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Abstract

Undertaker is a program designed to help pre-
dict protein structure using alignments to pro-
teins of known structure and fragment assem-
bly. The program generates conformations and
uses cost functions to select the best structures
from among the generated conformations. This
paper describes the use of Undertaker’s cost
functions for model quality assessment (MQA).
We achieve an accuracy that is similar to other
methods, without using consensus-based tech-
niques. Adding consensus-based features fur-
ther improves our approach substantially. We
report several correlation measures, including a
new weighted version of Kendall’s τ (τ3) and
show MQA results superior to previously pub-
lished results on all correlation measures when
using only models with no missing atoms.

Introduction

Given the multitude of available methods for
structure prediction and the increasing availabil-
ity of computing resources, researchers can gen-
erate many models for a protein of interest with
relative ease. As a result, the ability to select
the best model from among multiple predictions
has become an increasingly important problem.

The SAM web server uses the SAM hidden
Markov model package to generate alignments
and fragments. The server then runs undertaker
to assemble alignments and fragments into ini-
tial 3D models. Finally, undertaker uses a ge-
netic algorithm to generate structures, selecting
the best structures at each iteration via a com-
bined cost function [1]. However, undertaker also
has the ability to read arbitrary models and out-
put scores for the combined cost function. The

combined cost function consists of the weighted
sum of individual cost functions. We aim to
assign weights to the individual cost functions
such that the combined cost function can be
applied to model quality assessment instead of
structure prediction. All of Undertaker’s cost
functions use either evolutionary or physics-like
terms. Consequently, we do not rely upon any
consensus-based methods for the evaluation of
model quality as do other high performing meth-
ods [2, 3, 4, 5].

Methods

Our approach was to define a measure of corre-
lation for predicted quality versus actual qual-
ity that captures many of the properties desir-
able for model quality assessment and to op-
timize weights of the 73 individual Undertaker
cost functions, maximizing correlation. This ap-
proach differs from the typical approach of di-
rectly predicting a model quality measure (such
as GDT TS [10] or GDT HA [11]) using neural
networks [4, 6], support vector regression [2], or
a similar technique.

Weighted Kendall’s τ

Kendall’s τ is a nonparametric statistic to mea-
sure a monotonic relationship between two vari-
ables, with an easily interpreted meaning for
model quality assessment: τ is directly related
to the probability that, given a random pair of
structures, the structure with the better cost is
the better model (τ = 2p − 1, where p is the
probability).

We present a method of weighting Kendall’s
τ that is a special case of a weighting de-
scribed elsewhere [7] but can still be computed
in O(n log n) [8]. If models are ranked by cost
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(with the predicted best model having a rank of
0), models with lower rank can be weighted more
with

Wα,i = e−αi/(n−1) (1)

where i is the rank of the decoy by cost, α is an
arbitrary weighting parameter, and n is the total
number of models. The definition of weighted τ
or τα is then,

τα = 2

∑
i Wα,i

∑
j 6=i Ci,j∑

i Wα,i(n− 1)
− 1 (2)

where Ci,j is 1 if the model with better cost (i or
j) is actually superior, 0 if the model with better
cost is inferior, and 0.5 if the models are tied in
either cost or quality. If α is zero, this measure
is equivalent to Kendall’s τ , and as α approaches
infinity, weighted τ becomes one less than twice
the fraction of models of lower quality than the
lowest-cost model.

Optimization

The following optimization techniques are de-
signed to assign weights for the different com-
ponents of Undertaker’s cost function. Both
techniques described below require a rebalanc-
ing step: If two sets of cost function compo-
nents (A and B) are to be combined, it is neces-
sary to find a weighting parameter (0 ≤ p ≤ 1)
specifying the proportion of the weight given to
components in partition A, where the remaining
weight (1−p) is given to partition B. To select p
such that the average correlation is maximized,
Brent’s method [9] works well for τα and is used
here. This step is denoted in the following al-
gorithms as Rebalance(A, B). After this optimal
weight has been found, each cost function com-
ponent in set A is scaled by p; each component
in set B, 1− p.

The average correlation of a set of components,
C, with GDT TS [10] or another quality measure
is denoted as Cor(C).

Systematic optimization and greedy optimiza-
tion (Figures 1 and 2) both use the same starting
point for cost function weights. To give each cost
function component equal initial influence, each
weight in the set of components is assigned an

initial weight of the inverse of the pooled stan-
dard deviation across all targets. Pooled stan-
dard deviation is defined by

σpooled =

√∑
t∈T(nt − 1)σ2

t∑
t∈T(nt − 1)

(3)

where T is the set of targets, nt is the number
of structures for target t, and σt is the standard
deviation of the cost function among models of
target t.

1: repeat
2: for c ∈ C do
3: A ⇐ {c}
4: B ⇐ C− {c}
5: Rebalance(A, B)
6: Cprev ⇐ C
7: Update C with weights of A and B
8: end for
9: until Cor(C)− Cor(Cprev) < T

Figure 1: SystematicOpt(C). This algorithm
tries to improve the average correlation by tak-
ing each component in turn and rebalancing it
against the remaining components. T is the
threshold for convergence. Initial weights for
each cost function are the inverse of the pooled
standard deviation of the corresponding cost
function.

Real Cost

As an alternative to GDT TS, we also use a dif-
ferent quality measure, real cost. Real cost is
designed to avoid some of the undesirable char-
acteristics of GDT TS. Specifically, GDT TS is
imprecise when models are of very high or very
low quality and is also insensitive to the correct
prediction of H-bonds and side chain rotamers.
The real cost measure is described in Table 3.
Weights were assigned to the various components
subjectively and by observing the relative scores
of models to make sure that real cost was ranking
models reasonably.
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Weight Term Range Description
50 real hbond u [-1, 0] negated proportion of H-bonds in real structure

also present in decoy
50 real hbond [-1, 0] like real hbond u; each H-bond weighted by its

scaled likelihood
50 decoy hbond u [-1, 0] negated proportion of H-bonds in decoy also

present in real structure
50 decoy hbond [-1, 0] like decoy hbond u; each H-bond weighted by

its scaled likelihood
10 real NO hbond u [-1, 0] like real hbond u; only backbone H-bonds
10 real NO hbond [-1, 0] like real hbond; only backbone H-bonds
10 decoy NO hbond u [-1, 0] like decoy hbond u; only backbone H-bonds
10 decoy NO hbond [-1, 0] like decoy hbond; only backbone H-bonds
200 clens [0, 1] a contact-based measure
35 log rmsd [-7, ∞] log of the heavy atom RMSD
30 log rmsd ca [-7, ∞] log of Cα RMSD
1 GDT [-100, 0] negated GDT TS score
1 smooth GDT [-100, 0] like GDT TS with many thresholds between

1/2 and 12 Å

Table 1: Real cost quality measure. Real cost is computed as a linear combination of terms in
the table above. The likelihood of an H-bond is estimated by geometry using a method that is
described in the supplementary materials. Including the proportion of H-bonds present in a real
structure that are also present in the decoy and vice versa penalizes overprediction and under-
prediction. The RMSD terms are useful for evaluating high-accuracy models, and taking the log
makes the terms less influential on poor models. The log rmsd functions will not return values of
under -7 to avoid large negative values when comparing a model to itself. The smooth GDT cost
function is similar to GDT TS, but uses a weighted average over a continuous range of distances
(supplementary materials). Combining both GDT and RMSD measures is an attempt to avoid
rewarding overprediction or underprediction.

Undertaker Cost Functions

A comprehensive description of all 73 Under-
taker cost functions used here is beyond the
scope of this paper. However, the most useful
cost functions turn out to be the alignment-based
constraint sets described in the companion paper
to this one [12].

Neural-net predicted local structure alphabet
cost functions were also extremely useful. The
alphabet predictions were generated with the
program predict-2nd [1, 13]. An amino acid se-
quence and multiple alignment including that se-
quence is given as input to predict-2nd, and for
each position in the input sequence, predict-2nd

will output an estimated probability vector over
each letter in a local structure alphabet. Under-
taker can read these predictions as well as models
to be evaluated. Undertaker uses each model to
generate a corresponding sequence over a local
structure alphabet. Most of the cost functions
that incorporate neural net predictions compute
a cost for each model with

cost = − 1
N

N∑
i=1

log
Pnn(li)
Pbg(li)

(4)

where N is the number of amino acids in the
sequence, li is the letter in a local structure al-
phabet corresponding to residue i, Pnn(li) is the
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1: Pnext = {c} such that Cor(c ∈ C) is maxi-
mized

2: repeat
3: P ⇐ Pnext

4: C ⇐ C− P
5: for c ∈ C do
6: A ⇐ {c}
7: B ⇐ P
8: Rebalance(A, B)
9: if Cor(A ∪ B) > Cor(Pnext) then

10: Pnext ⇐ A ∪ B
11: end if
12: end for
13: SystematicOpt(Pnext)
14: until Cor(Pnext)− Cor(P) < T
15: C ⇐ P

Figure 2: GreedyOpt(C). This algorithm seeks
only to include those cost functions which are
useful for model quality assessment, while ignor-
ing the others. The result will be simpler if only
a few cost function need to be included. The
greedy optimization method seeks to identify in-
dividual components in C that can improve av-
erage correlation and to add them to a pool of
useful components, P, only if they can improve
average correlation. Initial weights for each cost
function are the inverse of the pooled standard
deviation of the corresponding cost function.

neural-net predicted probability of letter li oc-
curring at position i in the amino acid sequence,
and Pbg(li) is the background probability of li as
estimated from a thinned version of the PDB.

Data Set and Evaluation

Our data set includes the 91 evaluated CASP7
targets with structures in the PDB. We only use
this subset of targets because GDT TS and real
cost are computed locally, and computing these
measures is not possible if there is no publicly
available structure. We have tested our greedy
optimization method with five-fold cross valida-
tion. Our model quality predictions for each
CASP7 target were determined by a method
trained on 4/5 of the data set that did not in-
clude the target for which quality predictions

were being made.
The training data set for our method included

all CASP7 predictions as well as the same pre-
dictions after they had been optimized with
SCWRL 3.0 [14]. The testing data set included
CASP7 server predictions only so that we could
compare our performance to that of other meth-
ods using the same data set.

In each case we trained our method on data
using τ3 against GDT TS or real cost with a
threshold of 0.0001. The choice of τ3 was subjec-
tive, but the measure provides a balance between
general correlation and assigning more weight to
the predicted best models. Setting α = 3 gives
just over half of the weight to the top quarter of
models. Both τ3 and the convergence threshold
were chosen before performing cross-validation.

Results from Other Groups

To compare our results to those of other groups,
we downloaded the CASP7 quality assessment
data from the CASP7 website. In the case
of the TASSER group [3], which was disquali-
fied for not providing numerical scores in their
submissions, we converted the order of models
listed into ranks. Data for the Qiu group were
downloaded from the online supplement for that
work [2].

Results & Discussion

The optimized Undertaker combined cost func-
tion performs comparably to other existing state-
of-the art methods for model quality assessment.
(Table 2(a)). We perform competitively on all
measures of correlation and do well at select-
ing the best model as shown by the average
GDT TS, although the difference between our
group and the TASSER group is not statistically
significant (one-tailed Wilcoxon signed rank test
with paired data; P=0.782).

One of the interesting results in CASP7
was the excellent models produced by
ZhangServer [15, 16]. The Cα trace was
typically excellent when compared to other
methods but less attention was given to the
placement of other backbone atoms and side
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chain rotamers. As a result, the models look
somewhat unique, and to ensure that our
method was not just learning to recognize
ZhangServer models, we evaluated on a set with
those models removed. Even after removing
the ZhangServer models from the testing data
set, our performance is similar (Table 1 in
supplement) and our method continues to select
good models.

One simple method for obtaining a consen-
sus score is to take a model and determine the
TM-score [17] between that model and the first
model submitted by each CASP server. (CASP
structure prediction groups are allowed to sub-
mit five models for each target. The first model
is the one that the group thinks is most likely
to be correct.) The median TM-score is a pow-
erful consensus signal [2]. By including the me-
dian TM-score as if it were another Undertaker
cost function, we were able to substantially im-
prove all measures reported in Table 2; for all re-
ported measures of correlation the difference was
statistically significant (P � 0.0001; one-tailed
Wilcoxon signed rank test with paired data).
The quality of the best selected model also im-
proved, but the difference was not statistically
significant in all cases (P > 0.05).

Furthermore, Undertaker is designed to op-
timize complete models, and many of the cost
functions were not designed to handle missing
atoms well. As an unintended result, some cost
functions reward models for omitting atoms. If
we train and evaluate only on complete mod-
els (Table 2(b)), performance relative to other
methods improves, especially in regard to Pear-
son’s r.

Additionally, the model quality measure
used—GDT TS or real cost—matters when look-
ing at the cost functions chosen (Tables 3 and 4).
Optimization was done on full models to ensure
that cost functions which did not handle miss-
ing atoms well could be included. For real cost,
the n notor H-bond alphabet (Figure 9 in sup-
plement) component was assigned a fairly large
weight. The n notor alphabet was also consis-
tently given a high weight when doing five-fold
cross validation, and was never selected when op-
timizing for GDT (supplementary materials). To

a lesser degree, the Φ and Ψ torsion angles, as
described by the Bystroff alphabet [18] were also
selected when optimizing for real cost.

The most useful cost functions included
alignment-based constraints [12] and neural-net
predicted alphabets for burial [19], alpha torsion
angle [20], and (for real cost) the n notor H-bond
alphabet (see supplementary materials).

Conclusions

The goal of most model quality assessment meth-
ods is to select the best model from a group
of structures. In these terms, our method is
competitive with the other methods examined.
Nonetheless, among the best-performing quality
assessment methods compared here, ours is the
only one to exclusively use a nonconsensus ap-
proach, and consequently we do not require the
generation of many structures in order to per-
form model quality assessment.

Consensus-based measures do help when you
have a large fraction of good models in your set
to evaluate, as in the CASP7 set we evaluated on.
Combining our cost functions with the median
TM-score improved results substantially relative
to using undertaker cost functions alone.

Although we did maintain a clean division be-
tween CASP7 targets used for training and test-
ing, other groups mentioned here did not have
the benefit of training on any CASP7 data. We
look forward to CASP8 results for a truly fair
comparison of methods.

Finally, we have presented tools to better
judge model quality assessment measures. While
average GDT TS of the predicted best model
shows how well methods are doing at selecting
the best model, it does not reveal the full pic-
ture. (What if the predicted best model was not
present? Would the assessment method still have
chosen a good model?) GDT TS of the predicted
best model tends to be more variable than mea-
sures of correlation because it relies mainly on
one model, and it is also not useful for compar-
ing relative performance among targets of differ-
ent difficulty. The weighted τα provides a bal-
ance between simply taking the GDT TS of the
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(a)

Group r̄ ρ̄ GDT τ̄0 τ̄3

under+TM 0.90 0.85 61.2 0.70 0.68
under 0.76 0.76 60.5 0.59 0.60

TASSER 0.64 0.70 60.3 0.55 0.53
Qiu 0.85 0.75 60.2 0.59 0.55

Pcons 0.82 0.75 58.6 0.56 0.52
LEE 0.82 0.78 58.1 0.64 0.59

ModFOLD 0.66 0.55 55.9 0.40 0.37

(b)

Group r̄ ρ̄ GDT τ̄0 τ̄3

under+TM 0.90 0.84 61.8 0.69 0.66
under 0.86 0.78 61.0 0.62 0.59
Qiu 0.85 0.74 60.5 0.58 0.55

TASSER 0.63 0.69 60.4 0.54 0.52
LEE 0.80 0.72 58.4 0.58 0.53
Pcons 0.85 0.74 58.0 0.56 0.51

ModFOLD 0.70 0.62 57.0 0.46 0.44

(c)

Group r̄ ρ̄ RC τ̄0 τ̄3

under+TM 0.93 0.88 47.5 0.73 0.70
under 0.91 0.84 38.5 0.68 0.66
Qiu 0.86 0.76 34.1 0.60 0.58

TASSER 0.70 0.74 30.7 0.58 0.56
LEE 0.80 0.72 14.5 0.57 0.52
Pcons 0.84 0.75 5.7 0.56 0.51

ModFOLD 0.76 0.69 14.9 0.52 0.50

Table 2: Performance of different model quality assessment methods. “under” denotes the Un-
dertaker cost functions; “under+TM,” the Undertaker cost functions with the median TM-score
consensus term; and Qiu, data from a scoring function including the median TM-score consensus
term, an atom-pairwise distance potential, and Rosetta terms [2]. TASSER, LEE, Pcons, and
ModFOLD indicate CASP7 groups 125, 556, 634, and 704. The correlation measures are against
negative GDT TS (a,b) or real cost (c) and are averaged over 91 CASP7 targets. The metrics are
Pearson’s r, Spearman’s ρ, average quality of predicted best model (GDT denotes GDT TS; RC,
real cost), Kendall’s τ , and τ3. Evaluation and training was done using five-fold cross-validation
on all models and GDT TS (a), complete models and GDT TS (b); and complete models and real
cost (c). Tables are sorted by the average quality of the best model. The largest value in each
column is presented in bold; the second largest, italics.
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Cost Function Pooled SD Description
align constraint 3.854 selected alignment predicted constraints
pred nb11 back 1.045 neural net predicted burial, near-backbone-11 alphabet
pred alpha back 0.843 neural net predicted alpha torsion angle

noncontacts bonus 0.791 alignment predicted noncontacts
near backbone 0.191 propensity predicted burial, near-backbone-11 definition

dry5 0.172 propensity predicted burial, dry-5 definition
rejected bonus 0.168 rejected alignment predicted constraints
pred o sep back 0.149 predicted H-bond sequence separation for O

contact 0.127 average number of contacts (centroids of the backbone and
sidechain within 8 Å) per residue

pred n sep back 0.117 predicted H-bond sequence separation for N
ehl2 constraint 0.105 secondary structure constraints

is align 0.028 detects missing backbone atoms or chainbreaks

Table 3: Selected cost functions when optimizing against GDT TS. Cost function weights were
assigned to maximize τ3 between the total cost and GDT TS on models with no missing heavy
atoms. Weights are reported as the pooled standard deviation of the cost function times the weight
to avoid problems with the arbitrary scaling of individual cost functions. See the supplementary
materials for more details of the cost functions.

best selected model and using a rank-based cor-
relation metric which is relatively insensitive to
outliers.

It is also possible to generalize Pearson’s r and
Spearman’s ρ to include weighted observations—
something not discussed here. Pearson’s r has
been criticized because it is sensitive to outliers
and relies on linearity assumptions that are com-
monly untrue of quality assessment data [6]. For
untied data, Kendall’s τ may have slightly more
power than Spearman’s ρ, depending on certain
assumptions regarding the underlying distribu-
tion and nature of outliers [21], but both mea-
sures are fairly robust to outliers and usually
produce similar results. However, as argued in
the companion paper to this one [12], ties should
be penalized for quality assessment, and defining
Ci,j = 0.5 for ties in Equation 2 provides an ele-
gant way to do just that. Furthermore, Kendall’s
τ is a very intuitive measure: For model quality
assessment, τ is simply related to the probabil-
ity that, given a random pair of structures, the
structure with the better model quality score is
actually the better model. Our definition of τα

can be thought of in terms of a weighted proba-
bility.

We have shown that the selection of cost func-
tions chosen by our greedy algorithm is sensitive
to the choice of quality metric used. If we want
to judge a method for predicting model quality,
we need a measure of actual model quality that
includes all of the features that are associated
with good models, and while still not a perfect
measure, real cost seems to capture more of these
features than GDT TS.

Finally, real cost has a drawback which, while
not relevant for the current work, should be con-
sidered before adopting the measure for a differ-
ent purpose. When there is a very large number
of missing residues in a model (e.g. when only an
α-helix is predicted), the log-RMSD and decoy
H-bond terms can dominate and produce a score
that is better than one might expect. In a CASP-
like environment, where models with large num-
ber of missing residues need to be evaluated, an
additional penalty term would need to be intro-
duced to address this issue.
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Cost Function Pooled SD Description
align constraint 1.778 selected alignment predicted constraints
pred nb11 back 1.217 neural net predicted burial, near-backbone-11 alphabet

pred n notor back 0.892 neural net predicted H-bond properties, including NOtor tor-
sion angle

pred alpha back 0.837 neural net predicted alpha torsion angle
align bonus 0.755 selected alignment predicted constraints

noncontacts bonus 0.728 alignment predicted noncontacts
rejected bonus 0.263 rejected alignment predicted constraints
pred bys back 0.251 neural net predicted bystroff alphabet

sidechain 0.202 the negative log-probability of observing the sidechain and
backbone conformation

dry5 0.140 propensity predicted burial, dry-5 definition
near backbone 0.124 propensity predicted burial, near-backbone-11 definition

contact 0.121 average number of contacts (centroids of the backbone and
sidechain within 8 Å) per residue

alpha prev 0.078 propensity predicted alpha angle of the previous residue
hbond count 0.073 the number of H-bonds normalized by chain length

pred n sep back 0.047 predicted H-bond sequence separation for N
is align 0.042 detects missing backbone atoms or chainbreaks

Table 4: Selected cost functions when optimizing on real cost. Cost function weights were assigned
to maximize τ3 between the total cost and real cost on models with no missing heavy atoms.
Weights are reported as the pooled standard deviation of the cost function times the weight to
avoid problems with the arbitrary scaling of individual cost functions. See the supplementary
materials for more details of the cost functions.
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