 Dry spot
BURIAL-DRY-12-7 Dry spot
BURIAL-DRY-14-7 Dry spot

4 R. KARCHIN ET AL.
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identity (3% to 24%) but significant structural similarity
(VAST [38] p-value �0.0001, Yale39 RMSD � 4.0 Å, and a
DALI26 Z-score � 7.0).

Datasets are available at http://www.soe.ucsc.edu/
research/compbio/2thmm.

RESULTS
Conservation and Predictability

For a burial measure to be useful in remote homology
recognition, it should be both conserved across evolution
and predictable from amino-acid sequence. If a measure is
conserved, then we could expect the burial pattern of one
protein to show similarity to that of its remote homologs,

much as the secondary structure of two remote homologs
may be similar, even when their sequences are quite
divergent. Additionally, the measure must be predictable
from amino-acid sequence, because, typically, novel se-
quences must be annotated on the basis of sequence
information only.

Table III presents our analysis of the mutual informa-
tion with amino acid, conservation, and predictability for
30 residue burial alphabets. Five backbone-geometry alpha-
bets from our earlier paper1 are included for comparison.
We found alphabets based on neighborhood counts to be
more conserved and predictable than those based on
solvent accessibility, and neighborhood count alphabets

TABLE III. Summary of the mutual information with amino acid, conservation and
predictability of 30 residue-burial alphabets. The alphabets are ordered according to

their conservation in alignments of FSSP structural neighbors. For comparison purposes,
the amino-acid alphabet and five backbone-geometry alphabets evaluated in our earlier

paper1 are included (see Appendix A)

Name
Alphabet

size MI w/aa

Conservation
fssp-x

mutual info

Predictability
bits saved per

position

Residue burial alphabets
BURIAL-C�-16-7 7 0.089 0.682 0.502
BURIAL-C�-14-7 7 0.106 0.667 0.525
BURIAL-C�-14-7 7 0.078 0.655 0.508
BURIAL-C�-12-7 7 0.124 0.640 0.519
BURIAL-C�-12-7 7 0.093 0.586 0.489
BURIAL-GEN-12-7 7 0.154 0.570 0.378
BURIAL-GEN-10-7 7 0.176 0.541 0.407
BURIAL-GEN-9-7 7 0.189 0.536 0.415
BURIAL-C�-10-7 7 0.128 0.513 0.470
BURIAL-GEN-8-7 7 0.211 0.508 0.410
BURIAL-GEN-6.5-7 7 0.221 0.465 0.395
BURIAL-C�-10-7 7 0.092 0.459 0.419
BURIAL-C�-8-7 7 0.136 0.449 0.470
REL-SA-10 10 0.184 0.407 0.470
REL-SA-7 7 0.183 0.402 0.461
BURIAL-C�-8-7 7 0.079 0.387 0.379
ABS-SA-7 7 0.250 0.382 0.447
BURIAL-DRY-14-7 7 0.030 0.363 0.301
REL-SA-3 3 0.158 0.356 0.383
BURIAL-DRY-12-7 7 0.036 0.344 0.297
REL-SA-2 2 0.133 0.322 0.300
BURIAL-DRY-10-7 7 0.044 0.291 0.256
BURIAL-C�-6.5-7 7 0.101 0.281 0.327
BURIAL-C�-6.5-7 7 0.051 0.272 0.359
BURIAL-WET-6.5-7 7 0.141 0.266 0.237
BURIAL-WET-10-7 7 0.122 0.260 0.214
BURIAL-WET-8-7 7 0.119 0.238 0.199
BURIAL-DRY-8-7 7 0.039 0.218 0.194
BURIAL-WET-12-7 7 0.099 0.205 0.153
BURIAL-DRY-6.5-7 7 0.039 0.172 0.209

Amino acid alphabet
AA 20 4.184 0.197 1.771

Backbone geometry alphabets
STR 13 0.103 1.107 1.009
STRIDE 6 0.088 0.904 0.863
STRIDE-EHL 3 0.075 0.861 0.736
ANG 10 0.228 0.678 0.736
TCO 4 0.095 0.623 0.577
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with larger spheres (12–16 Å in radius) more conserved
and predictable than those with smaller spheres. The most
conserved alphabet uses a C� interaction center with
sphere radius of 16 Å, and most predictable uses C�

interaction center with sphere radius of 14 Å.
The residue-burial alphabets are less conserved and

predictable than backbone-geometry alphabets. This is
consistent with the “structure-more-conserved-than-se-
quence” paradigm. Mutations producing one tolerated
side-chain substitution are more likely to alter solvent
accessibility and side chain packing than the shape of the
protein backbone. As multiple substitutions accumulate
over time, the shape of the backbone may be affected, but
this is a slower process.

The conservation and predictability measures in Table
III can be compared to each other, as they share the same
units (bits per position). When comparing these measures,
we note that conservation tends to be higher than predict-
ability. This is a consequence of our experimental design.
Conservation of a structural property, such as burial, is
measured according to structurally superimposed regions
in FSSP alignments. Because these regions are structur-
ally superimposed, one might expect them to be structur-
ally conserved as well. In contrast, predictability should in
fairness be measured over a predicted alignment; we used
SAM-T2K40 sequence alignment. Following the tradition of
secondary structure prediction, we assessed predictability
over all positions, not merely those in the core regions.
Although sequence alignments cover a narrower evolution-
ary range than structural alignments, the predictability

Fig. 2. Results of fold recognition tests on the benchmark dataset (dunbrack-in-scop), shown for two-track HMMs with an amino acid primary track and
a solvent-accessibility alphabet (left) or a neighborhood-count alphabet (right) on the secondary track. The methods are ranked in the legends according
to ROC1298 numbers. Performance of AA-only HMMs and PSI-BLAST are shown for comparison purposes.

Fig. 3. Results of fold recognition tests on the benchmark dataset
(dunbrack-in-scop), shown for AA-STRIDE-EHL-BURIAL-C�-14-7 and AA-STR-
BURIAL-C�-14-7 HMMs. Performance of two-track AA-STRIDE-EHL, AA-STR,
AA-BURIAL-C�-14-7 HMMs, and single-track AA-only HMMs are shown for
comparison purposes. The three-track AA-STRIDE-EHL-BURIAL-C�-14-7 HMM

does not better than any of the tested two-track HMMs at fold recognition.
Methods are ranked in the legend according to ROC1298 numbers.
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measures reflect some positions that may be structurally
divergent, and thus less predictable.

A few alphabets are less conserved than predictable.
Most of these alphabets involve either solvent accessibil-
ity, or neighborhood counts with small spheres. These
measures are more dependent on fine details of local
interactions between side chains. Thus, these measures
are easier to predict on the SAM-T2K sequence alignments,
with their narrower evolutionary range than the FSSP

structural alignments. The larger-radius neighborhood
counts are less sensitive to small differences in the struc-
tural alignments (so can be better conserved) and depend
on more of the protein (so may be harder to predict).

Alphabet Utility

We assessed the utility of these alphabets by incorporat-
ing them into two-track HMMs, with one track describing
the amino acid sequence and one track describing residue
burial. We tested these HMMs in all-against-all fold recogni-
tion tests on the dunbrack-in-scop benchmark set, a set of
1298 whole protein-chains with good-quality X-ray crystal
structures and no two chains sharing more than 20%
sequence identity. We assessed the results at the ROC1298

level of significance, which corresponds to an average of
one false positive per protein chain. These results are
reported in Figure 2 and Table IV. Results on amino-acid-
only HMMs and PSI-BLAST are reported for comparison.

All alphabets tested provided a substantial improve-
ment over amino-acid-only methods. The best results were
obtained with a sphere of 14 Å in radius, centered at C�,
with seven burial states; this alphabet improved on the
performance of an AA-only HMM by 38.4%. In general, the
more fine-grained alphabets (7- and 10-state) performed
better than 2- or 3-state alphabets, and spheres centered
at C� or the generic spot performed better than those
centered at C�, the dry spot, or the wet spot. C� is known to
be very informative about sidechain orientation;36 these
results suggest the same to be true of the generic spot. The
relative solvent accessibility normalization had little ef-
fect, as the absolute and relative solvent accessibility
alphabets were close in performance.

Table V shows the results of our alignment quality
evaluations. We used the shift-score metric34 to compare
structural alignments produced by DALI and CE to predicted
alignments produced by two-track HMMs with a burial
alphabet on the secondary track. To assess the contribu-
tion of burial information to alignment quality, we com-
pared the same structural alignments to predicted align-
ments produced by AA-only HMMs. The assessment was
done on two benchmark sets of protein pairs (“difficult”
and “moderate”) of low sequence identity but significant
structural similarity, described in the “Dataset” section.

The best alignments were produced using large-sphere
neighborhood-count alphabets with C� and C� sphere
centers and the ten-state relative solvent accessibility
alphabet. The largest reported improvements in shift-
score translate to an average increase of seven or eight
correctly aligned positions, compared to AA-only HMMs, not
as substantial as improvements contributed by backbone

geometry alphabets. (The two-track AA-STR HMMs have an
average increase of 16 correctly aligned positions com-
pared to AA-only.)

This result is consistent with the lower predictability
and conservation of the residue-burial alphabets, but the
burial alphabets do better than expected at fold recogni-
tion; they perform similarly to the backbone-geometry
alphabets. We believe this may be because residue-burial
alphabets inadvertently encode chain length, a feature
that has been shown to be useful in threading fold-
recognition methods,41 as similarities in length between a
pair of proteins can indicate that they both belong to the
same fold.

As with the backbone-geometry alphabets, alignment
quality is consistently better when the HMM alignments are
compared to DALI (rather than CE) reference alignments.
There is one likely explanation. The two structural align-
ers use different objective functions; DALI attempts to
minimize RMSD at the expense of inserting gaps, while CE

creates longer continuous segments at the expense of
slightly higher RMSD.42 The HMMs are likely to model gaps
in a similar fashion to DALI, as they use transition regular-

TABLE IV. ROC Numbers From Fold Recognition Tests of
HMMs Incorporating Side-chain Property Information, on a

Difficult Set of 1298 Whole Chains†

Method ROC1298

	ROC1298
(%)

Residue-burial alphabets
AA-BURIAL-C�-14-7 HMM 0.1139 38.4
AA-BURIAL-GEN-9-7 HMM 0.1133 37.7
AA-BURIAL-GEN-10-7 HMM 0.1127 36.9
AA-BURIAL-C�-12-7 HMM 0.1124 36.6
AA-BURIAL-C�-16-7 HMM 0.1120 36.1
AA-BURIAL-GEN-8-7 HMM 0.1114 35.5
AA-ABS-SA-7 HMM 0.1106 34.4
AA-REL-SA-10 HMM 0.1105 34.3
AA-REL-SA-7 HMM 0.1105 32.6
AA-BURIAL-C�-12-7 HMM 0.1091 31.8
AA-BURIAL-GEN-12-7 HMM 0.1085 31.8
AA-BURIAL-DRY-12-7 HMM 0.1067 29.7
AA-BURIAL-GEN-6.5-7 HMM 0.1067 29.7
AA-REL-SA-3 HMM 0.1066 29.5
AA-REL-SA-2 HMM 0.1062 29.0
AA-BURIAL-C�-14-7 HMM 0.1052 27.8
AA-BURIAL-DRY-14-7 HMM 0.1049 27.5
AA-BURIAL-WET-6.5-7 HMM 0.1035 25.8

Amino acid only
AA HMM 0.0823 0
PSI-BLAST 0.0776 �5.7

Backbone-geometry alphabets
AA-STRIDE-EHL HMM 0.1155 40.3
AA-TCO HMM 0.1126 36.8
AA-STRIDE HMM 0.1125 36.7
AA-ANG HMM 0.1119 36.0
AA-STR HMM 0.1065 29.4

†The numbers are an approximation to area under the ROC curve for
thresholds that admit 1298 false positives, or an average of one false
positive per chain. For comparison, results are shown for a single-
track AA-only HMM, PSI-BLAST and for two-track HMMs incorporating
backbone geometry informations.
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izers (an apriori estimation of gap penalties) estimated
from DALI structural alignments.

We observed BURIAL-C�-14-7 to be the most useful repre-
sentation of residue burial for both template selection and
target-template alignment. To our knowledge, this has not
been previously reported. It is consistent, however, with
the findings of other groups. Nishikawa and Ooi showed
that a 14 Å sphere radius with C� interaction center
(Ooi14 number) yields the highest correlation between
amino acid sequence and neighborhood counts and is
closely related to a residue’s distance from the center of
mass.43 They believed that it reflects some important
feature of globular protein tertiary structure. Williams et
al. found Ooi14 to be the top-ranked property for distin-
guishing between ordered and disordered regions in pro-
teins.44 These groups do not appear to have considered the
C� interaction center, but C� has recently been identified
as the best interaction center for accessible surface poten-
tials.36

Combining Burial and Backbone-Geometry
Alphabets

The mutual information between the residue-burial
alphabets and the amino acids ranges from 0.03 to 0.25

bits (see Table III), a similar range to that between
backbone-geometry alphabets and the amino acids (0.01 to
0.228 bits).1 As expected, mutual information with amino
acids decreases as the radius of the neighborhood-count
spheres increase. The alphabet that has highest mutual
information with the amino acids is ABS-SA-7—absolute
(but not relative) solvent accessibility is highly dependent
on side-chain type, because there is a wide variation of
maximum surface areas. (Values range from 84 Å2 for
glycine to 248 Å2 for arginine.)

As shown in Table VI, the mutual information between
residue-burial alphabets and backbone-geometry alpha-
bets is small, indicating that the two classes of alphabets
provide different information about the local environment
of a residue. One side-chain-property alphabet (BURIAL-C�-
6.5-7) stands out as having consistently high mutual
information with the backbone-geometry alphabets. This
is not surprising; it has been been reported elsewhere23

that a large neighborhood count within a small radius
centered at the C� atom frequently indicates that a residue
is in a helix. The STR backbone-geometry alphabet that
encodes patterns of beta-strand orientation has relatively
high mutual information with the residue-burial alpha-
bets, consistent with the theory that parallel strands are

TABLE V. Evaluation of Alignment Quality for a Difficult Set of 200 Protein Pairs With High Structural
Similarity but Low Sequence Identity (3–24%) and a Moderately Difficult Set of 340 Protein Pairs†

Reference alignment

Difficult set Moderate set

DALI CE DALI CE

MSS 	 % MSS 	 % MSS 	 % MSS 	 %

Residue-burial alphabets
Two-track BURIAL-C�-14-7 0.270 22.7 0.265 21.0 0.415 13.7 0.378 16.3
Two-track BURIAL-C�-12-7 0.269 22.3 0.266 21.5 0.411 12.6 0.375 15.4
Two-track BURIAL-C�-14-7 0.266 20.9 0.261 19.2 0.407 11.5 0.372 14.5
Two-track REL-SA-10 0.265 20.5 0.258 17.8 0.402 10.1 0.358 10.2
Two-track BURIAL-C�-16-7 0.263 19.6 0.258 17.8 0.410 12.3 0.375 15.4
Two-track BURIAL-C�-12-7 0.263 19.6 0.262 19.6 0.411 12.6 0.375 15.4
Two-track ABS-SA-7 0.262 19.1 0.256 16.9 0.401 9.9 0.355 9.2
Two-track BURIAL-GEN-10-7 0.261 18.6 0.257 17.4 0.409 12.1 0.370 13.9
Two-track REL-SA-3 0.260 18.2 0.257 17.4 0.394 8.0 0.347 6.8
Two-track REL-SA-7 0.260 18.2 0.254 16.0 0.400 9.6 0.355 9.2
Two-track BURIAL-GEN-9-7 0.258 17.3 0.254 16.0 0.406 11.2 0.366 12.6
Two-track BURIAL-GEN-8-7 0.256 16.4 0.252 15.1 0.404 10.7 0.363 11.7
Two-track BURIAL-GEN-12-7 0.253 15.0 0.252 15.1 0.404 10.7 0.366 12.6
Two-track BURIAL-GEN-6.5-7 0.253 15.0 0.248 13.2 0.402 10.1 0.362 11.4
Two-track REL-SA-2 0.251 14.1 0.248 13.2 0.390 6.9 0.343 5.5
Two-track BURIAL-DRY-12-7 0.249 13.2 0.243 11.0 0.382 4.7 0.338 4.0
Two-track BURIAL-WET-6.5-7 0.246 11.8 0.241 10.1 0.385 5.5 0.347 6.8
Two-track BURIAL-DRY-14-7 0.246 11.8 0.241 10.1 0.384 5.2 0.347 6.8

Amino-acid only
One-track AA 0.220 0.0 0.219 0.0 0.365 0.0 0.325 0.0

Backbone-geometry alphabets
Two-track t2k STR 0.320 45.5 0.307 40.2 0.466 27.7 0.418 28.6
Two-track t2k STRIDE 0.357 62.3 0.292 33.3 0.452 23.8 0.400 23.1
Two-track t2k STRIDE-EHL 0.298 35.5 0.290 32.4 0.438 20.0 0.396 21.9
Two-track ANG 0.286 30.0 0.276 26.0 0.422 15.6 0.407 25.2
Two-track TCO 0.284 29.1 0.276 26.0 0.421 15.3 0.374 15.1

†Mean shift-scores (MSS)34 and the percent increase in shift-score compared to AA-only HMMs (	 %) are shown for alignments
produced by two-track SAM-T2K HMMs, using 18 selected alphabets of side-chain surface accessibility and burial. For
comparison, results for single-track SAM-T2K amino acid HMMs, and two-track backbone-geometry HMMs are shown.
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more likely than anti-parallel strands to be buried in the
protein core.45

Since enhancing HMMs by adding either a backbone-
geometry alphabet or a side-chain alphabet on a secondary
track is useful in improving both HMM fold recognition and
HMM alignment quality, we have begun to explore adding
more than one secondary track to our HMMs. We would like
to find out whether there is a preferred combination of
alphabets that works for both fold recognition and align-
ment.

One approach for combining alphabets is to select the
most informative combination of “orthogonal” alphabets.
We can estimate this by adding the average predictable
information per position in alphabet A to that in B and
subtracting the average mutual information between ob-
served occurrences of letters in A and B (see Table VI) from
the sum. An alternative is to select alphabets that have
been shown to work best independently in our two-track
HMM experiments.

Since the best-performing residue-burial alphabet BURIAL-
C�-14-7 has very low mutual information (0.07 bits) with
the three-state secondary-structure alphabet STRIDE-EHL,
the alphabet of backbone geometry most useful for fold-
recognition,1 we chose this combination for our first three-
track HMM experiment. The average predictable informa-
tion per position in this alphabet combination is
approximately 0.736 
 0.525 � 0.07 � 1.12 bits. We also
built a three-track HMM that combined BURIAL-C�-14-7 with
STR, reported in our earlier paper as the backbone-
geometry alphabet most useful for alignment (combined
predictable information is approximately 1.009 
 0.525 �
0.124 � 1.41 bits per position). For both fold-recognition
and alignment tests, we empirically chose track weights1

of w1 � 1.0 for amino-acid emissions, w2 � 0.3 for
backbone-geometry emissions, and w3 � 0.2 for residue-
burial emissions, after trying other combinations such as

(w1 � 1.0, w2 � 0.15, w3 � 0.15) and (w1 � 1.0, w2 � 0.3,
w3 � 0.3).

The three-track AA-STRIDE-EHL-BURIAL-C�-14-7 HMM does
better than any of the tested two-track HMMs at fold
recognition, with ROC1298 of 0.1187, a 44% increase over
AA-only HMM performance. The three-track AA-STR-BURIAL-
C�-14-7 HMM has ROC1298 of 0.1110, a 35% increase over
AA-only, but lower than the ROC1298 for a two-track
AA-BURIAL-C�-14-7 HMM (see Table IV). Figure 3 shows the
performance of AA-STRIDE-EHL-BURIAL-C�-14-7 and AA-STR-
BURIAL-C�-14-7 HMMs, compared with two-track AA-STRIDE-
EHL-, AA-STR, AA-BURIAL-C�-14-7 HMMs, and single-track
AA-only.

For alignment quality, both the AA-STR-BURIAL-C�-14-7
and AA-STRIDE-EHL-BURIAL-C�-14-7 three-track HMMs do bet-
ter than any of the two-track HMMs (excepting two-track
AA-STR for moderate set and CE reference), but AA-STR-
BURIAL-C�-14-7 is consistently the best combination (see
Table VII). The shift scores of AA-STR-BURIAL-C�-14-7 HMMs
represent an average gain of 21 correctly aligned positions
on the difficult test set and 18 correctly aligned positions
on the moderate test set, with respect to AA-only HMMs.

Although we have been able to identify alphabet combi-
nations that work well on either remote homolog identifica-
tion or target-template alignment, we have not found a
preferred combination that works for both problems. Find-
ing optimal combinations of alphabets and track weights
for three-track HMMs remains an open problem, and we
plan to do extensive testing to discover how to build the
most effective three-track HMMs.

CONCLUSION

We evaluated many ways of describing residue burial in
a local structure alphabet, according to conservation in
structural alignments, predictability from amino acid se-
quence, and utility in fold recognition and sequence align-

TABLE VI. Mutual information between five backbone and 19 side-chain
alphabets. Low mutual information between a pair of alphabets indicates that

they contain independent information

STRIDE STRIDE-EHL- STR ANG TCO

BURIAL-C�-16-7 0.0720 0.0677 0.1150 0.0328 0.0287
BURIAL-C�-14-7 0.0790 0.0745 0.1240 0.0371 0.0324
BURIAL-C�-14-7 0.0895 0.0844 0.1381 0.0403 0.0364
BURIAL-C�-12-7 0.0915 0.0860 0.1374 0.0420 0.0365
BURIAL-C�-12-7 0.0927 0.0878 0.1405 0.0429 0.0382
BURIAL-GEN-12-7 0.0394 0.0377 0.0605 0.0312 0.0207
BURIAL-GEN-10-7 0.0404 0.0381 0.0622 0.0334 0.0212
BURIAL-GEN-9-7 0.0423 0.0400 0.0647 0.0335 0.0214
BURIAL-GEN-8-7 0.0420 0.0390 0.0655 0.0369 0.0231
BURIAL-GEN-6.5-7 0.0438 0.0409 0.0662 0.0383 0.0238
REL-SA-10 0.0881 0.0823 0.1378 0.0529 0.0418
REL-SA-7 0.0792 0.0743 0.1281 0.0506 0.0405
ABS-SA-7 0.0624 0.0587 0.1036 0.0453 0.0319
BURIAL-DRY-14-7 0.0458 0.0427 0.0726 0.0185 0.0207
REL-SA-3 0.0568 0.0538 0.0957 0.0369 0.0301
BURIAL-DRY-12-7 0.0513 0.0477 0.0790 0.0215 0.0242
REL-sa-2 0.0426 0.0404 0.0707 0.0247 0.0207
BURIAL-WET-6.5-7 0.0240 0.0232 0.0434 0.0170 0.0126
BURIAL-C�-6.5-7 0.2446 0.2084 0.2852 0.0732 0.0645
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ment. The alphabets that were the most predictable and
conserved also yielded the best performance in fold recogni-
tion and sequence alignment, validating that these are
good indicators of alphabet performance.

When fold recognition methods using both amino acids
and burial information were compared to AA- only meth-
ods, all burial alphabets yielded a substantial improve-
ment. The best results were achieved by a neighborhood
count alphabet with seven states, a large-radius sphere
(14 Å) and a C� interaction center; this improved fold-
recognition accuracy by 38% and alignment accuracy by
23%. In general, the more fine-grained alphabets (7- and
10-state) performed better than 2- or 3-state alphabets, a
finding supported by prior work.24

By comparing backbone-geometry alphabets and residue-
burial alphabets with a mutual information measure, we
have been able to quantify the amount of distinct informa-
tion they contain. The quantification is useful in selecting
pairs of non-redundant alphabets to be combined in a
fold-recognition or homology-modeling method. Within the
context of an HMM-based method, we have been able to
identify combinations of alphabets that work well for
either fold recognition or alignment, but have not yet
found a combination that is best for both.

We plan to improve on our crude estimates of how
much predictable information is available in pairs of
local structure alphabets and to better identify good
combinations of alphabets. We are interested in incor-
porating these alphabets into three-track HMMs and also
in exploring ways of combining scores produced by “ju-
ries” of several two-track HMMs, with different alphabets
on their secondary tracks.
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APPENDIX A
Backbone Geometry Alphabets

Five of the backbone geometry alphabets were evaluated
in our earlier paper:1

STRIDE.46 Six-letter secondary structure alphabet: E
(beta strand), B (short beta bridge), G (3–10 helix), H
(alpha helix), T (turn), and C (random coil).

STRIDE-EHC. Three-letter (EHC) secondary structure
alphabet that reduces STRIDE assignments to helix,
strand, or coil. In this mapping, G is included in the helix
class, B in the strand class, and S and T in the coil class.

ANG.47 Based on the �-� alphabet used in HMMSTR. The
�-� plane48 is partitioned into ten regions.

STR. An enhanced version of DSSP that subdivides
DSSP letter E (beta strand) into six letters, according to
properties of a residue’s relationship to its strand part-
ners.

TCO. A four-letter alphabet of cosine of carbonyls val-
ues.
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