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ABSTRACT
Motivation: SAM-T99 is an iterative hidden Markov
model-based method for finding proteins similar to a
single target sequence and aligning them. One of its main
uses is to produce multiple alignments of homologs of
the target sequence. Previous tests of SAM-T99 and it’s
predecessors have concentrated on the quality of the
searches performed, not on the quality of the multiple
alignment. In this paper we report on tests of multiple
alignment quality, comparing SAM-T99 to the standard
multiple aligner, CLUSTALW.
Results: The paper evaluates the multiple-alignment
aspect of the SAM-T99 protocol, using the BAliBASE
benchmark alignment database. On these benchmarks,
SAM-T99 is comparable in accuracy with ClustalW.
Availability: The SAM-T99 protocol can be run on
the web at http://www.cse.ucsc.edu/research/compbio/
HMM-apps/T99-query.html and the alignment tune-up
option described here can be run at http://www.cse.ucsc.
edu/research/compbio/HMM-apps/T99-tuneup.html. The
protocol is also part of the standard SAM suite of tools.
http://www.cse.ucsc.edu/research/compbio/sam/

1 INTRODUCTION
Multiple protein sequence alignment has been widely
used in finding conserved regions in protein families and
in predicting protein structures (Dayhoff et al., 1978;
Karplus et al., 1999; Hannenhalli and Russel, 2000; Holm
and Sander, 1999; Pascarella et al., 1998; Levin et al.,
1993).

The quality of the predictions depends critically on the
quality of the multiple alignments and the diversity of
the sequences aligned, but few of the current multiple
aligners are capable of aligning hundreds or thousands of
homologous sequences.

The SAM-T99 search protocol finds and aligns protein
sequences and can easily generate huge multiple align-
ments. We needed to know whether the multiple align-
ments it produces are good ones, or whether more compu-
tationally intensive techniques are needed to create multi-

ple alignments of adequate quality. In this paper we eval-
uate SAM-T99 as a multiple aligner (ignoring its main
purpose as a search tool), comparing it to the well-known
ClustalW program (Thompson et al., 1994).

Many programs have been developed for multiple
protein sequence alignment, and they fall into two
classes: progressive and iterative. The classic progressive
approach is to build up the alignment gradually by
aligning the closest sequences first and then successively
adding in more distant ones. Examples include ClustalW
(Thompson et al., 1994; Higgins et al., 1996; Jeanmougin
et al., 1998), PILEUP (Group, 1991), and PIMA (Smith
and Smith, 1992). Another choice is to use an iterative
strategy to refine and improve an initial multiple align-
ment. Programs in the category include PRRP (Gotoh,
1999), DIALIGN (Morgenstern et al., 1998), and SAGA
(Notredame and Higgins, 1996).

The SAM-T99 method is an iterative hidden Markov
model-based search technique, which aligns sequences
to a hidden Markov model (HMM) and improves the
alignment by retraining the HMM on the sequences. It
is close in spirit to the iterative multiple aligners, though
rather different in internal implementation.

SAM-T99 is a protocol for using the SAM collection
of HMM tools (Hughey and Krogh, 1996; Hughey et al.,
1999). The SAM-T99 protocol is included in version 3 of
SAM and is an improved version of SAM-T98, which was
used for protein structure prediction in CASP3 (Karplus et
al., 1999). SAM-T98 has been shown to be more effective
in finding remote homologs than competing sequence-
based methods (Park et al., 1998a; Karplus et al., 1998).

One problem for evaluating various alignment programs
has been the lack of a standard benchmark for compari-
son. Different programs do well on different examples, so
author-selected examples often distort the performance,
making comparison difficult. Recently, a benchmark
alignment database (BAliBASE) has been constructed
to serve such a purpose (Thompson et al., 1999a). Since
BAliBASE was not deliberately designed in favor of any
specific alignment program, it is relatively objective, and
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has been used as a standard multiple alignment test set to
evaluate many protein alignment programs (Thompson et
al., 1999b; Notredame et al., 2000). Nevertheless, there
are some biases in the test set. Most notably, it favors
global alignment methods, because sequences to align are
trimmed at the boundaries of the alignment. SAM-T99,
however, uses local alignment, so the test set is somewhat
biased against SAM-T99. Despite that, our results still
show that SAM-T99 is not significantly different in
accuracy from ClustalW.

2 BAliBASE TEST SET
2.1 BAliBASE alignments
BAliBASE (Thompson et al., 1999b) is a database of mul-
tiple protein sequence alignments. It contains reasonably
high-quality, well-documented alignments that have been
confirmed using a variety of programs and by manual ver-
ification. Because the alignments are given in a format
that requires all positions to be aligned, even for regions
that have no sensible correspondence, BAliBASE anno-
tates the alignments with the core blocks that include only
the regions that are believed to be reliably aligned.

The current version of BAliBASE contains 143 refer-
ence alignments, with a total of more than 1000 sequences.
The number of distinct sequences is much smaller, as
many of the reference alignments include the same
sequences. Thus the database only covers a very small
portion of protein space, and may have biases due to the
repeated use of the same protein families.

BAliBASE is divided into five different categories by
the length and similarity of the sequences in the core
blocks and by the presence of insertions and N/C-terminal
extensions.

• Category 1 contains more than 80 alignments of
sequences of similar length. Each alignment has a
small number (3–7) of sequences.

• Category 2 consists of 23 alignments with at least 15
closely related sequences and one ‘orphan’ (<25%
identical) sequence.

• Category 3 has more divergent sequence alignments
that contain multiple subgroups with <25% residue
identity between groups.

• Category 4 contains sequences with N/C-terminal
extensions (up to 400 residues). This is the only subset
that favors local over global alignment.

• Category 5 contains sequences with long internal
insertions.

2.2 Assessing alignments with alignment scores
To determine the similarity of the alignment obtained by
a program to the reference alignment in BAliBASE, we

calculated two alignment scores: Sum-of-Pair Score (SPS)
and Column Score (CS). Our score calculation program
was modified from the bali score program that came with
the BAliBASE distribution.

The SPS counts how many pairs of residues are correctly
aligned. For two sequences x and y, we score 2 points
for each pair of residues xi and y j that are aligned with
each other in both the tested alignment and a core block
of the reference alignment. We also score 1 point for
each residue that is aligned with a gap in both the tested
alignment and a core block. The total score is normalized
by the maximum possible score, so that the range of
possible values is from 0 to 1, with 1 indicating a multiple
alignment that is identical on the core blocks. The original
bali score program used a somewhat different way of
handling gaps in core blocks, which resulted in incorrect
normalizations, so that even perfect multiple alignments
could have a score less than one.

More formally, in an alignment with N sequences of
length of M , at every alignment position i , if sequence x
and sequence y align the same way as in a core block of the
reference alignment, then the pair value Pixy is positive.
If, in column i , both x and y have residues aligned in
a core block of the reference alignment, then Pixy = 2;
if one of the sequences has a gap (in both alignments),
then Pixy = 1, otherwise Pixy = 0. The score Si for the
i th column is

Si =
N∑

j=1

∑
k �= j

Pi jk .

The SPS is then:

Editor:
As usual
SPS and

CS set as
roman. Is it

OK?

SPS =
M∑

i=1

Si

/ Mr∑
i=1

Sri .

Where Mr is the number of columns in the core blocks of
the reference alignment and Sri is the score Si for the i th
column in the reference alignment.

The CS counts the number of columns of the core blocks
that are aligned correctly in all sequences, normalized by
the number of alignment columns. More formally, at each
position i of an alignment, Ci = 1 if all the sequences are
aligned the same way as in a core block of the reference
alignment, otherwise Ci = 0. Thus CS of the whole
alignment is

CS =
Mc∑
i=1

Ci/Mc

where Mc is the total number of columns in core blocks
of the reference alignment. No column is ignored in
our calculation (except for columns containing all gaps,
which contain no information about the alignment of the
sequences).
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In essence, the higher the SPSs and CSs are, the more
accurate are the alignments generated by the programs. It
is noticeable however, that one badly misaligned sequence
reduces SPS from 1 to 1−2/N , but reduces CS from 1 to 0.
Thus the CS measurement is more useful for alignments
that are nearly perfect. Indeed we have observed that CS
tends to be almost a binary value—with each alignment
either being very good or scoring 0.

In our report, we calculated the alignment scores for the
annotated core blocks only, because these are sometimes
the only regions that are reliably aligned in BAliBASE.

2.3 Problems with BAliBASE
Although BAliBASE is a useful test set, we noticed three
limitations:

• BAliBASE is biased towards global alignment pro-
grams, since the majority of the BAliBASE alignments
have been trimmed down to core blocks only. We
would like to see a test set having full length se-
quences, since such a test set more closely resembles
real alignment problems.

• Some sequence sets are used more than once in
different categories. For example, 1ajsA appears in
Category 1–3. Although different categories empha-
size different aspects of the alignments, the repetitive
use of the same protein family may cause bias in
assessing alignment programs. If a program does
particularly well (or poorly) on one family, then
reusing the family in the test set amplifies the effect.

• Some of the BAliBASE alignments are incorrect.

One of them is kinase3 in Category 5. The conserved
lysine in the first block of kgp2 drome was one amino
acid off in the BAliBASE alignment. The creators of
balibase have accepted this correction to the balibase
data set.

Another case is 1ped in Category 2. The BAliBASE
alignment of 2ohxA is clearly wrong starting at the
5th core block. Both SAM-T99 and ClustalW aligned
these blocks correctly (in agreement with the 1ped
alignment in Category 3).

We reported these incorrect alignments to the creators
of the BAliBASE alignment, and they have corrected
them in the newer release of the bechmark set.

We did not use these corrected alignments in evaluat-
ing SAM-T99 and ClustalW, but did the analysis with
the original unmodified test set. We felt it inappropriate
to report results of modifications to either the bench-
mark or the method being tested made as a result of
the benchmark tests. The scores would be slightly bet-
ter for both SAM-T99 and ClustalW if the corrected
alignments were used.

3 THE SAM-T99 PROTOCOL
The Sequence Alignment and Modeling system (SAM)
is a collection of software tools for multiple protein
sequence alignment and profiling using hidden Markov
models (HMMs). SAM-T99 is an iterative search protocol
released with version 3.0 of the SAM suite.

With the SAM-T99 protocol, a multiple alignment (or
even a single seed sequence) can be used to build an
HMM, which can then be used for searching for new
members of the family. When new members are found,
the HMM can be retrained to include them, new multiple
alignments can be made, and the process iterated. This
technique is the essence of the SAM-T98 protocol, which
has proven more effective in finding remote homologs
than competing sequence-based methods such as PSI-
BLAST and ISS (Park et al., 1998a; Karplus et al., 1998;
Altschul et al., 1997; Park et al., 1997). The SAM-T99
protocol that we now use is an evolutionary improvement
over SAM-T98, with slightly better parameter settings,
more efficient implementation, better estimates of statis-
tical significance, and better performance (Hughey et al.,
1999). The construction, training, and application of the
HMMs is all done with programs from the SAM package
(Hughey and Krogh, 1996).

We will describe the standard SAM-T99 protocol first,
then the -tuneup option used for the test in this paper.

3.1 The default SAM-T99 protocol
SAM-T99 starts with a query sequence (or seed align-
ment) and searches the non-redundant protein database
(NR) using WU-BLASTP (Altschul et al., 1990) to
produce two sets of potential homologs: one of very
similar sequences (E < 0.0005) and one of possibly
similar sequences (E < 300). The initial WU-BLASTP
cull of NR is used for two reasons: we do not expect an
HMM built from a single sequence to do any better at
finding close homologs than WU-BLASTP, and an HMM
database search of all of NR is too slow for building large
numbers of alignments.

The SAM-T99 method then uses four iterations of a
selection, training, and alignment procedure. For each
iteration it needs an initial alignment, a set of sequences
to search, a threshold value, and a transition regular-
izer. From the alignment and regularizer, an HMM is
constructed and used to score the set of sequences. All
sequences that score better than the threshold value are
used to estimate a new HMM. Alignment of the training
sequences to that HMM produces the alignment that is the
input for the next iteration.

The SAM-Txx methods use sequence weighting for
building models from alignments, both internally and
when the final alignments are used to create the models
for scoring a set of sequences.

In SAM-T99, the relative weights are set with our own
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weighting scheme which gives more weight to outliers,
and the absolute weight is set to get a specific level
of entropy averaged over all columns after a Dirichlet
mixture regularizer (Sjölander et al., 1996) is applied to
the weighted counts. The desired entropy is specified as
the number of bits saved relative to the entropy of the
background distribution. This relative entropy measure
has been used previously to characterize substitution
matrices (Altschul, 1991), and the popular BLOSUM50
and BLOSUM62 matrices corresponds to saving about
0.5 and 0.7 bits per column. The SAM-T99 method uses
0.8 bits per column as the target, but preliminary fold-
recognition tests indicate that this may be too high a value.

On the first iteration the single sequence passed to
the method is used as the initial (trivial) alignment and
the close homologs found by WU-BLASTP are used as
the search set. The threshold is set strictly (E-value <

0.000 01), so only strong matches to the sequence are
considered. The transition regularizer allows gaps, but
favors long matches and long gaps over frequent short
gaps. Requiring both WU-BLASTP and the initial HMM
to score a sequence well ensures that only very similar
sequences are included at this stage of the process.

On subsequent iterations the input alignment is the
output from the previous iteration and the search set is the
larger set of possible homologs found by WU-BLASTP.
The thresholds are gradually loosened (E-value < 0.0001,
< 0.001, < 0.01).

For the second and third iteration, we again use the
regularizer that encourages long sequences of match
states, and for the final iteration we use a transition
regularizer trained on FSSP structural alignments.

The above selection, training, and alignment procedures
consists of several calls to SAM programs. Models are
created with SAMs modelfromalign program which uses
the alignment, sequence weighting, transition regularizer,
and Dirichlet mixture to build an HMM. Scoring the
sequence set with an HMM uses SAMs multiple domain
scoring procedure, now part of hmmscore, which selects
only the portion of a sequence matching the HMM [local
scoring (Smith and Waterman, 1981) as applied to SAM
models (Tarnas and Hughey, 1998)]. From the sequences
selected using this procedure, a new model is estimated
using SAMs buildmodel HMM training program. The
alignment of the training sequences back to the resulting
HMM is accomplished with SAMs hmmscore program.
To ensure that the initial sequence to the whole process is
not lost, it is added to the training set at this point, and any
duplicate sequences in the training set are eliminated.

3.2 The tuneup option of SAM-T99
SAM-T99 was originally designed to be used as a
protein search program. As a search program, finding
reliable homologs and removing extraneous sequences are

desirable features. SAM-T99 can also be used for protein
sequence alignment, without search, using the -tuneup
option. Even with this option, only the sequences that
achieve a certain similarity threshold will be aligned. Thus
very diverged sequences will be dropped out of the final
alignment. Since one of the applications of the -tuneup
option is to improve the alignments created by other search
tools, the ability to reject sequences as insufficiently
similar was regarded as a feature, not a bug. (The newer
SAM-T2K protocol, currently under development, will
allow the user the option of forcing all the provided
sequences into the final alignment.)

The -tuneup option to the SAM-T99 script changes
the method in several important ways. First, no search
of NR is done—only the provided sequences are used
as the potential homolog set on each iteration. Second,
the seed alignment is created by buildmodel from the
set of unaligned sequences, and the seed is not forced
into the output alignment on each iteration. Third, the
weighting is set to save only 0.5 bits per position relative
to the background. Fourth the number of iteration is
changed to 3 and the significance thresholds are changed
to (E-value < 0.0001, < 0.1, < 10.0).

SAM-T99 generates a multiple alignment in SAMs
standard a2m format. The alignment score calculation
program, however, takes MSF format alignments as input.
To use the program, the SAM-T99 results were converted
into MSF format using the command

prettyalign foo.a2m -f | readseq -fMSF -p >foo.out

The prettyalign command adds informationless dots to
the a2m format, so that readseq can read the alignment
correctly.

4 RESULTS
4.1 SAM-T99 tuneup results
Multiple alignments created by SAM-T99 -tuneup were
scored as described in Section 2.2 as were multiple
alignments created by the ClustalW program, version 1.8
(Thompson et al., 1994; Higgins et al., 1996). The default
parameters were used to generate alignments for all test
data.

Using the default parameters, SAM-T99 -tuneup aligned
all input sequences in 123 out of 143 cases. In the other 20
cases, the more diverged sequences were dropped, because
the final significance thresholds were set fairly tight. This
behavior is desirable in a search program looking for
possible homologs, but not in an alignment program.

As expected, SAM-T99 dropped sequences most
frequently in Category 2, which has orphan sequences
that are very diverged from the main group (see Ta-
ble 1). Within Category 1, three of the alignments with
dropped sequences were short alignments with less
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Table 1. The number of cases that SAM-T99 failed to align all sequences,
rejecting some sequences as too dissimilar. Note that Category 2, which
contains ‘orphan’ sequences, has the highest rate of rejection

Alignments
Category Total number Dropped number %dropped

1 V1 23 4 17.4
1 V2 30 0 0
1 V3 28 0 0
2 23 9 39.1
3 11 3 27.3
4 16 4 25
5 12 0 0

than 25% residue identity, and the remaining one was a
medium-length alignment with less than 25% identity.

Whenever SAM-T99 failed to align all the sequences,
the alignment score cannot be calculated, because the
scoring program requires the same number of sequences
in the reference alignment and the test alignment. In these
cases, the scores are treated as zero, which is a reasonable
estimate of the column score, but a gross underestimate
for the SPS.

For each BAliBASE category, the mean alignment
scores for SAM-T99 were calculated and compared with
ClustalW version 1.8. Table 2 shows the mean SPSs and
CSs for both SAM-T99 and ClustalW.

The results in Table 2 show that, except where SAM-
T99 dropped sequences in the alignments, SAM-T99
results are comparable to ClustalW. Whenever SAM-T99
dropped some sequences in the alignments, we counted
its score to be 0, which dragged down the mean score. In
the following section, we discuss how to use SAM-T99 to
align all the input sequences, to provide a more reasonable
comparison.

4.2 SAM-T99 tuneup, followed by forced
alignment

SAM can be used to align all of the input sequences,
regardless of their divergence using the SAM-T99 forced
alignment protocol:

(i) use SAM-T99 -tuneup to generate an alignment;

(ii) use w0.5 to build an HMM using the SAM-T99
alignment;

(iii) use hmmscore to align all the input sequences
against the above HMM.

The mean SPSs and CSs for this method are given in the
fifth and eighth columns of Table 2. As we would expect,
this method does as well or better than the direct use of
SAM-T99.

The alignment scores for SAM-T99 forced alignment
are summarized and compared with ClustalW in Table 3.

Wilcoxon rank-sum tests of significance were done, and
most of the differences between ClustalW and SAM-T99
forced alignment turn out not to be statistically significant.
The most significant differences are for Category 1V2
(20–40% residue identity), for which SAM-T99 clearly
outperforms ClustalW. The next most significant differ-
ence is for Category 1V1 (<25% residue identity), for
which ClustalW performs better.

In the final step of the forced alignment, we have several
choices for aligning the sequences to the HMM. The
results in Tables 2 and 3 are for local alignment using the
Viterbi algorithm. Because we believe that the test set is
biased towards global aligners, we also tried doing global
alignment on the final forced alignment to the HMM
(though not on the iterations that created the SAM-T99-
tuneup alignment from which the HMM was created).

In some earlier pairwise alignment tests, we found that
SAMs posterior decoding (-adpstyle 5) was superior to
Viterbi alignment for very dissimilar homologs (Cline,
2000), and so we also tried that option for the forced
alignment. The posterior decoding technique uses a full
forward–backward algorithm to create a matrix of the
probabilities for each position of a sequence aligning to
each state, then does a Viterbi path on this probability
matrix, rather than on the standard dynamic programming
matrix.

We tried four different settings for hmmscore:

• local alignment using the Viterbi path;

• local alignment using posterior decoding;

• global alignment using the Viterbi path;

• global alignment using posterior decoding;

The results of these forced alignments are summarized in
Table 4.

As we expected, global alignment does somewhat better
than local alignment on this test set, consistent with the
findings presented by Thompson et al. (1999b). Among
the 143 alignments compared, global alignment did better
than local in 20 cases, while local did better in only two
cases. Most of the improvement (10 of the 20) for global
alignment is in Category 2, where trimming the alignment
provides a strong clue to global aligners about how to
align the orphan sequence. This is the only category for
which the difference between global and local alignment
is statistically significant (P < 0.05), and the difference is
not significant over the entire test set.

Because real alignment problems do not usually have
the information used to trim the sequences in the BAl-
iBASE test set, we believe that using global alignment
methods on Category 2 gives an inflated impression of the
accuracy of sequence aligners. The local-alignment results
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Table 2. Mean SPSs and CS comparison

Mean SPS Mean CS
Category Missing/total ClustalW SAM-T99 tuneup SAM-T99 forced ClustalW SAM-T99 tuneup SAM-T99 forced

1 V1S 3/7 0.720 0.393* 0.485 0.560 0.292* 0.292
1 V1M 1/8 0.688 0.551* 0.619 0.492 0.363* 0.395
1 V1L 0/8 0.664 0.595 0.595 0.501 0.390 0.390
1 V2S 0/11 0.913 0.920 0.920 0.820 0.838 0.838
1 V2M 0/9 0.939 0.959 0.959 0.882 0.926 0.926
1 V2L 0/10 0.954 0.964 0.971 0.888 0.903 0.903
1 V3S 0/8 0.980 0.977 0.977 0.951 0.948 0.948
1 V3M 0/10 0.979 0.982 0.982 0.954 0.960 0.960
1 V3L 0/10 0.984 0.990 0.990 0.961 0.978 0.978

1 V1 4/23 0.689 0.518* 0.570 0.516 0.351* 0.362
1 V2 0/30 0.935 0.948 0.950 0.864 0.888 0.888
1 V3 0/28 0.981 0.983 0.984 0.955 0.961 0.962

1 4/81 0.881 0.838* 0.854 0.796 0.761* 0.764
2 9/23 0.867 0.534* 0.843 0.389 0.251* 0.337
3 3/11 0.766 0.581* 0.708 0.449 0.410* 0.434
4 4/16 0.788 0.532* 0.742 0.515 0.216* 0.370
5 0/12 0.892 0.880 0.880 0.713 0.742 0.742

All 20/143 0.860 0.739* 0.831 0.666 0.589* 0.624

The missing/total column gives the number of cases for which SAM-T99 failed to produce an alignment of all sequences and the total number of alignments
in the category. In the category column, v1, v2, v3 indicate <25% identity, 20–40% identity and >35% identity respectively. S, L, and M stand for small
(<100 residues), medium (200–300 residues) and long (>500 residues) respectively. The asterisk ∗ indicates that SAM-T99 dropped some sequences. In the
calculation we counted those alignments as score 0—a gross underestimate for SPSs, but a reasonable estimate for CSs.

Table 3. Mean SPSs and CS comparisons of SAM-T99 forced alignment results and ClustalW version 1.8

SPSs CSs
Category ClustalW 1.8 SAM-T99 forced Clustal better? ClustalW 1.8 SAM-T99 forced Clustal better?

1 V1 (23) 0.689 0.570 17 (73.9%) +(P < 0.05) 0.516 0.362 14 (60.8%) +(P < 0.005)

1 V2 (30) 0.935 0.950 6 (20.0%) −(P < 0.005) 0.864 0.888 6 (20.0%) −(P < 0.001)

1 V3 (28) 0.981 0.984 12 (42.8%) Same 0.955 0.962 11 (39.3%) Same

1 (81) 0.881 0.854 35 (43.2%) Same 0.796 0.764 31 (38.2%) Same
2 (23) 0.867 0.843 12 (52.1%) +(P < 0.1) 0.389 0.337 12 (52.2%) +(P < 0.05)

3 (11) 0.766 0.708 6 (54.5%) Same 0.449 0.434 3 (27.2%) −(P < 0.14)

4 (16) 0.788 0.742 7 (43.7%) Same 0.515 0.370 6 (37.5%) Same
5 (12) 0.892 0.880 7 (58.3%) Same 0.713 0.742 5 (41.7%) Same

All (143) 0.860 0.831 67 (46.9%) Same 0.666 0.624 57 (39.9%) Same

In the category column, v1, v2, v3 indicate <25% identity, 20–40% identity and >35% identity respectively. The ClustalW1.8 and SAM-T99 columns show
the mean scores for the methods. The ‘Clustal better?’ columns show the number and percentage of cases that ClustalW did better than SAM-T99. A plus
sign indicates that ClustalW is significantly better, and a minus sign indicates that SAM-T99 is significantly better. The P-value is estimated based on the
Wilcoxon rank sum test (Hollander and Wolfe, 1999).

are more indicative of how the aligners will work on real
problems.

Similarly, when comparing Viterbi paths with posterior
decoding the difference is again not striking. Out of 143
tests, global alignment with posterior decoding did better
than global with Viterbi decoding in eight cases and worse
in one case. Local alignment with posterior decoding did
better than local with Viterbi in four cases and worse

in 11 cases. None of these differences are statistically
significant.

5 DISCUSSION AND FUTURE WORK
The SAM-T99 method was developed as a way to find
similar proteins given a single sequence or a small
seed alignment. It is an evolutionary improvement over
SAM-T98, which has done very well in superfamily
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Table 4. Mean SPSs and CSs comparison for SAM-T99 forced alignments with different alignment options on the final step. Although global posterior
decoding does as well or better on all categories (except Category 4 for CSs), the differences are not statistically significant, except for Category 2, where
global posterior decoding is significantly better than local on SPSs, with P < 0.05

SPS CSs
Category Local Global Local Global

Viterbi Posterior Viterbi Posterior Viterbi Posterior Viterbi Posterior

1 V1 (23) 0.570 0.570 0.597 0.601 0.362 0.387 0.387 0.387
1 V2 (30) 0.950 0.950 0.950 0.950 0.888 0.888 0.888 0.888
1 V3 (28) 0.983 0.983 0.984 0.984 0.961 0.962 0.962 0.962

1 (81) 0.854 0.853 0.862 0.863 0.764 0.772 0.772 0.772
2 (23) 0.843 0.841 0.857 0.864 0.337 0.322 0.353 0.399
3 (11) 0.708 0.721 0.760 0.772 0.434 0.418 0.436 0.492
4 (16) 0.742 0.742 0.742 0.742 0.370 0.370 0.372 0.371
5 (12) 0.880 0.880 0.881 0.881 0.740 0.744 0.744 0.744

All (143) 0.831 0.831 0.842 0.844 0.624 0.625 0.632 0.643

classification tests (Park et al., 1998b; Karplus et al.,
1998).

In this paper, we evaluated the method as a multiple
aligner, using the BAliBASE multiple-alignment test
suite (Thompson et al., 1999a,b). We wanted to use
an established test method, since other research has
questioned the quality of alignments done by hidden
Markov models (Gotoh, 1999).

Our results show SAM-T99 as an aligner is comparable
to ClustalW version 1.8. In some cases, the ClustalW
results obtained in our test are much better than the results
reported earlier (Thompson et al., 1999b). We reason that
the difference may be that the ClustalW version 1.8 has
been tuned using BAliBASE, while the previous version
of ClustalW was not tuned. SAM-T99, on the other hand,
has never been tuned for BAliBASE.

Recently, Notredame et al. (2000) reported that T-Coffee
outperforms ClustalW on BAliBASE, but direct compar-
ison of results is difficult as Notredame made different
modifications to bali score to fix its bugs, and discarded
some of the alignments from the test set. The magnitude of
the improvement makes it extremely likely that T-Coffee
outperforms SAM-T99 significantly on this benchmark. T-
Coffee has a higher computational cost than ClustalW, so
its use will probably be limited to alignments with rela-
tively few sequences.

It is clear that we now need a new, better multiple-
alignment benchmark than BAliBASE, especially as some
programs have been tuned to the mark. The latest version
of the DALI Domain Dictionary (Dietmann et al., 2001),
which uses T-Coffee to build multiple alignments from
pairwise structural alignments, might be a good starting
point. One might wish to add other structural alignments
besides Dali’s into the T-Coffee library to improve the
multiple alignments further.

Being an iterative method, the complexity for SAM-
T99 is O(L2 Nk) where L is the length of the sequence,
and N is the number of sequences to be aligned, and k
is the number of iterations. This compares favorably with
the O(L2 N 2) algorithm used in progressive alignment
methods such as ClustalW. Because SAM-T99 is linear
in the number of sequences to be aligned, it has been
successfully used to align over 10 000 sequences. This
advantage for SAM-T99 does not show up in the results
for this paper, because BAliBASE does not contain
alignments of large number of sequences. In preliminary
timing tests (not reported here), we have found ClustalW
faster for up to about 500 sequences, and SAM-T99
faster for larger sets. For small sets (say 25 sequences),
ClustalW is about 20 times faster than SAM-T99. For
10,000 sequences, SAM-T99 is about 20 times faster than
ClustalW. Speed improvements for SAM-T99 are clearly
possible, and the crossover point can probably be brought
to fewer than 100 sequences.

We conclude that the quality of the SAM-T99 multiple
alignments are high enough that little benefit would be
obtained from realigning the output of a SAM-T99 search
using ClustalW. On the other hand, there is also little point
to using the SAM-T99 script for aligning small sets of
known homologs, since ClustalW does as well with less
computation. Once the set of sequences to align gets large,
then SAM-T99 is preferable.
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