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problem is to connect terminals (considered as points on the
facing sides of two adjacent rectangles) in a designated or-
der. We shall generally assume that there are no crossovers—
i.e., that the order is the same for both rectangles. Wire place-
ment can be optimized by putting the rectangles as close to each
other as possible. One seemingly promising way to minimize the
separation is to use several layers for the wiring. Two- or three-
‘layer wirings clearly are more general, and are necessary when
.the terminals of the two rectangles need not be connected to
order. However, single-layer wiring is often used, because of the
area lost when wires are run between two or more layers.
Figure 1 shows the wiring problem: to draw a wire from each
P, (a terminal on the lower row) to the corresponding Q; (a ter-
minal on the upper row), such that no two wires ever come within
one unit of each other. (Of course, the actual size of a “unit” in
terms of \-is determined by the specific design rules for the min-
imum width and separation of the particular layer used in the
connection. ) To meet the wire spacing requirement, the P,s must
be placed at least one unit apart from each other, as are the Os.

In many VLSI design systems (Johannsen 1979), a common

The wire width is set to zero whenever this simplification causes

no material change in the algorithms. More detailed modeling is
included where necessary. We also assume that wires must be
vertical within one unit-of the upper and lower rows, as shown in
Figure 1. This assumption reflects the fact that the rectangles
may contain unknown layers, which must be a unit distance from

the routing wires. We cons1der principally the following two wir-

ing disciplines:

1. Wires can-travel in any direction. We -call this unrestricted

© routing scheme the general case. It was considered by Tompa
(1980), and an optimal wiring was obtained for the situation
in which the relative position of the rectangles is fixed both
‘horizontally and vertically, or is fixed only horizontally.

2. Wires cantravel only horizontally or vertically. We call this the
rectilinear case. It has been considered by Valiant (1979),
Fischer and Paterson (1980), and Storer (1980), and is based
on common design restrictions. To avoid an unduly complex
description of the results, we assume in this case that the plane
is a unit grid, as in Valiant (1979), and that wires can travel
only along grid lines. Furthermore, the terminals are placed
only on grid lines, although not necessanly onadjacent lines.
If there are two or more layers, we assume that terminals can
be connected between any layers, and that any grid line can
“‘carry” a wire on each layer.

A version of this article appeared in the copyrighted Proceedings of the 13th ACM
Symposium on the Theory of Computing, May 1, 1981.
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" FIGURE 1. Basic wiring problem.

Much of what we say holds for a larger class of constraints on
how wires may travel. For-example, we can generalize the recti-
linear case so that wires also travel along the diagonals of the
squares of the grid. This model also reflects the actual con-

- straints of some mask-making facilities.

We call the horizontal displacement of Q, and P, in Figure 1
the offset, and we refer to the number of tracks between the two
rows of terminals as the separation. Thus, the separation is sim-
ply the physical distance, minus one. When non-rectilinear wir-
ing schemes are used, the separation need not be an integer; in
such cases, it has meaning only in terms of distance, not tracks.
Consider the following optimization problem: given a fixed off-
set and a wiring discipline (e.g., rectilinear), what is the mini-
mum separation problem. Consider also the offset problem: for
which offset is separation as small as possible?

The Rectilinear Model Separation Problem

In actual VL.SI designs, it is often necessary to connect a set of
terminals on a row (e.g., inputs from pads) with another set of
terminals on a different row (e.g., input latche$). The spacings

- “between the terminals may be irregular. We would like to deter-

mine how close we can bring these rows of terminals to each
other, while still being able to connect them legally. In addition
to determining quickly this minimum separation, we would also
like to have an.algorithm for actually laying out the wires.

Given a fixed offset, and n pairs of terminals (P,, Q)), . . .,
(P,, Q,), we take P, to be both the name of a terminal on the
bottom row and the horizontal position of that terminal; and we
take Q; to be a similar terminal on the upper row. Our goal is to
find the minimum separation for which a legal wiring exists. Let
us define a right block as a maximal sequence of pairs of termi-
nals (P, Q), . . ., (P, Q) such that fori < k <j, Q, = P,. That
is, all the connections in the block have a position in the upper
row to the right of the corresponding position in the lower row.
We define a left block in the obvious, symmetrical way. We call a
left or right block a block.

A block can always be wired so that all wires in a right block
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move monotonically to the right, and so that all wires in a left
block move monotonically to the left; i.e., a wire need never
reverse its direction. Thus, wiring in a block never extends past
the boundaries of the block; therefore, the blocks are wiring-

independent. This fact implies that for a fixed offset, the sepa-

ration is determined by the “worst” block.

Two important constraints force large separations. First, there
is the channel density at any horizontal position 4. This quantity
is the number of values of i for which P, <h < Q,or P.=h = (Q,,
butnot P; = h = Q.. The second constraint is the conflict number
for any two pairs of terminals, i and j, which we denote by W(i,j),
as defined in Table 1.

We can understand intuitively that the channel density indi-
cates hew many wires must cross the vertical line at position A.
The conflict number for i and j is intended to measure the number
of wires that must cross an imaginary line from P, to Q.. (This
concept is an adaptation of the basicidea of Tompa (1980) to the
rectilinear case.) The reason for the strange form of this number
is that the wires may pass either horizontally or vertically be-
tween P, and Q.. If Q, and P, are sufficiently far apart horizon-
tally, then the wires could pass vertically; the separation could
be aslittle as 0. If Q, and Q, are close together horizontally, then
the wires cannot all pass vertically; in this case, in the horizontal
direction, one track per wire will be needed.

Example 1. Figure 2 shows an interesting case in which 7 pairs of
terminals are offset by one unit. At any interior horizontal posi-
tion, the channel density is 2. However, P, — Q, = n—2, which
is less than n—1. Thus, W(1,n) = n, from wh1ch we conclude
that separation of n is required.

The channel density and the conflict number affect the num-
ber of tracks needed through a given line. These two notions are
related; in fact, it can be shown that the largest channel density
in a problem is never greater than the largest conflict number.
We can also prove that the separation for any one-layer rectilin-
ear connection is at least €qual to the largest conflict number.

A very simple and useful algorithm in actual wiring is the fol-
lowing “greedy” algorithm. To wire a right block, we lay down
wires sequentially, starting at the leftmost pair of terminals. When
wiring a given pair, we move vertically, as long as we can. When
we cannot proceed any farther in this direction, we move to the
right, but revert to moving vertically as soon as we can do so
legally. Left-block wiring follows the analogous procedure.

The relationships between the conflict numbers and channel
densities, together with the “greedy” algorithm, let us prove the
following results.

Theorem 1: In any rectilinear separation problem, tracks equal
in number to the largest conflict number are necessary and suf-
ficient for one-layer wiring.

Example 2: Figure 2 shows an application of the greedy algorithm.

The greedy algorithm was programmed by K. Karplus and A.
Strong at Stanford University, for the layout of the “Digitar”
chip. The algorithm i also part of the CHISEL design system being
implemented for circuit layout. The program keeps a list of the
x- and y-coordinates of the most recently routed wire, and uses
‘this list to route the next wire, while simultaneously updating the
list. The algorithm can also handle certain cases in which the
terminals are not all on straight lines. An interesting character-
istic of the greedy algorithm is that in the rectilinear case, the
total wire length is minimal. This is a desirable feature, because
the diffusion delay of a wire is proportional to the square of the

i<j i=j i>j
P—Q>j~i 0 1 i-j+1
P—Q=j—i j—it1 0 i—j+1
P—Qj—i j—i+1 1 0

TABLE 1. Detinition of W(i,j).
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FIGURE 2. Large conflict number and small channel density.

length of the wire. This wiring scheme may take as much as O(n?)
time to run, because the wires can have O(n’) “corners.” The
separation problem, however, can be solved more efficiently.
Corollary 1: The number of tracks needed for the rectilinear
separation problem can be determined in O(n) time. _
Proof: Normalize the problem so that all blocks are right blocks,
by redefining P, = min(P,, Q) and Q; = max(P;, Q,). This alter-
ation doesn’t change the number of tracks needed. Let ¢;be the
smallest i << j such that P, — Q, < j—i (orjif no such i). Because
W(c,j) = max,q, ;W(, j), and ¢;< < Gjus, We CaN find the maximum
conflict number by incrementing j from 1 to n, searching for ¢
(starting at ¢, ;) and computing W(c,,j).

Multilayer Solutions

Two- and three-layer problems yield an entirely different sort
of result. A solution to the three-layer rectilinear separation
problem requres a number of tracks equal to one third the largest
channel density. A two-layer solution requires a number of tracks
equal to one-half the largest channel density. We cannot prove
that this lower bound is always achievable. One can certainly
achieve a wiring with a number of tracks equal to one-third the
largest conflict number; but, as shown in Example 1, that num-
ber can be asymptotically much greater than one-third the larg-
est channel density. However, by another sort of “greedy”
algorithm, we can achieve a three-layer (or even two-layer) wir-
ing proportional to the lower bound.

Theorem 2: A three-layer solution to the rectilinear separation
problem exists, that uses no more tracks than the largest channel
density. Fugthermore, this solution can be implemented in two
layers, if the grid size represents enough physical area for two
wires to be run in the same layer.

Proof: First, as in Theorem 1, break the pairs of terminals into
blocks. All wires in a block run first vertically in one layer, then
horizontally in the second layer, and finally vertically again in the
third layer. To wire a right block, select tracks from left to right.
(To wire a left block, select tracks from right to left.) In cither
case, pick the lowest avallable track for the horizontal w1re

If P, = Q,, and the j” pair uses a higher track than the i", then
it looks as though two vertical wires occupy the same place. Avoid
this problem by making the grid spacing large enough to handle
two wires. (In practice, we can use a third layer to obtain a some-
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what smaller grid spacing, without creating any transistors.)
Example 3: Figure 3 shows a wiring of the problem in Figure 2,
using the greedy algorithm of Theorem 2.

Some new two-layer wiring algorithms do not require a larger
grid size. For these schemes, 2h-1 (i.e., one less than twice the
channel density) is sufficient (Rivest et al. 1981) and sometimes
necessary (Leighton 1981) for routing.

One-Layer and Two-Layer Solutions

From Figures 2 and 3, one may assume that two-layer wirings
can be arbitrarily better than one-layer wirings. However, we
believe that in practice, this is not the case. We need a prelimi-
nary result indicating that as long as terminals are not packed
too tightly along the rows, then a one-layer solution always ex-
ists, whose separation is proportional to the channel density, not
to the conflict number.

Theorem 3: Let x be the maximum channel density. Suppose a
constant a > 0such that for every r = x(1 + 1/a), no r consecutive
grid lines have more than /(1 + «) terminals. Then, there always
exists a one-layer solution to the rectilinear separation problem
using no more than x(1 + 1/a) tracks.

Proof: (sketch) Figure 4 shows the crucial case. Note that kis the
channel density at Q, (thus k <x) and k + mis the conflict number
W(i,j) if the latter is not 0. We must prove that W(i,j) is either
proportional to x or is 0, thus showing that the maximum conflict
number and the channel density are proportional. If m < x/a,
then W(3,j) is no larger than x(1 + 1/a). If m > x/a, then reason
as follows:

For W(i,j) not to be 0, we must have k + m = P, — Q.. But by
our assumption about the sparseness of terminals, we can show
thatm < (P, — Q)/(1 + a). It follows from these two inequalities
thatk + m=m(l + «), or m < k/a. Because we assumed m >
xloe = kla, we see that W(i,j) must be 0. '

Corollary 2: If the minimal distance between two neighboring
terminals is 1 + a, for a = 0, then a one-layer solution to the
rectilinear separation problem always exists using no more than
min(rn, x(1 + 1/a)) tracks, wheré n is the number of pairs to be
connected.

Even when the one-layer solutlon is ““worse,” it still has some
advantages in actual routing. We can implement the one-layer
solution with either polysilicon or diffusion, and then do other
independent routings simultaneously with the third (metal) layer.

There is a qualitative difference between the situation in which
terminals are not as densely packed as the grid lines (however
close to 1 the ratio may be), and the case in which terminals are
packed one to a grid line. In the former, case, the separation
depends only on the channel density; in the latter case, it de-
pends on the conflict number.

Now we can apply Theorem 3 to particular values of « that
reflect real design rules. (We use here the design rules of Mead
and Conway (1980).) First, in terms of A (the fundamental unit
for design rules), we can run a single-layer wiring in polysilicon
with grid units equal to 4x. (In fact, we can use a 3\ grid if we
alternate polysilicon and diffusion; but the capacitance inherent
in diffusion wires provides good reason not to do so.) However,
consider the grid size for a two-layer wiring. If, according to
Theorem 2, the wires run vertically in polysilicon, horizontally
in metal, then vertically in polysilicon, we have several choices,
none very good. (These wires must be diffusion if the horizontal
grid is less than 10\; certain other combinations of horizontal
and vertical grid sizes also require that this wire be diffusion.)
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FIGURE 3. Two-layer “greedy” wiring.
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FIGURE 4. Diagram for Theorem 5.

Example 4: We could use a horizontal grid of 10x and a vertical
grid of 7\. That is, terminals that must be separated by 10x. But
if this is the case, we could use a 4\ grid and a one-layer wiring,
and claim that @ = 3/2. Then, by Theorem 3, a wiring exists with
no more tracks than 5/3 the maximum channel density. If x is that
maximum, then, in terms of \, the separation in the one-layer is
6.67\x; for the two-layer case, with its 7\ vertical grid, we need
T\x separation, which is greater.

We could also use a three-layer wiring with an 8\ horizontal
grid and 7\ vertical grid, which provides slightly better separa-
tion than does the one-layer solution. Other grid sizes for the
two-layer case (such as a 7\ horizontal grid coupled with a 14\
vertical grid) yield the same conclusion: in practice, one-layer
wirings are as good or better than two- or three-layer wirings.
The only way to escape this conclusion would be to improve sub-
stantially the upper bound of Theorem 2, or to discover better -
plans for three-layer wirings. (Determining the set of pairs 4 and
v for which two- and three-layer wirings exist for an A\ by vA grid
is an open problem.) .

Other Results

For Theorem 4: When wires can run along the eight compass
directions, the separation problem can be solved in O(n) time.

" Proof: (sketch) The conflict number can be broken into two parts:

one resulting from the rectilinear (flat) portions of the wiring,
and one resulting from a restriction to the 45-degree pieces. As
in the rectilinear case, the maximum contribution from the flat
portions can be found from a linear scan. The other contribution
can also be evaluated by a linear scan. In this instince, a priority
queue must be maintained to indicate which P, connection point
gives a maximum (restricted) conflict for a current point Q,. When
iis incremented a new restricted Wi, j) value is computed, and
the data structure is updated. As j is incremented, P, is inserted
into the data structure. The linearity. results from the fact that
during the insertion, old data (that contributes a conflict less
than that from a new P, entry) can be deleted. Furthermore,
during the updating, P, entries giving former (but not current)
maximum conflict values can be deleted.



For Theorem 5: For the general wiring case, the separation prob-
lem can be solved in O(nlog n) time (Siegel and Dolev 1981).
Proof: (sketch) We first find a P, maximizing W(i, ) the sepa-
ration induced by the pairs P, and Q. It turns out (Slegel and
Dolev 1981) that the maximum separatlon is among separations
restricted to the intervals {P,,P, Jand [Q,, Q= ], or [P,,P,] and
[Q_, Q,] Repeating the divide and-conquer step on the Q coor-
dinates requires a total of O(nlog n) comparisons.

Although we obtain the same separation as Tompa (1980) in
these two cases, our total wire length is not normally minimized.

Another problem is that of “fluid” terminals. Assume we can
decide where to put the terminals on the row so as to minimize
the separation. The interesting case is when the terminals on one
row (say, the upper) are fixed, and we have to determine the
placement of the terminals on the lower row. Using our earlier
results, we can achieve the minimal separation by packing con-
secutive terminals as closely as possible, on the left-hand side of
the row (as long as they belong to a left block), and on the right
hand side of the row (as long as they belong to a right block). The
rest of the terminals (if any) can be placed just across from the
corresponding terminals. The algorithm minimizes the largest
block; therefore, it produces the minimal channel density, which
lets us achieve a minimal separation. The last result can be ex-
tended so that we can simultaneously minimize the size of the
occupied part of the row we construct.

In the offset problem, the relative positions of the terminals in

each row are fixed; but we can slide the rows relative to one
another. The problem is to find the offset that minimizes the
separation.
Theorem 6: For the rectilinear, general, and 8-compass-point wire
models, the offset problem can be solved in time O(7(n)log n),
where T(n) is the time to find the separation (Dolev et al., 1981;
Siegel and Dolev 1981).

Some more general algorithms for river-routing multiple mod-
ules across a channel can be found in Leiserson and Pinter (1981).

A variety of new routing results have appeared recently. Brown
and Rivest (1981) examine a two-layer model that minimizes cross-
coupling capacitances. This model also permits non monotone
wires, to reduce the separation. LaPaugh (1980) analyzes two-
layer routing of a rectangular module, and Pinter (1981) analyzes
the problem of track assignment for wires that must change
channels.
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