
Amap: a Technology Mapper for

Selector-based Field-Programmable Gate Arrays

Kevin Karplus*

Baskin Center for

Computer Engineering & Information Sciences

University of California, Santa Cruz

Santa Cruz, CA 95064 USA

ABSTRACT

This paper presents two algorithms for doing mapping

from multi-level logic to selector-based field-programmable

gate arrays, such as the Actel chip.

The gate counts and CPU time are compared with two

previous mappers for these architectures: misII and mis-pga.

The Amap algorithm use 6% fewer cells than misII and only

about 8% more cells than the best achieved by mis-pga, and

is at least 25 times as fast as misII and at least 586 times

as fast as mis-pga. The XAmap algorithm is slightly slower,

and not quite aa effective.

1 Introduction

Two algorithms are presented in this paper: Amap and

XAmap, both for mapping combhtational logic to selector-

based gate arrays, such as the ones produced by Actel.

The Amap algorithm tries to match the selector structure

of the gate array with a selector-based representation of

the function. The XAmap algorithm uses Xmap to map

to arbitrary three-input functions [7], then replaces those

functions with Actel cells that implement them.

The algorithms are based on a multiply-rooted if-then-else

directed acyclic graph representation of the functions [4].

In order to compare the new mapping algorithms fairly

with existing mappers, they have been run on the output

of the misII logic minimizer [1], which is in Berkeley Logic

Interchange Format (B LIF). The conversion from BLIF done

is exactly the same as is done for the Xmap algorithm [7].

The gates found by Amap and XAmap are (possibly

overlapping) SUb-DAGS of the if-then-else DAG for the entire

circuit. Because oft his direct mapping, the mappers preserve

any path-delay-fault test abdit y of the underlying DAG [6].

2 The Actel cell

The Actel chip is designed to have many copies of a small,

versatile cell, as is appropriate when the cost of the many

connection points is low. Actel’s basic cell (illustrated in

Figure 2.1) uses selectors as the basic gates, and can be

configured for either combhtational logic or storage [3]. We

will consider only combinational logic in this paper.

Each input of the cell can be connected to O, 1, or a wire

from another cell or chip input. The cell is quite flexible-the

designers claim that all two- and three-input functions can

be implemented in a single cell, as well as several functions

with more inputs [3, page 753]. All the t we-input functions

● This research wss funded by NSF grant MIP.8903555,

Permission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for dtrect commercial
advantage, the ACM copyright notice and the title of the publication and

its date appear, and notice is given that copying is by pemussion of the

Association for Computmg Machinery. To copy otherwise, or to republish.
requires a fee and/or specific permission.

Figure 2.I: Basic cell used in Actel chips field-

pr~grammable-gate-array chips.

are trivially implement able, but only 213 of the 256 different

three-input functions can be implemented in a single cell

(determined by generating the 58 ways of connecting three

inputs to an Actel cell, converting to canonical form, and

tabulating the results). The missing 43 functions are given

in the technical report [5, Table 4.1]. If one of the variables

is provided dual-rail, then all three-input functions can be

implemented directly from the truth t able—connect SO = a,

SI = O, S= = sb = b, and connect A, B, C, and D to O, 1,

c, or c’ as needed.

3 Amap algorithm

The Amap algorithm consists of two passes. In the first

pass, Amap does some minor, local manipulation of the if-

then-else DAG to make the second pass work better. The

second pass does the mapping with a top-down recursive

function that is called once for each output. A node of the

DAG is passed to the function, which generates an Actel cell

whose output corresponds to that node, and calls itself on

the inputs. Most of the complexity of the function comes in

deciding how much of the DAG to cover.

3.1 Local manipulation

The mapper does a traversal of the DAG, lookkg for triples

that represent two-input commutative functions. If exactly

one literal is an input, the triple is commuted, if necessary,

to make the literal be in the if-part. Because the if-parts

will later be matched to the selector inputs of the Actel cells,

this reorganization tends to use the selectors more efficiently,

resulting in about 0.590 fewer cells. This commute order

may not be the final one used, as the mapping algorithm

frequently checks two-input triples to see if the commuted

form has become cheaper.

The first pass also assigns a preferred polarity for each

node. The concepts of commute order and polarity are

import ant, but the first pass has lit tle effect on the success

of the mapper, causing only about a 1~0 reduction in the

number of cells used. The second pass ends up makhtg most

of the decisions independent of the first pass.

Paper 15.4
244

28th ACM/l EEE Design Automation Conference@

01991 ACM 0-89791-395-7/91/0006/0244 $1.50

3.2 Matching Actel cells to the DAG

After the commute order and initial polarity assignments

are done, the if-then-else DAG haa to be covered with the

selectors of Actel cells. The covering is done in a single pass

over the DAG. A recursive function is called for each root of

the DAG, that is, for each principrd output of the circuit. The

function chooses nodes in the DAG to be the inputs for an

Actel cell, then calls itself recursively to map those inputs.

The recursion stops when the node that Amap is trying to

map is a literal, or is already implemented in either polarity.

In both cases, Amap either creates no cells, or creates a cell

to act as a simple inverter, depending on what polarity is

needed.

For non-trivial nodes, the function has to decide how much

of the Actel cell to use. Being greedy, stuffing as much as

possible into the cell, results in considerable duplication of

functions, as nodes that could have been shared get hidden

inside Actel cells. If too little is stuffed into the Actel cell,

then the cells are used inefficiently, and more of them are

needed. For example, if we never use more than one input

to the OR-gate, we’ll need about 5~o more cells than if we use

both inputs wisely. Sections 3.2.1, 3.2.2, and 3.2.3 describe

the heuristics used to choose how much of the DAG to include

in the Actel cell.

To simplify the discussion of the heuristics, let’s define

a ~ree OR as a node that is already implemented in either

polarity, or is the OR or NOR of two signals that exist in the

correct polarity. Note that a free OR can be implemented as

the control input for the output selector with no additional

Actel cells.

Similarly, let’s define a tree selector as a node in the if-

then-else DAG that exists in either polarity, or the if-branch

exists in either polarity and the then- and else-branches exist

in the appropriate polarities. Note that a free selector can

be implemented as an input selector of an Actel cell, with

no additional Actel cells.

3.2.1 Mapping to the output selector

The output selector of the Actel cell is matched to the

if-then-else triple at the node being mapped. The obvious

mapping associates the if-branch wit h the control input, and

the then- and else-branches with the two data inputs.

If the triple represents a two-input function, we have

another choice-we can commute the triple before doing the

mapping. Commuting can affect whether or not the OR-

gate is usable, and can affect the polarity of the inputs. For

example, a + // can be represented aa (if a then TRUE else

b’) or (if b then a else TRUE).

We commute the triple if doing so will make it easier for

us to use the OR-gate or the input selectors. The heuristics

for deciding to use the commuted or uncommuted form of

the triple are

● If one form of the triple already exists in either polarity,

use it, and either crest e no cell or crest e an inverter,

depending on the polarity needed.

● If only one of the forms has a free OR in the if-branch,

use that form.

● Otherwise, if only one form has free selectors as the

then- and else-branches, use that form.

● Otherwise, use the uncommuted form.

Having chosen the commute order for the triple, we now

have to map each of the branches. The if-branch (a) maps to

the OR-gate, and the then- and else-branches (b and c) map

to the input selectors. For each branch, we can either choose

to use the branch as an input to the Actel cell, making part

of the cell be a simple buffer or inverter, or try to map the

triple at the branch into the OR-gate or input selector.

3.2.2 Mapping to the OR-gate

The OR-gate output will be a or a’. We’ll use the OR-gate

as a simple buffer (S1 = O), if

● a already exists in some polarity (no need to use OR-

gate), or

● all three branches of a are non-constant (can’t represent

a as an OR),

● a is not a free OR, and the node for a has three or more

pointers to it in the DAG.

Otherwise, we express a as an OR or NOR, and connect the

two inputs to So and S1.

An experiment was tried in which a = (if z then y else z)

was split into xy + Z’Z to take full advantage of the OR-gate,

whenever a had low fan-out, but this splitting increased the

number of cells needed by about 0.570.

If we choose to use only one input of the oR-gate, we can

make its input either a or a’. The polarity choice here makes

no difference to the cost of the cell we are currently mapping,

but may affect how many cells are needed to generate the

signal for SO. We will have similar polarity choices to make

for the control inputs of the input selectors S. and Sb.

Currently, Amap uses the same simple heuristic as Xmap

for making the polarity choice for a node:

● Use literals (primary inputs) in uninvested form.

● If either polarity is already implemented as an Actel cell

output, use the one that exists.

● Otherwise, use the polarity chosen initially.

3.2.3 Mapping to the input selectors

After we have decided how to use the OR-gate, we are

ready to map the then- and else-branches to the input

selectors.

As with the mapping of the output selector, we have a

choice of commute order for triples that represent two-input

functions. The heuristics are fairly simple:

s If one form is a free selector and the other isn’t, use the

free selector.

● Otherwise, if only one form has an if-branch that exists

in some polarity, use that form.

● Otherwise, use the uncommuted form.

We have a choice for each input selector: use it as a buffer

for a single signal, or grab the next lower triple in the if-then-

else DAG. A simple heuristic decides when to use the input

selector as a buffer-use it as an inverting or non-inverting

buffer, if

● either polarity of the node is already implemented,

● the node is not a free selector and has a high fan-out

(~ 3), or

● the polarities of the node’s then- and else-branches

would both be wrong.

Note that the last condition can never hold for a triple

representing a two-input function.

Paper 15.4
245

3.2.4 XOR flxup and recursion

After choosing whether to use the input selectors as

buffers, we check to see if the triple for the output selec-

tor is an XOR (that is, if the then-branch is the negation

of the else-branch) and either of the two input selectors is a

buffer. If one of the selectors is a buffer, we can get some

savings by making the other selector a buffer also, and using

the same signal for both S. and Sb.

Next, we check each input node to see if it is a two-input

function and the function with the two inputs commuted

already exists. If so, we use the existing version, rather than

creating a new one.

Finally, we map the inputs that aren’t already imple-

mented.

4 The XAmap algorithm

Of the 256 possible three-input logic functions, 5 take no

cells. 208 can be done in one Actel cell. and the other 43

require two. An experiment wsa performed in which each

of the 256 functions was minimized using the Printform

transformations [4], then mapped by Amap. Amap got the

5 no-cell functions right, but mapped only 177 functions in

one cell, and took two for the remaining 74.

Because Actel cells can implement almost any three-input

function, and because Xmap with ~ = 3 ends up with about

as many logic blocks as Actel cells from Amap [5], it is

tempting to try to use Xmap to map to Actel cells. This

is exactly what the XAmap algorithm does.

First, Xmap is called to generate the three-input functions

(no merging is done), then each function is replaced by

the corresponding Actel cell using a simple table lookup.

If a logic block is created that doesn’t correspond to an

Actel cell, then one input has to be made available in both

polarities, and the Actel cell programmed as a generic 4-to-l

selector with the other two inputs controlling the selector. If

none of the inputs are currently available in both polarities,

then an Actel cell programmed aa an inverter needs to be

added for one of them. XAmap choses to make the input

with the highest fan-out double-rail, as it is most likely to

be usable again.

One improvement to XAmap, which hasn’t been imple-

mented yet, would use a table lookup for cells that need

double-rail input, rather than building the generic 4-to- I

selector. The table-lookup would minimize the number of

connections to the cells that have a double-rail input. There

would be no savings in the number of cells or routing com-

plexity, but there could be a reduction in delay, due to re-

duced fan-out.

The table of Actel cell implementations for the XAmap

algorithm was generated by a program that computed the

function of each of the 58 ways of connecting O, 1; a, b, or c

to the inputs of an Actel cell. For each function, the wiring

of the Actel cell that had the fewest inputs other than O or

1 was recorded. The table was set up in a way that favored

implementations that used the output selector, rather than

the input selectors, to reduce delay.

Note that the XAmap algorithm will always take at least

as many cells as Xmap with ~ = 3, and will never have

more than three different inputs to an Actel cell (four, if you

count the double-rail signal as two). Alt bough this seems to

be throwing away much of the flexibility of the Actel cells,

XAmap appears to work almost as well as Amap,

l.s - ❑

❑

m
.
n 1.4-

.:
E ❑

-. 13
m 12-
E

❑

< n m

❑
lo- kl

m

0s,

10 100 1(0

Actel cells used by mis-pga

Figure 5.1: The number of Actel cells needed by

Amap divided by the number needed by mis-pga

for the benchmarks reported in [8].

An Actel cell can implement only 4,502 out of the 65,536

possible four-input functions—slightly less than 7% of them.

Even if all inputs are provided double-rail, there are still

42,362 four-input functions that can’t be implemented in

one Actel cell. Because 64!70 of the four-input functions are

unavailable, it is unlikely that changing XAmap from ~ = 3

to ~ = 4 will offer any advantages.

5 Results of benchmarks

Thirty-four benchmark circuits, including all the bench-

marks reported for mis-pga [8], were mapped after minimiz-

ing. with misII’s standard script. The results are tabulated

in a technical report [5]. Figure 5.1 compares Amap with

mis-pga for Actel cells [8]. The ratio of sizes is plotted, be-

cause the range is large enough to obscure the differences in

a straight Amap vs. mis-pga scatter diagram.

The average performance of Amap is reasonable: 6~0 fewer

cells than misII’s mapper [2,8, Table 2], and about 8~0 more

than mis-pga. Somewhat surprisingly, XAmap generates

only 4~o more cells than Amap (770 more on the benchmarks

report ed for mis-pga), and only 16~o more cells than mis-pga,

despite restricting itself to three-input functions.

Amap and XAmap are significantly faster than mis or mis-

pga—about 25 and 19 times faster than misII and 586 and

445 times faster than mis-pga with Heuristic 3 and itera-

tive improvement. It might be fairer to compare Amap and

XAmap with Heuristic 2 of mis-pga without iterative im.

provement, which is mis-pga’s fastest heuristic. Amap and

XAmap do 20% and 14% better than Heuristic 2 without it-

erative improvement, but take 2–3 times the CPU time. The

time ratio is really closer to 1–1 .5, as the mis-pga results are

from a 6 MIPS machine, and the new mappers were run on

a 3 MIPS machine.

6 Choosing the cell type

In this section we examine the tradeoff between cell com-

plexity and the number of cells needed for different selector-

based cells. To evaluate a cell type, we need to combine the

Paper 15.4

246

cell type

super-Actel

Actel

no-Or Actel

2-to-1 selector
2-to-1 selector
with inverters

grids/

cell

10

9

8

4

4

cells

needed

6484

6789

7137

11711

10594

total

grids

64840

61101

57096

46844

42376

grids*

lg cells

821055

777761

730898

633130

566613

3-input

fens

236

213

197

32

54

Table 6.1: Area estimates for gate arrays based

on different cell types. The final column is the

number of distinct three-input functions that can

be implemented with only one cell.

number of cells used by a mapping algorithm with an esti-

mate of the area needed for each c~ll and an estimate of the

area needed for wiring. For the cell types we’ll consider, the

cells themselves are small, and the area needed for them can

be estimated by the number of grids (inputs and outputs)

for the cell.

The routing area needed is proportional to the total num-

ber of grids times the average height of the routing chan-

nels. Unfortunately, average channel height is difficult to

estimate before placement. Cell types that take more cells

for a given circuit will require more channel height, but the

height doesn’t increase linearly with the number of cells, as

the additional wiring will be mainly short wires. Lacking

a good model for channel height, the analysis here will use

lg(cells).

We can evaluate different cell types by making variants of

the Amap algorithm to map to them, and mapping the same

benchmarks for each type:

Actel The cell presented in Figure 2.1.

super-Actel Replace the OR-gate with a 2-to-1 selector,

making the cell a full two levels of an if-then-else DAG.

no-OR Actel Omit the OR-gate from the Actel cell to get

a four-input selector with three control inputs.

2-to-1 selector Use simple 2-to-l selectors. Simple latches

can still be done in one or two cells, but clear and preset

functions would increase the size of the latch.

2-to-1 selector with inverters Use 2-to-1 selectors with

optional inverters for the two data inputs. Such a cell

can implement the if-then-else DAG directly. Program-

ming the optional inverters may take a couple of extra

switches or anti-fuses per input.

Table 6.1 summarizes the tradeoffs for the cell types de-

scribed above.

7 Future Work

The high speed of the mappers makes them attractive

for evaluating high-level minimization techniques. Circuit

rearrangement can be done for area or delay reduction, and

the entire circuit remapped to evaluate the changes—like the

iterative improvement done in mis-pga. The techniques used

in XAmap (ignoring the structure of a function, and looking

only at the number of wires needed to encode the information

used for computing it) may also be valuable in higher-level

logic and state-machine minimization algorithms.

A more detailed study of programmable gate array archi-

tectures should be made, using better estimates for the cost

of routing. Other selector-based cells, such as 4-to-1 and

8-to- 1 multiplexers, should also be examined.

Another mapping approach that might be worth trying

would be to use a bottom-up marking algorithm, like Xmap,

but with overflow nodes defined by whether the function

could be done with one Actel cell. This approach would

combine the strengths of Amap and XAmap, but could be

more difficult to program.

The results in this paper count only the number of cells

used, without estimating routability or delay. Optimizing for

cost measures that estimate these parameters would increase

the value of the technology mappers. Unfortunately, the

delays in programmable gate arrays are heavily dependent

on the routing, because of the high resistance of the routing

switches or anti-fuses. It will be difficult to find meaningful

delay estimates before routing is done, and doing good

placement and routing is too expensive to put in the inner

loop of a logic minimizer.

Another direction for research is to develop mappers for

sequential logic, generating complete mappings including

feedback to make selectors act as registers.

Acknowledgements

S@ren S@e read drafts of this article and provided useful

comments.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli,

and A. R. Wang. MIS: a multiple-level logic optimization

system. IEEE Trans. on Computer-Aided Design of Inte-

grated Circuits and Systerrzs, CAD-6 (6):1062–1O81, Nov.

1987.

E. Detjens, G. Gannet, R. Rudell, A. Sangiovanni-Vin-

centelli, and A. Wang. Technology mapping in MIS.

In ICCA D-87, pages 116-119. IEEE Computer Society

Press, Nov. 1987.

K. A. E1-Ayat, A. El Gamal, R. Guo, J. Chang, R. K. H.

Makj F. Chiu, E. Z. Hamdy, J. McCollum, and A. Hohsen.

A CMOS electrically configurable gate array. IEEE Jour.

of Solid-state Circuits, 24(3):752–762, June 1989.

K. Karplus. Using if-then-else DAGs for multi-level logic

minimization. In Aduanced Research in VLSI: Proceedings

of the Decennial Caltech Conference on VLSI, pages 101–

118, March 1989.

K. Karplus. Using if-then-else DAGs to do technology

mapping for field-programmable gate arrays. Technical

Report UCSC-CRL-90-43, Computer Engineering, Univ.

of Calif., Santa Cruz, Sept. 1990.

K. Karplus. Canonical forms of if-then-else dags are ro-

bustly path-delay-fault testable. In International Work-

shop on Logic Sgnthesis, Research Triangle Park, North

Carolina, May 1991. submitted.

K. Karplus. Xmap: a technology mapper for table-

lookup field-programmable gate arrays. In 28’h Design

Automation Conf., San Francisco, CA, June 1991.

R. Murgai, Y. Nishizaki, N. Shenoy, R. K. Brayton,

and A. Sangiovanni-Vincentelli. Logic synthesis for pro-

grammable gate arrays. In 27’h Design Automation Conf.,

pages 620-625, Orlando, FL, June 1990.

Paper 15.4

247

