Assembling genomes from shotgun sequencing

Kevin Karplus

karplus@soe.ucsc.edu

Biomolecular Engineering Department
Graduate Director, Biomolecular Engineering and Bioinformatics
University of California, Santa Cruz

Outline of Talk

- What is Bioengineering? Biomolecular Engineering? Bioinformatics?
- What is a genome?
- What sequencing technologies are currently used?
- The assembly problem
- Algorithms for assembly

What is Bioengineering?

Three concentrations:

- Biomolecular
 - Drug design
 - Biomolecular sensors
 - Nanotechnology
 - Bioinformatics
- Rehabilitation
- Bioelectronics

What is Bioengineering?

Three concentrations:

- Biomolecular
- Rehabilitation
 - Systems to held individuals with special needs
 - Cell-phone-based systems to reach large numbers of people.
 - Novel hardware to assist the blind
 - Robotics for rehabilitation and surgery applications.
- Bioelectronics

What is Bioengineering?

Three concentrations:

- Biomolecular
- Rehabilitation
- Bioelectronics
 - Implantable devices
 - Interfacing between organisms and electronics
 - Artificial retina project

What to take early

- Mathematics
- Chemistry and then biology
- Introductory bioengineering courses:
 - BME80G, Bioethics (F)
 - BME5, Intro to Biotechnology (W, S)
 - CMPE80A: Universal Access: Disability, Technology, and Society (W, S)
- A Declare your major immediately!!
 You can always change to another one latter.
 Bioengineering is one of the most course-intensive majors on campus Many courses have prerequisites. It's important to get advising office and faculty advise early.

What is Biomolecular Engineering?

Engineering with, of, or for biomolecules. For example,

with: using proteins (or DNA, RNA, ...) as sensors or for self-assembly.

of: protein engineering—designing or artificially evolving proteins to have particular functions

for: designing high-throughput experimental methods to find out what molecules are present, how they are structured, and how they interact.

What is Bioinformatics?

Bioinformatics: using computers and statistics to make sense out of the mountains of data produced by high-throughput experiments.

- Genomics: finding important sequences in the genome and annotating them.
- A Phylogenetics: "tree of life".
- Systems biology: piecing together various control networks.
- DNA microarrays: what genes are turned on under what conditions.
- Proteomics: what proteins are present in a mixture.
- Protein structure prediction.

What is a genome?

- Complete sequence of all DNA in a cell (exceptions for plasmids, viruses, organelles).
- Varies from cell to cell, so we usually approximate to get a "typical" genome.
- Usually want an annotated genome which has genes and other features labeled and indexed.

Current sequencing technologies

- Sequencing by size sorting
- Sequencing by ligation
- Sequencing by replication
- Single-molecule sequencing

Sequencing by size sorting

- Meed need pure sample: many copies of one DNA molecule.
- Generate "prefixes" of DNA, with known last base.
 - Maxam-Gilbert sequencing (obsolete): cuts DNA at specifc base.
 - Sanger sequencing: copies DNA stopping at specific base.
 - Hood variant: copies DNA using flourescent label for last base.
- Measure lengths of prefixes by electophoresis.
- About \$1.50/read, 800 bases/read
- & Error rate about 0.05% (1 in 2000)

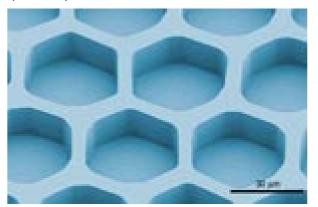
Sequencing by ligation

- Only 1 platform (SOLiD)
- Shreds DNA, then does emulsion PCR to get beads with pure DNA fragments.
- Ligates small stretch of DNA to template.
- Unusual "color-space" reads. Color encodes 2 bases, but only 4 colors:
 - 0 (blue): AA, GG, CC, TT
 - 1 (green): AC, GT, CA, TG
 - 2 (yellow): AG, GA, CT, TC
 - 3 (red): AT, GC, CG, TA
- Takes a week to process a sample
- 🗯 💪 Get about 200–300 million 50-base reads.

Error rate about 1.6%

Sequencing by replication

- Bases added one at a time, with detector to tell whether a base is added (or which base is added).
- Pyrosequencing (454)
- Illumina/Solexa (Genome Analyzer)
- Ion Torrent


Pyrosequencing (454 machine)

- After shearing and size-selecting DNA, attach to beads.
- Do emulsion-PCR to get a polony on each bead.

٤

Put beads into one-bead wells in picotiter plate.

Nature Biotechnology 21, 1425–1427 (2003) doi:10.1038/nbt1203-1425

- Do polymerization with one base type at a time.
 - Use light emission to determine how many copies of base are added to end of chains.

Pyrosequencing (454 machine)

- 4 1,000,000 reads, 400-500 bases/read
- about \$3k for a run
- Error rate about 0.9%
- When several bases in a row are identical, determining exactly how many bases of that type were present can be difficult. (homopolymer errors)

Illumina/Solexa

- Polonies grown as spots on a slide rather than separate beads.
- One base at a time reading, all 4 bases read at once (different color fluorophors).
- Error rate about 1.5%

Ion Torrent

- not on market yet
- small, cheap machine (expected to be about \$50,000)
- Electronic readout, no flourescent molecules, no optics
- medium throughput, fast, low cost per run
- same homopolymer problems as 454 technology

Single-molecule sequencing

- Several new technologies that don't require amplifying DNA:
 - Pacific Bioscience (SMRT)
 - Helicos Bioscience (Helicos)
 - nanopores
- All have super high error rates (10–20%).
- Same molecule must be read repeatedly to get useful data.
- A Pac Bio claims very long reads, but has to circularize molecule and use long read to re-read same molecule many times, so effective read length is moderate.

Characterisitics of data

platform	reads/run	read length	error rate
Sanger	1–384	500-1000	very low
454	1,000,000	300-500	low
Illumina	100,000,000-200,000,000	35–100	high
SOLiD	300.000.000	50	hiah

Different data representations

- base space
- flow space (454, Ion Torrent)
- color space
- Each sequencer and each program uses different data formats and different quality information.

The assembly problem

- Jigsaw puzzle with millions of pieces that overlap.
- Need much more DNA sequence than target genome (generally 15–100X)
- Want to end up with single sequence for each chromosome

Problems

- Sequence data is noisy.
- Repeats can have identical sequences in different parts of genome.
- DNA sample may have variations within sample.
- Data is huge (larger than computer memory).

Algorithms for assembly

- Overlap-consensus graph (needs long reads)
- de Bruijn graph (has trouble with high error rates and long reads)

Overlap consensus

- Each node is a single read. Edges represent overlaps between the end of one read and the beginning of another.
- Clusters of connected nodes can be used to build consensus contigs.
- Overlap must be large enough to be unique location in genome, or chimeric contigs can get built.
- Finding overlaps is expensive part.
- Clusters have to be broken where continuation of contig is ambiguous, so repeats tend to be represented by single consensus contig.
 - Best method for 454 and Sanger data.

de Bruijn graph

- Each node is a k-mer. Edges connect window [i, i+k) to window [i+1, i+k+1) of read, and have counts of occurrence.
- Each read becomes a path in the graph.
- Contigs build from strongly supported paths.
- Errors create "bubbles" and "dead-ends" that need to be merged into main paths.
- No need to find overlaps, but graphs get huge.

Web sites

These slides: http://users.soe.ucsc.edu/~karplus/papers/assembling-genomes-jul-2010.pdf

Banana Slug Genomics wiki: http://banana-slug.soe.ucsc.edu/

UCSC bioinformatics (research and degree programs) info:

http://www.bme.ucsc.edu/

