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Outline of Talk
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& What is Bioengineering? Biomolecular Engineering?
Bioinformatics?

& What is a genome?

& What sequencing technologies are currently used?
& The assembly problem

& Algorithms for assembly
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What Is Bioengineering?
fThree concentrations:

& Bilomolecular
@ Drug design
@ Biomolecular sensors
@ Nanotechnology
@ Bioinformatics

& Rehabilitation
& Bioelectronics
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What Is Bioengineering?
E

hree concentrations: T
& Biomolecular

& Rehabilitation
@ Systems to held individuals with special needs

@ Cell-phone-based systems to reach large numbers
of people.

@ Novel hardware to assist the blind
@ Robotics for rehabilitation and surgery applications.

& Biloelectronics
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What Is Bioengineering?
fThree concentrations:
& Biomolecular
& Rehabilitation

& Biloelectronics
@ Implantable devices
@ Interfacing between organisms and electronics
@ Artificial retina project
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What to take early
-

& Mathematics T
& Chemistry and then biology

& Introductory bioengineering courses:
@ BMES8OG, Bioethics (F)
@ BMED5, Intro to Biotechnology (W, S)

@ CMPES8OA: Universal Access: Disability, Technology,
and Society (W, S)

& Declare your major immediately!!
You can always change to another one latter.
Bioengineering is one of the most course-intensive
majors on campus Many courses have prerequisites.
It's Important to get advising office and faculty advise

/ early.
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What Is Biomolecular Engineering?
E

with: using proteins (or DNA, RNA, ...) as sensors or for
self-assembly.

-

ngineering with , of, or for biomolecules. For example,

of: protein engineering—designing or artificially evolving
proteins to have particular functions
for: designing high-throughput experimental methods to

find out what molecules are present, how they are
structured, and how they interact.
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What i1s Bioinformatics?

-

Bioinformatics: using computers and statistics to make
sense out of the mountains of data produced by
high-throughput experiments.

-

& Genomics: finding important sequences in the genome
and annotating them.

& Phylogenetics: “tree of life”.

& Systems biology: piecing together various control
networks.

& DNA microarrays: what genes are turned on under
what conditions.

& Proteomics: what proteins are present in a mixture.

i éﬁ Protein structure prediction. J
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What Is a genome?
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& Complete sequence of all DNA in a cell (exceptions for
plasmids, viruses, organelles).

& Varies from cell to cell, so we usually approximate to
get a “typical” genome.

& Usually want an annotated genome which has genes and
other features labeled and indexed.
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Current seguencing technologies
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& Seqguencing by size sorting
& Sequencing by ligation

& Sequencing by replication
& Single-molecule sequencing
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Seqguencing by size sorting
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& Need need pure sample: many copies of one DNA
molecule.
& Generate “prefixes” of DNA, with known last base.

@ Maxam-Gilbert sequencing (obsolete): cuts DNA at
specifc base.

@ Sanger seguencing: copies DNA stopping at specific
base.

@ Hood variant: copies DNA using flourescent label for
last base.

& Measure lengths of prefixes by electophoresis.
& About $1.50/read, 800 bases/read

fg & Error rate about 0.05% (1 in 2000) J
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Seqguencing by ligation
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& Only 1 platform (SOLID)

& Shreds DNA, then does emulsion PCR to get beads
with pure DNA fragments.

& Ligates small stretch of DNA to template.
& Unusual “color-space” reads. Color encodes 2 bases,
but only 4 colors:
@ O (blue): AA, GG, CC, TT
@ 1 (green): AC, GT, CA, TG
@ 2 (yellow): AG, GA, CT, TC
@ 3 (red): AT, GC, CG, TA

& Takes a week to process a sample

ﬁ;@ Get about 200—-300 million 50-base reads. J

>4 Error rate about 1.6%
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Seqguencing by replication
-

& Bases added one at a time, with detector to tell WhetherT
a base is added (or which base is added).

& Pyrosequencing (454)

& lllumina/Solexa (Genome Analyzer)
& lon Torrent
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Pyrosequencing (454 machine)
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& After shearing and size-selecting DNA, attach to beads.
& Do emulsion-PCR to get a polony on each bead.
&

Put beads Into one-bead Nature Biotechnology 21, 1425-1427

wells in picotiter plate. (2003) doi:10.1038/nbt1203-1425
- TR T §

& Do polymerization with one base type at a time.

_ base are added to end of chains. J
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Pyrosequencing (454 machine)
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& 1,000,000 reads, 400-500 bases/read
& about $3k for a run
& Error rate about 0.9%

& When several bases in a row are identical, determining
exactly how many bases of that type were present can
be difficult. (homopolymer errors)
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lllumina/Solexa
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& Polonies grown as spots on a slide rather than separate
beads.

& One base at a time reading, all 4 bases read at once
(different color fluorophors).

& = 120 million 75-long reads.
& Error rate about 1.5%
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lon Torrent
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& not on market yet

& small, cheap machine (expected to be about $50,000)
& Electronic readout, no flourescent molecules, no optics
& medium throughput, fast, low cost per run

& same homopolymer problems as 454 technology
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Single-molecule sequencing
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& Several new technologies that don’t require amplifying
DNA:

@ Pacific Bioscience (SMRT)
@ Helicos Bioscience (Helicos)
@ nanopores

& All have super high error rates (10—20%).

& Same molecule must be read repeatedly to get useful
data.

& Pac Bio claims very long reads, but has to circularize
molecule and use long read to re-read same molecule
many times, so effective read length is moderate.
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Characterisitics of data

f platform reads/run read length error rge
Sanger 1-384 500-1000 very low
454 1,000,000 300-500 low
lllumina 100,000,000-200,000,000 35-100 high
SOLID 300,000,000 50 high
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Different data representations
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& base space
& flow space (454, lon Torrent)
& color space

& Each sequencer and each program uses different data
formats and different quality information.
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The assembly problem
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& Jigsaw puzzle with millions of pieces that overlap.

& Need much more DNA sequence than target genome
(generally 15-100X)

& Want to end up with single sequence for each
chromosome
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Problems
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& Sequence data is noisy.

& Repeats can have identical sequences in different parts
of genome.

& DNA sample may have variations within sample.
& Data is huge (larger than computer memory).
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Algorithms for assembly
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& Qverlap-consensus graph (needs long reads)

& de Bruijn graph (has trouble with high error rates and
long reads)
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Overlap consensus
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& Each node is a single read. Edges represent overlaps
between the end of one read and the beginning of
another.

& Clusters of connected nodes can be used to build
consensus contigs.

& QOverlap must be large enough to be unigue location in
genome, or chimeric contigs can get built.

& Finding overlaps is expensive part.

& Clusters have to be broken where continuation of contig
IS ambiguous, so repeats tend to be represented by
single consensus contig.

& Best method for 454 and Sanger data.
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de Bruijn graph
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& Each node is a k-mer. Edges connect window [i, ¢ + k)

to window [i + 1,7 + k + 1) of read, and have counts of
occurrence.

& Each read becomes a path in the graph.
& Contigs build from strongly supported paths.

& Errors create “bubbles” and “dead-ends” that need to be
merged into main paths.

& No need to find overlaps, but graphs get huge.
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Web sites
-

hese slides: http://users.soe.ucsc.edu/~karplus/papers/

assembling-genomes-jul-2010.pdf
Banana Slug Genomics wiki:  http://banana-slug.soe.ucsc.edu/

UCSC bioinformatics (research and degree programs) info:

http://www.bme.ucsc.edu/

|
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