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Abstract

Most RC simulators only handle tree networks, not arbi-
trary networks. We present an algorithm for computing
signal delays in general RC networks using the RC-iree
computation as the primary operation. We partition a
given network into a spanning tree and link branches.
Then we compute the signal delay of the spanning tree,
and update the signal delay as we incrementally add the
links back to reconstruct the original network. If m is the
number of link branches, this algorithm requires ﬂ%il-l
updates and m+1 tree delay evaluations. All the tree delay
evaluations involve computing signal delays with the same
resistive spanning tree, but with different values for the
capacitors. ‘

1 Introduction

The linear RC model has become an acceptable and
pragmatic approach for modeling digital MOS circuits
in the past decade. Research has been carried out
both in bounding the waveforms [RPH83, Wya85,
Zuk86] and in estimating the signal delays [BNR*87,
CS89, LM84, Ous85, Ter83] of RC networks. In
particular, Elmore’s notion of signal delay [Elm48§]
has been used widely to approximate the time taken
for a signal to start from an initial value and reach
half of its final value. If G is the node-conductance
matrix of a given RC network and C is the capacitance
matrix of the network, calculating Elmore’s delay, tgq,
can be as simple as evaluating the product of G™1,
C, and unit vector 1. Since G and C are given, the
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delay estimation problem amounts to computing the
resistance matrix, R = G~!. Thus delay estimation in
RC networks has been viewed as a numerical problem:
inverting G [LM84]. The computational requirement
of this numerical approach limits its applicability to
general problems. However, if the RC network is a
tree, then R can be determined by inspection, and
tg can be computed in linear time. Almost all MOS
timing-level simulators treat networks as if they were
trees, trading off accuracy for simplicity [BNR*87,
Ous85, Ter83).

Signal delays in tree networks are easy to evaluate;
unfortunately, many practical MOS circuits aren’t
trees. The Manchester adder with carry-bypass
circuitry, as depicted in Fig. 1, is an example [WE85].
Since the bypass transistor B is connected to Co and
C4, when this transistor is ON and all the P; are high,
they form a closed loop of conducting transistors, and
cannot be modeled as an RC tree.

Figure 1: Manchester Adder with Carry-Bypass

The goal of this work is to provide an efficient way
of computing signal delays in RC networks that do
not necessarily form trees. We show that based on
the idea of Kron’s branch tearing, we can partition a
given network into a spanning tree and link branches
[Kro39]. We then start with the signal delay of
the spanning tree, and gradually update the signal
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delay while incrementally piecing the links back to
reconstruct the original network. The important
concept of Kron’s tearing will be explained in Section
3. A delay computation algorithm and its complexity
will be explained in Section 4. Here, we shall only
consider RC networks with grounded capacitors at
each node of the network and no floating capacitors.
Extensions to handle floating capacitors are discussed
in [Cha88].

A note on related work: Lin and Mead invented
the technique of “tree decomposition” and “load
redistribution” to calculate signal delay in general
RC networks [LM84]. Their algorithm is relaxation-
based, and the number of relaxation steps depends
on the required accuracy. The algorithm that we are
presenting here is based on dynamic programming,
and terminates in a predetermined number of steps
with the exact result.

2 Signal Delay in RC Networks

The delay estimation problem aims to find the time
interval that it would take a signal to start from
an initial value and reach a prescribed value. The
most meaningful such value for digital circuits is the
threshold voltage where the two logic states cross.
However, locating this delay time precisely can be as
hard as finding the exact waveform. Many researchers
have used the notion of delay as defined by Elmore
[Elm48] to approximate such a delay time [Ash64,
BNR*87, Cha86, LM84, Zak72]. Elmore suggested
defining delay as the normalized first moment of the
impulse response h(t):

ty= Jor h(t)tdt )
v(o0) — v(0t)

where v(co) and v(0%) are the final and initial

voltages. If v(t) is the voltage response due to a unit

step input, then an equivalent definition of Elmore’s

delay is [BNR*87, Cha86]

. 2 () = w(o)la
T wv(oo) —v(0t)

(2)

Based on this notion of signal delay, closed-form
delay expressions can be derived for RC networks
without floating capacitors. We note that for a simple
RC circuit, Elmore’s delay is the same as the time
constant of the circuit.
For a given RC network with n grounded capacitors,
let
e G ; be the branch conductance between nodes ¢
and j (and by reciprocity, G;; = Gj i),
e (G;; be the sum of all branch conductances
connected to node ¢, and
e C; denote the capacitance at node 1.
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The node-conductance matrix of the network has
the following form:

Gii =Gi2 -+ —=Gin

G2 G2 —~Gan

G = . .
_Gl,n —GZ n e Gn n

[} )

With this, Elmore’s delay for the i*» node in the RC
network is

_ Xjo1 RijCslvi(c0) — i (01))]
taq = vi(00) — v;(0F) ®)

or in matrix form

¢, = RCIv(c0) — v(07)]
4= Ty (c0) — v(0F)

(4)

where R = G~1, C is a diagonal matrix with entries
(Cy,Ca, ..., Cn), v(o0) and v(0%) are the final and
initial node voltages. For proof, see [Cha86, LM84].

Speaking in terms of the components of the R =
(Rij) matrix, R;; is the driving-point resistance
between node ¢ and the input node, and R;; is the
transfer resistance between nodes ¢ and j. If the
given RC network is a tree, then it has only one
spanning tree and R; ; is the resistance of the portion
of the unique path between the input and the j**
node that is common with the unique path between
the input and node i. In particular, R;; is the
resistance between the input and node ¢ [RPHS83].
Hence, the resistance matrix R can readily be found
by inspection. Evaluating delays for all n nodes of a
tree network requires only n multiplications.

We shall focus on treatments of RC networks which
are not necessarily trees for the rest of the article.

3 Circuit Partitioning

Tearing is a means of partitioning circuits into several
smaller, more manageable subcircuits to enhance
computational efficiency. A large circuit is “torn”
into simpler subcircuits. We solve the subcircuits,
afterward we piece together the subcircuit solutions
with a formal mechanism to yield the composite result.
We need some notations. An RC circuit is ab-
stracted by a circuit graph § = (N, E), consisting
of a set of nodes N = {ng,n1,...,n,} and a set of
edges E = {e1,...,ep}. We assume that each node
in the RC circuit has a grounded capacitor, and a
resistor associated with each edge e;. Without loss
of generality, the node ng designates the input node.
Furthermore, we can partition § into two parts: a
spanning tree consisting of n edges, and b — n edges
that do not belong to the tree, called link branches.



3.1 Tree/Link Partitioning

Given a network, we can partition it into a spanning
tree and link branches using a simple depth-first
search of the graph. We start by solving the spanning
tree, and update the solution by incrementally adding
the links back to recomstruct the original network.
The mechanism that we use for updating the solution
is based on a formula derived by Rohrer, which shows
the consequence of adding a resistor to a circuit
that has been solved [Roh88]. Adding more than
one circuit element can be treated inductively by
adding one element at a time. The idea of Tree/Link
partitioning has previously been applied to a piecewise
linear circuit simulator [HPR87, PHR87], and to
solving linear equations by tree relaxation [SZ88].

3.2 Adding a Single Resistor

Suppose that we have already computed all the node
voltages v of a resistive circuit G driven by the current
source vector I (Fig 2.a), and we wish to ascertain the
consequences of adding a resistor of value r between
its k*® and I** nodes, as illustrated in Fig 2.b.

[+]
k {
v =

G-I

(2)

3 5
k {

v =77

(b)

Figure 2: Updating a Resistive Circuit

Rohrer [Roh88] shows that the effect on the circuit
node voltages of the addition of a resistor r between
nodes k and [ is

Vg — U]
r+ Ry + Rip— 2R

R&k 1, (5)

V=V -

where &1 is a column vector with a “41” in the kth
row, a “—1” in the I*® row, and zeros everywhere else.
We note that the connection vector &; ; indicates that
the resistor to be added is connected from node k to
node [.

3.3 Applying Tree/Link Partitioning to
Signal Delay Estimation

First we consider networks with only one driving-

source (either Vpp or ground), so that, all node

voltages v;(00) attain the same final value. The effect

of multiple driving-sources and different final node
voltages will be considered in Section 3.4. Assuming
that all initial node voltages are the same, we apply
Elmore’s definition of delay to equation (5) to obtain
the following formula for updating delay values:

tar — td;
il il . 6
T+ Rep+ Rif— 2&,:“‘“” ©)

tyg=tg—

The strategy for computing the signal delay for
arbitrary RC networks is clear: we remove all the link
branches until we have a spanning tree, compute the
signal delay of the tree, and then gradually add back
the previously deleted link branches using equation
(6).

This approach has the following desirable prop-
erties: first, the order of the removal of the link
branches is arbitrary, which makes implementation
easier. Second, it is not necessary to compute the
signal delay of all nodes: the computation involved
can be limited to the nodes for which signal delays
are required - for instance, the primary output nodes.
Third, the complexity of this approach depends on
the number of link branches. Since VLSI circuits are
nearly trees, this approach lends itself well to VLSI
applications.

Existing switch-level simulators handle tree net-
works very effectively. To facilitate the incorporation
of our idea into these simulators, we shall formulate
our method using the tree delay evaluation as the
primary operation. Referring to equation (6), we note
that RE; 1 can be conceived of as a delay calculation
with the grounded capacitances of the k** and [**
nodes set to +1 and —1 respectively, and the rest set
to zeros. Furthermore, if we define r = (r;) = Réy 1,

then the delay expression can be reformulated as
: tar —td1
tyg =ty — ——— . 7
¢ d r+rE—1 ()

This formula, and the algorithm to be presented in
Section 4, constitute the major result of this article.

Example: Fig. 3 shows an instance of the RC model
for the transistor loop in the Manchester adder as
shown in Fig. 1. With the switch closed, deleting
any one of the resistors Ry, ..., Rs from the circuit
will result in a tree, so we arbitrarily remove R3 and
compute the signal delay of the remaining spanning
tree, as shown in Fig. 4.a.

5
Rs(zéﬂ o) 1000
Re() . _, Ci)+ Ri(Co + C3)
1 1200
ta= | Re(D . _, Ci)+Ri(C2+C3)+ RyCy | = | 1300
Re(3>_, €0+ Rs(Cy + Cs) + RaCy 1500
=1 1400

Re() ._, Ci)+ Rs(Cq + Cs)

Let’s call this an RC tree delay operation. Next, we
set C3 to +1, C4 to —1, and the rest of the capacitors
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to zeros, as shown in Fig. 4.b, to compute r. This gives

0 0
Ry 10
us r = Ri+Ry | = 20 | . Now, we merge
—(R4 + Rs) -30
—Rs -20

the results of the two tree evaluations using equation
(7) to obtain the signal delay of the original network:

1000.0
1233.3

ba=tq— tastae | y366.7
Rs+rs—rms 1400.0

1333.3

®Rs = 20 QOr; = 10@R, = 10@R; = 10@R, =10
—WA—0o—0—

C2=10T C3=10T C4=10—_|:

Rs = 20
Wy ad
c1=10 | 05:10___]:

Figure 3: Manchester Adder RC Model

CK

Rsg Rp Ry Ry Re Ry Ry Ry
CQT CgI C4T OT +1T —IT
AES AARAs
t VW 4 + .
aT T oT 0T
(2) (b)
Figure 4: Two Tree Evaluations as a result of
Partitioning

For a connected network with n + 1 nodes and
n edges, only one tree delay evaluation is needed.
We have just shown that it takes two tree delay
evaluations to compute the signal delay of the carry-
bypass circuit with a single loop. In general, it takes
b—n+1 tree delay evaluations for a network consisting
of n + 1 nodes, b edges, and b — n link branches. A
general analysis will be given in the Section 4.

3.4 Networks with Two Driving Sources

To compute signal delays in a network with two
driving sources, we need to know the final node
voltages. We compute them by using Kron’s branch
tearing: we partition the network into subnetworks,
each driven by a single source. We use equation (5) to
compute the final node voltages (with the renaming
r = REg 1), namely:

vi(o0) — ui(o0)
r4+rg -1

(8)

¥(00) = v(00) —
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The effect of different final and initial node voltages
on signal delays can be easily accommodated by the
following trick. Referring to equation (3), imagin-
ing that each node capacitance is of value Q; =
Cj[vj(c0) — 9;(0%)], we compute the “signal delays”
of each subnetwork with these “capacitances”. The
“signal delay” values computed are merged by using
equation (7); then are divided by 9;(c0) — 2;(0%) to
obtain the actual signal delay. The following simple
example will illustrate the idea.

Fig. 5.a shows an RC network with a leakage path
to ground. Let V(oo) = 1 volt, and v (0F) =
v2(0%) = 0 volt. The signal delay of this network can
be computed by considering the subnetworks (forest)
shown in Fig. 5.b and 5.c, obtained by deleting R,
from Fig. 5.a. First, we obtain r by considering the

subnetworks shown in Fig. 5.c: r = [ gl . By
—H3
equation (8), the final node voltages are
o) = | 1]- 1 [ &
> - 0 Ry + Ry — (—Rs) —R3
1 Ry +Rs |
Ri+ R+ Rs | Rs )
R @R ®
V(t)é I'Cl ICZ %RS

o @

no @ 2 ™ A
VG)W% T %& V(t)m-n T- Ra
" ) T ©

Figure 5: Tree Evaluations as a result of Partitioning

Next we compute the “signal delays” of Fig. 5.b,

. . Rlclle(oo) ] .
which yields t4 = N . Finally, we use
Y : d I: Rngvg(oo) y
. . ta— t4,1~t4,2 r .
equation (7) tg = jvi. (”*o;)"” to obtain the result
1 Ri(R2 + Ra)C1 + Ry R—ff%a'cz
Ri+ Rz + Rs | Ri(R2+ Rs)Ci + Rs(Ri + R2)Cy |

4 Complexity

Let n+1 be the number of nodes and b be the number
of edges in a given network. Then m = n — b is the
number of link branches. We show that the algorithm
uses m+1 tree evaluations and ﬂ(-mTﬂl merges. Notice
that the update operation 'in equation (7) can be
applied only to two circuits with the same structure
R. After the update, the new delays correspond to
a different resistance structure. To add another link
branch to the circuit, we first have to compute the



delay for that branch with the modified resistance
structure. )
Given a network with circuit graph G = (N, E), let:
e 5 < n be the number of specific nodes for which
signal delays are required,

o L ={b;,---,bm} be any set of link branches, and
(pj, q;) be the nodes to which the link branch b;
is connected,

e X(i) be a circuit with the original capacitors but
with link branches b; 4 to by, deleted from G, and

e Z(i,j) be a contrived circuit with links b;4;
to by, deleted from ¢, and with the 41 and
—1 capacitors connected to nodes p; and g¢;
respectively, and the rest of capacitors zeroed;
defined only for j > 4.

The m + 1 tree evaluations are performed on X(0)
(the spanning tree with the original capacitors), and
{Z(0,;); 7 = 1,...,m} (the spanning trees with the
+1 and —1 capacitors connected to nodes p; and ¢;).

Each tree evaluation requires n operations.

Starting with the trees X(0),Z(0,1),..., Z2(0,m),
the algorithm for combining the circuits can be
expressed by the recurrences:

26,y =2~ 1,i),2(-1,§)) i=1,..,m;j>i
X)) = @)X - 1), Z( - 1,i) i=1,..,m

where & denotes the operation of computing delay
using equation (7); with the first argument providing
tg and the second providing r. Because the merge
operation that involves link branch b; needs the signal
delays of nodes (pj,g;), the merge operation takes
O(m + s) additions and multiplications. Overall, the
time complexity of the algorithm is O(n(m+1)+m®+
sm?), and the space complexity is O(m? + sm).

The structure of the computation is illustrated in
Fig. 6, clearly showing the ﬂ%—ﬂl merges that are
required. Each triangle denotes a tree delay evaluation
of the labelled circuit, and each diamond denotes a
merge operation using equation (7). We reiterate the
important point that all m + 1 tree delay evaluations
use the same resistive spanning tree, but with different
values for the capacitors.

If O(n(m+1)+m® +sm?) operations are too many
for some applications, faster approximate answers
can be obtained by restoring only a few of the link
branches. The circuits X(0), -+, X(m — 1) can be
considered as approximations to X(m). Premature
termination of the algorithm will deliver the signal
delay of an approximated circuit.

If G is a connected simple planar graph, the
maximum number of edges is 3(n + 1) — 6 [Wil79].
Therefore, the time complexity of the algorithm for
a planar circuit is O(n®). The performance on real
circuits is expected to be much better, nearly linear
in n, since VLSI circuits are tree-dominant.

5 Remarks and Conclusions

We have presented a simple technique for computing
delays in arbitrary networks of resistors with grounded
capacitors. The technique allows rapid computation
for RC networks that are almost trees, it is therefore
particularly appropriate for MOS timing simulators.

We have found applications of this technique to
other areas — for example, calculating node voltages
and branch currents of a power supply network. Given
a resistance network which models the power supply
network, and current sources at each node, the prob-
lem is to calculate all the node voltages. We can do
arbitrary tree/link partitioning on the power supply
network and apply equation (5) directly. Previous
work has provided only approximate solutions to the
problem. For example, Ariel is a tool that attempts
to solve the problem by splitting up the resistance
network into a set of trees [SH88]. It is possible
that Ariel may not split the network at the proper
position and node voltage estimations will be overly
conservative.

We are currently expanding the work to allow
true incremental computation of delays as resistances
change, for still more efficient evaluation in MOS
timing simulators. We shall implement the resulting
technique in an existing timing simulator, probably
TIMEMILL [TIMS8S].
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