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ABSTRACT

Motivation: The enormous amount of protein sequence
data uncovered by genome research has increased the
demand for computer software that can automate the
recognition of new proteins. We discuss the relative
merits of various automated methods for recognizing
G-Protein Coupled Receptors (GPCRs), a superfamily
of cell membrane proteins. GPCRs are found in a wide
range of organisms and are central to a cellular sig-
nalling network that regulates many basic physiological
processes. They are the focus of a significant amount of
current pharmaceutical research because they play a key
role in many diseases. However, their tertiary structures
remain largely unsolved. The methods described in this
paper use only primary sequence information to make
their predictions. We compare a simple nearest neighbor
approach (BLAST), methods based on multiple align-
ments generated by a statistical profile Hidden Markov
Model (HMM), and methods, including Support Vector
Machines (SVMs), that transform protein sequences into
fixed-length feature vectors.

Results: The last is the most computationally expensive
method, but our experiments show that, for those inter-
ested in annotation-quality classification, the results are
worth the effort. In two-fold cross-validation experiments
testing recognition of GPCR subfamilies that bind a spe-
cific ligand (such as a histamine molecule), the errors per
sequence at the Minimum Error Point (MEP) were 13.7%
for multi-class SVMs, 17.1% for our SVMtree method
of hierarchical multi-class SVM classification, 25.5% for
BLAST, 30% for profile HMIMs, and 49% for classification
based on nearest neighbor feature vector Kernel Nearest
Neighbor (kernNN). The percentage of true positives
recognized before the first false positive was 65% for both
SVM methods, 13% for BLAST, 5% for profile HMMs and
4% for kernNN.

Availability: We have set up a web server for GPCR
subfamily classification based on hierarchical multi-class

*To whom correspondence should be addressed.

SVMs at http://www.soe.ucsc.edu/research/compbio/
gpcr-subclass. By scanning predicted peptides found in
the human genome with the SVMtree server, we have
identified a large number of genes that encode GPCRs.

A list of our predictions for human GPCRs is available
at  http://www.soe.ucsc.edu/research/compbio/gpcr_hg/
class_results. We also provide suggested subfamily
classification for 18 sequences previously identified as
unclassified Class A (rhodopsin-like) GPCRs in GPCRDB
(Horn et al., Nucleic Acids Res., 26, 277-281, 1998),
available at http://www.soe.ucsc.edu/research/compbio/
gpcr/classA_unclassified/.

Contact: rachelk@soe.ucsc.edu

1 INTRODUCTION

Support Vector Machines (SVMs) are a class of statisti-
cal learning algorithms whose theoretical basis was first
presented by Vapnik (1979). During the 1990s, they be-
came extremely popular in the machine-learning commu-
nity (Cristianini and Shawe-Taylor, 2000). When SVMs
are applied to the simplest learning problem, two-class
pattern recognition, the learning machine is shown a series
of labelled examples from two categories and is trained to
distinguish between them. If training is successful, when
presented with new examples, it is able to predict their cat-
egory with a minimal number of errors.

In our experiments, the data to be classified are protein
sequences of the G-Protein Coupled Receptor (GPCR)
superfamily (Watson and Arkinstall, 1994). Specifically,
we want to recognize small subfamilies of GPCRs that
bind the same ligand. This requires extension of the two-
class problem to a k-class problem. We have chosen the
simplest approach to multi-class SVMs by training k one-
to-rest classifiers.

GPCRs were selected because an enormous amount of
current pharmaceutical research is aimed at understanding
their structure and function (Horn et al., 2000). They play
a key role in a cellular signalling network that regulates
many basic physiological processes: neurotransmission,
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cellular metabolism, secretion, cellular differentiation and
growth, inflammatory and immune responses, smell, taste
and vision (Bouvier, 1998). These proteins are very im-
portant to understanding human physiology and disease,
but their tertiary structures remain mostly unsolved. They
are difficult to crystallize; NMR spectroscopy can’t be
used because it requires high concentrations of dissolved
proteins and most GPCRs will not dissolve in normal
solvents. To date, the structure of only one GPCR has been
solved using electron diffraction at medium resolution
(2.8 A; Palczewski et al., 2000).

In contrast, the amino-acid sequences of over 1000
GPCRs are known, and an enormous amount of protein
sequence information will soon be available as a result of
the Human Genome Project and other genome projects
(fruitfly, worm, mouse, etc.). A method for highly ac-
curate, annotation-quality, sequence-based prediction of
GPCR function has considerable practical value for both
research biologists and pharmaceutical companies. We
will present the results of a series of controlled experi-
ments to argue that multi-class SVMs are well suited to
this problem. Out of all the methods we tested, SVMs had
the highest accuracy in recognizing GPCR subfamilies.

As described above, a trained learning machine should
be able to make good predictions about the class mem-
bership of a previously unseen example. An SVM makes
its prediction using a mathematical tool known as a ker-
nel function, which measures the similarity between two
examples. Compared to BLAST (Altschul et al., 1990)
and Hidden Markov Models (HMMs; Durbin et al., 1998),
this method is computationally expensive. In our exper-
iments, an initial step is required in which each protein
sequence is transformed into a fixed-length feature vec-
tor. Next, we train a two-class SVM for each GPCR sub-
family. Each of these SVMs learns to distinguish between
subfamily members and non-members by making several
passes through a training set and using the kernel function
to compute a weight for each sequence. The result is a vec-
tor of trained weights that will be used to make predictions
for new examples (for more detail see Appendix A).

To justify the expense, SVMs must be significantly
more accurate than simpler classifiers. We describe results
of two-fold cross-validation experiments that compare
multi-class SVMs with two popular classification meth-
ods: BLAST and profile HMMs. We also compare the
SVMs with a nearest-neighbor method based on kernel
scores and a fast SVM approximation method that we
call SVMtree. We have found that HMMs built with the
Sequence Alignment and Modeling Software System
(SAM-T2K) protocol (Karplus et al., 2002) are better
GPCR discriminators than SVMs at the class (super-
family) level. However, SVMs make significantly fewer
errors than other methods when applied to the problem of
discriminating subfamilies of GPCRs, particularly when

methods are evaluated by their specificity, or performance
in the low false-positive range. Detailed results, including
Receiver Operating Characteristic (ROC) plots, for all our
experiments are presented in Section 3.

Our method of SVM classification is based on the work
done by Jaakkola et al. (2000) on SCOP superfamily
discrimination. However, the present paper applies the
method to the very different problem of specific subfamily
classification, introduces several new ideas, and addresses
difficulties reported by other researchers who attempted to
reproduce the results described in the prior work. A web
server that implements the SVMtree algorithm for GPCR
subfamily classification is available for general use at http:
/lwww.soe.ucsc.edu/research/compbio/gpcr-subclass.

2 METHODS

Although several research groups, including our own,
have published papers on the results of support vector
classification of proteins, none have addressed the issue
of whether all the machinery of SVMs is necessary for
such classification. To answer this question, our approach
was to systematically test a series of progressively
more complex methods and then evaluate accuracy and
computational expense of each method.

Since it was not possible to test all existing protein clas-
sification methods, we selected a representative method at
each level of complexity. To ensure that our comparisons
were as fair as possible, methods that involved database
searching (BLAST) were restricted to searching the same
datasets used as training and test sets by the model-
building methods. We were unable to rectify one built-in
inequality when comparing HMMs and SVMs. Because
SVMs are trained on both positive and negative examples
and HMMs are trained on positive examples only, SVMs
inherently contain more information about the positive
examples being recognized.

The simplest classification methods work directly with
sequence information and classify a target sequence
according to the annotation of its nearest known neighbor.
To find the nearest neighbor, databases of annotated
sequences are searched and database sequences ranked by
various measures of sequence similarity.

The extremely popular and fast BLAST (Altschul ez al.,
1990) method uses pairwise local alignments to measure
sequence similarity. We selected (WU-BLAST, 2001)
to represent the nearest neighbor sequence approach to
classification.

A more sophisticated nearest-neighbor approach builds
a library of statistical models for protein classes of interest.
The target sequence is scored against all models in the
library and classified according to the model that gives the
best score to the sequence. We used the SAM-T2K HMM
program (Hughey and Krogh, 1995; Karplus et al., 1998,
2002) to represent this approach.
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Our work with the transformation from protein se-
quence into Fisher Score Vector (FSV) space (described
in Appendix A) introduced the possibility of an alternate
approach to nearest-neighbor classification. Mueller
(2000) suggested that the encoding of a protein sequence
into a FSV might contain sufficient information to classify
the sequence, and that the additional machinery of SVM
training is unnecessary. We were interested to see whether
nearest-neighbor classification was better in FSV space
than in sequence space, and whether we might get highly
accurate classification without using SVMs. For this ex-
periment, both the target sequence and database sequences
used in our BLAST experiments were transformed into
FSVs and a radial basis kernel function was used to find
the nearest neighbor of each FSV in the test set. We call
this method Kernel Nearest Neighbor (kernNN).

We also tested the most computationally expensive
method, SVM classification of protein sequence fea-
ture vectors, using the FSV transformation (SVM). For
these experiments, we built a library of SVMs for each
protein class of interest, and scored each test sequence
against the entire library, as in the HMM experiments. A
more efficient SVM method (SVMtree) is described in
Section 2.2.

2.1 GPCR superfamily recognition

Jaakkola et al. (2000) report excellent results at superfam-
ily classification with SVMs. They tested discrimination
of SCOP superfamilies with n-fold cross validation, by
training on n — 1 families within each superfamily of in-
terest and testing on the held-out family.

The experiments compared two-class SVMs trained on
FSVs, profile HMMs built with SAM T98, and WU-
BLAST run with the Family Pairwise Search algorithm
(FPS; Grundy, 1998).

Our first experiments aimed to duplicate their methods
on a similar problem, recognition of the GPCR superfam-
ily. According to the GPCRDB information system (Horn
et al., 1998), the superfamily can be subdivided into five
major classes (roughly analagous to SCOP families):
Class A (receptors related to rhodopsin and the adrenergic
receptor), Class B (receptors related to the calcitonin and
PTH/PTHTrP receptors), Class C (receptors related to the
metabotropic receptors), Class D (receptors related to the
pheromone receptors), and Class E (receptors related to
the cAMP receptors). The classes share >20% sequence
identity over predicted transmembrane helices (Horn et
al., 1998).

In data sets suggested by Vriend (1999) and Horn et
al. (1998), the positive examples were 692 sequences
from Class A, 56 from Class B, 16 from Class C,
11 from Class D and 3 from Class E. The data sets
also included 99 decoy negative examples: 18 archaea
rhodopsins and 80 G-protein alpha domains. We added

2425 additional negative examples taken from the SCOP
version 1.37 PDB90 domain database. These are easier
negative examples than the archaea rhodopsin and G-
alpha proteins, because SCOP is heavily weighted towards
globular, non-membrane protein domains, which are not
similar to members of the GPCR superfamily.

The Jaakkola experiments tested recognition of 33
SCOP superfamilies using positive training examples from
n — 1 of the families in the superfamily and then testing on
the nth family (Jaakkola et al., 2000). We used a similar
protocol by positive training on GPCRs from Classes B-E,
then testing on Class A, positive training on Class A,
Classes C-E, then testing on Class B, and so forth. As
in the Jaakkola paper, the score for each test sequence in
a given class was computed by averaging its scores with
respect to the models of the other four classes. Results
appear in Section 3.

2.2 GPCR subfamily recognition

As the main goal of this work is to develop a method
to determine GPCR function from sequence information,
our main interest is in subfamily rather than superfam-
ily recognition. While superfamily discrimination is best
done by methods that can generalize the features shared
by a diverse group of examples, subfamily discrimination
requires separating examples that may differ only slightly.
The problem of recognizing GPCR subfamilies is com-
pounded by the fact that the subfamily classifications in
GPCRDB are defined chemically (according to which lig-
ands the receptor binds) rather than by sequence homol-
ogy. In fact, many subfamilies share strong homology with
other subfamilies. Many also contain distinct sub-types
(Types) that may be the result of convergent evolution. An
example is the Types I and II histamine receptors, which
both bind the same ligand (a histamine molecule), but do
not resemble each other with respect to amino acid se-
quence in many regions. Finally, many GPCR subfamilies
contain few known members, making it difficult to train
high-quality models.

The GPCRDB information system (Horn et al., 1998)
organizes the GPCR superfamily into a hierarchy of
classes, class subfamilies, class subfamily subfamilies,
and types. A partial view of the GPCR family tree is shown
in Figure 1.

We concentrated our experiments on recognition of
subfamilies within Classes A and C. When these datasets
were assembled in December 2000, Class A dominated
the GPCRDB, accounting for 84% of all full-length
sequences in the database. (As of August 2000, 77% of
the GPCRDB sequences are Class A members.) Class C
was added to our experiments at the request of Dr Susan
Sullivan of NIH (Sullivan, 2000). On December 10,
2000, GPCRDB contained 79 Class A subfamilies. On
the GPCR family tree, 15 of these are Class A children
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Fig. 1. Portion of the GPCR family tree showing the five main classes of GPCRs, a few of the Class A subfamilies, a few of the subfamilies
of amine receptors, and a few types of amine receptors. We are interested in discriminating the subfamilies labeled as Levels 1 and 2. These
classifications are taken from the GPCRDB information system (Horn ef al., 1998).

and 64 are grandchildren. We will denote the children
as Level 1 subfamilies and the grandchildren as Level 2
subfamilies. Class C contained 10 subfamilies (4 children
and 6 grandchildren). Level 2 subfamilies are further
subdivided into types, which are specific both in terms
of function and organism class, such as the ‘Vertebrate
Type I muscarinic receptor’. Many types contain only one
or two sequences, and others are ‘grab-bags’ of left-overs,
which don’t fit into any sub-grouping. For these reasons,
we decided to focus our cross-validation experiments on
GPCR subfamilies, rather than types.

The n-fold cross validation method used in our su-
perfamily experiments was problematic for subfamily
experiments, due to the the large number of subfamilies,
many of which are sparsely populated. An n-fold cross-
validation split requires n members per subfamily, and
it is desirable to have two or more sequences to train a
high-quality model so that 2n members would be needed.
We decided on two-fold cross-validation for the subfamily
experiments. Subfamilies that contain only one known
member could not be tested, although models were built
for them for our web-based classifier.

We designed our subfamily experiment protocol to
match the way our methods might actually be used to
predict the function of a sequence whose class is unknown.
Rather than performing 89 two-class experiments: is it an
amine receptor? is it a chemokine receptor? and so forth,
we perform a single multi-class experiment for each test
sequence.

In the case of BLAST, a set of training sequences is
scored with respect to a query sequence of interest, and
the query is classified according to the annotation of the
training sequence with the best E-value. The algorithm
is implicitly multi-class, since the annotation can be any
protein class found in the set.

It makes sense to compare BLAST with model-building
methods that are also multi-class, in which the query
sequence is scored against a library of models for the
classes of interest.

In these experiments, subfamily members are consid-
ered positive examples and negative examples are GPCRs
from all other subfamilies in the class, GPCRs from the re-
maining four classes, archaea rhodopsins (GPCR precur-
sors), and G-alpha proteins. We did not include the easy
negative examples from SCOP in either the training or test
sets.

According to our two-fold cross validation protocol, we
randomly partition the data into two non-overlapping sets,
arbitrarily named set 0 and set 1. Because most of our test
sequences can be classified with respect to either Level 1
or Level 2, they have two correct subfamily labellings. We
tested each method’s Levels 1 and 2 subfamily recognition
separately.

To evaluate BLAST, rather than using FPS (Grundy,
1998), we BLASTed all GPCRs in set 0 against set 1,
and vice versa. In this context, the sequences used as
query sequences to BLAST are the test set and the
sequences in the BLAST database are equivalent to the
training set of a model-building method. The BLAST
E-values received by each test sequence were sorted and
errors counted by sweeping a threshold over the sorted
E-values. At each threshold, all sequences with better
scores are positives, and all sequences with worse scores
are negatives. Statistics were computed by summing over
both test sets.

These sorted lists of BLAST hits contain many se-
quences from a single subfamily, and consequently we
modified our ROC analysis to avoid bias against BLAST.
As an example, consider the following situation. We clas-
sify a test sequence from the amine receptor subfamily
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and find that there are three sequences in the training
set from the viral receptor subfamily with better scores
than the best-scoring amine receptor. This would count
as three false positive errors, but for the same HMM or
SVM experiment, in which the test sequence is scored
against a model library, it would count as only one false
positive error (viral receptor model score better than
amine receptor model score). To eliminate the bias, we
count only the best-scoring member of any subfamily in
our BLAST ROC analysis. Note that it is still possible
to have several false positives from one query if several
subfamilies score better than the correct one.

For the HMM experiments, we built a library of HMMs
for the 89 subfamilies of Classes A and C GPCRs
according to GPCRDB (December 2000 release). Each
subfamily got two models: one trained on subfamily
members from set 0 and the other on subfamily members
from set 1. We used SAM-T2K to build the models, setting
the homologs parameter to members of the subfamily of
interest and not specifying a seed. Then, the sequences
in set 0 were scored against the set 1 model library with
SAM’s hmmscore program, and vice versa.

kernNN classification was evaluated with a protocol
analagous to the BLAST experiments. All GPCRs in
set 0 were scored against set 1, and vice versa, but with
radial basis kernel functions in place of BLAST similarity
score. The FSV transformations were done carefully.
Our method requires that kernel scores be computed
between FSVs derived from the same HMM, and we
wanted to ensure that test examples were not contaminated
with information from the other set. Therefore, each test
example from set O was transformed with HMMs trained
on set 1 and scored against a ‘training set’ of set 1
FSVs transformed with set 1 HMMs (and vice versa).
The HMMs were taken from the subfamily HMM library
described previously. ROC analysis was done exactly as in
the BLAST experiments.

In our multi-class SVM experiments, two sets of FSVs
were used to train a library of SVMs, producing two SVMs
for each of the 89 GPCR subfamilies. As in the kernNN
experiments, the set 0 FSV training sets were transformed
with set 0 HMMs, and the set 1 FSV training sets were
transformed with set | HMMs. Likewise, all test examples
were first transformed with HMMs from the opposite set
and then scored against the SVMs trained on the opposite
set.

There were a few idiosyncracies in the subfamily data
that are worth mentioning. The test sets for Levels 1
and 2 experiments are slightly different, because there are
Level 1 subfamilies that don’t have any children on the
GPCR family tree and Level 2 subfamilies that contain
only one member. Therefore, some test sequences can be
classified with respect to Level 1 but not Level 2. The test
sets were pruned by hand to eliminate such unclassifiable

sequences for each experiment. We ended up with 19
testable Level 1 subfamilies (1267 sequences) and 68
testable Level 2 subfamilies (1171 sequences).

Because multi-class SVM is so expensive, we were mo-
tivated to design a faster algorithm for SVM classifica-
tion, which looks only at a subset of possible subfamilies
for a test sequence. We can take advantage of the hier-
archy of the GPCR family tree by first scoring a test se-
quence against the five GPCR Classes (with an HMM, the
most accurate method for class discrimination). Next, the
Level 1 children of the class with the best HMM score
are evaluated with a set of one-to-rest SVMs. Finally, the
Level 1 subfamily with the largest discriminant has its
children evaluated with one-to-rest SVMs, and the test se-
quence is predicted to belong to the Level 2 subfamily
that reports the highest discriminant. We call this method
SVMtree. Because of the significant performance advan-
tage, we have chosen to implement SVMtree on our GPCR
subfamily classification webserver at http://www.soe.ucsc.
edu/research/compbio/gpcr-subclass.

Results of all our experiments are detailed in Section 3.
For those who wish to reproduce these experiments,
the datasets described in this section are available
at http://www.soe.ucsc.edu/research/compbio/gpcr/
subfamily_seqs and http://www.soe.ucsc.edu/research/
compbio/gpcr/superfamily_seqs.

3 RESULTS
3.1 GPCR superfamily recognition

We compared the classification accuracy of FPS BLAST
(WU-BLAST with Family Pairwise Search; Grundy,
1998), profile HMMs built with SAM-T99, and one-
to-rest SVMs trained on FSVs. Results on a test set of
692 Class A GPCRs (and negative examples listed in
Section 2.1) are shown in Table 1. Two statistics are
shown for each method. Coverage, the percentage of true
positives recognized before the first false positive error,
measures the sensitivity of a classifier. Average errors per
sequence at the Minimum Error Point (MEP) provides
a fair comparison of both the sensitivity and selectivity
of different methods, each of which may achieve its best
performance at a different score threshold. The MEP is
the score threshold where a classifier makes the fewest
errors of both kinds (false positives plus false negatives).

A ROC plot of the number of false positives versus
coverage for Class A discrimination is shown in Figure 2.
Results for the remaining four GPCR classes were similar
(ROC plots are available in Classifying GPCRs with
SVMs, June 2000, at http://www.cse.ucsc.edu/research/
compbio/research.html; Karchin, 2000).

To confirm that profile HMMs discriminate Class A
GPCRs with a very low false positive rate (including those
not built with SAM software), we also tested Class A
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Table 1. Class recognition results of FPS BLAST, profile HMMs built with
SAM-T99 and one-to-rest SVMs trained on FSVs on a test set of 692 Class A
GPCRs. The MEP is the score threshold where a classifier makes the fewest
errors (both false positives and false negatives). Coverage is the percentage
of true positives recognized before the first false positive

Table 2. Level 1 subfamily recognition results of one-to-rest SVMs and
SVMtree, BLAST, profile HMMs built with SAM-T2K and kernNN on a
test set of 1267 Classes A and C GPCRs. As there is not much difference
between the SVMtree method and full multiclass SVM for Level 1, we report
a single result for both. MEP and coverage are explained in Table 1

Average €ITorS per sequence

Average €ITors per sequence

Method at the MEP (%) Coverage (%) Method at the MEP (%) Coverage (%)
SAM-T99 HMM 0.04 98 SVM 11.6 48
SVM 0.22 72 BLAST 16.7 29
FPS BLAST 6.82 3 SAM-T2K HMM 30.1 6
kernNN 36.0 38
Number of False Positives vs. Coverage for GPCR Class A
10 . Number of False Positives vs. Coverage for level 1 GPCR subfamilies
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Fig. 2. Number of false positives versus coverage (true posi-
tives/692) on recognition of 692 Class A GPCRs by BLAST, SAM-
T99 HMMs and two-class SVMs. Methods are compared by the
percentage of correct classifications (true positives) in the low false
positive range. Positive training examples used in these experiments
were GPCRs from Classes B-E. The SVMs were also trained on
negative examples of G-protein alpha domains, archaea rhodopsins,
and all domains in the SCOP version 1.37 PDB90 database.

recognition with the PFAM (Sonnhammer et al., 1998a)
library’s HMM for Class A, 7tm_1I, built with HMMER
(http://hmmer.wustl.edu). This model was trained on a
carefully selected set of Class A sequences, so we were
unable to repeat our five-fold cross-validation protocol.
(The four SAM-T99 HMMs that we tested for Class A
recognition were trained on Classes B-E). When we
scored our Class A test set with the 7tm_1 model, it
recognized 99.7% of the true positives before the first
false positive error. If we consider only sequences which
score above the PFAM trusted cutoff for this model, it
recognizes 99.3% of the true positives.

3.2 GPCR level 1 subfamily recognition

The results of our two-fold cross validation experiments
classifying 1267 GPCR sequences from Classes A and C
into Level 1 subfamilies are shown in Table 2.

A ROC plot of the number of false positives versus

Fig. 3. Number of false positives versus coverage (true posi-
tives/1267) on recognition of Level 1 GPCR subfamilies for 1267
GPCR sequences in Classes A and C. Methods are compared by
the percentage of correct classifications (true positives) in the low
false positive range. Positive training examples used in these exper-
iments were members of the GPCR Level 1 subfamily being recog-
nized. The SVMs were also trained on negative examples of GPCRs
from Classes A and C not in the Level 1 subfamily, G-protein al-
pha domains, and archaea rhodopsins. The fast SVMtree method is
not shown since results were almost identical to that of full SVM
classification.

coverage for Level 1 subfamily discrimination is shown
in Figure 3.

While SAM-T99 HMMs were the best method for
recognition of the GPCR superfamily, the very similar
SAM-T2K method did poorly on our subfamily datasets.
It is not surprising that HMMs that excel at recognizing
the weak similarities between superfamily members are
too generalized for good subfamily recognition.

3.3 GPCR level 2 subfamily recognition

The results of our two-fold cross validation experiments
classifying 1171 GPCR sequences from Classes A and C
into Level 2 subfamilies appear in Table 3.

A ROC plot of the number of false positives versus
coverage for Level 2 subfamily discrimination is shown
in Figure 4.
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Table 3. Level 2 subfamily recognition results of one-to-rest SVMs,
SVMtree, BLAST, profile HMMs built with SAM-T2K and kernNN on a
test set of 1171 Classes A and C GPCRs. MEP and coverage are explained
in Table 1

Average errors per sequence

Method at the MEP (%) Coverage (%)
SVM 13.7 65.0
SVMtree 17.1 65.0
BLAST 25.5 133
SAM-T2K HMM 30.0 5.0
kernNN 49.0 4.0
Number of False Positives vs. Coverage for level 2 GPCR subfamilies
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Fig. 4. Number of false positives versus coverage (true posi-
tives/1171) on recognition of Level 2 subfamilies for 1171 GPCRs
from Classes A and C. Methods are compared by the percentage of
correct classifications (true positives) in the low false positive range.
Positive training examples used in these experiments were members
of the GPCR Level 2 subfamily being recognized. The SVMs were
also trained on negative examples of GPCRs from Classes A and C
not in the Level 2 subfamily, G-protein alpha domains, and archaea
rhodopsins.

3.4 Computational expense

A summary of the time and space expense for each
method appears in Table 4. We report single sequence
classification time and model library build times for an
800 MHz Pentium III PC running RedHat Linux 7.0.

4 DISCUSSION

Although SVMs are not the best method for identifying
GPCRs at the class (superfamily) level, they make signifi-
cantly fewer errors than WU-BLAST and SAM-T2K pro-
file HMMs when applied to the problem of discriminating
both Levels 1 and 2 subfamilies of GPCRs. They make
fewer errors of both kinds (false positive and false nega-
tive) at the MEP than the other methods and recognize a
significantly larger number of true positives before making
the first positive error, as shown in our ROC plots.

SVMs also perform better than simple kernNN classi-
fiers, indicating that the SVM algorithm is worth the added
computational expense. It does appear that there is an in-
formation gain involved in the transformation of a pro-
tein sequence into a FSV, since kernNN makes fewer false
positive errors than WU-BLAST in the low false positive
range when the two methods are tested on identical data
sets. Performance in this range improves further when the
SVM computes a smoothed boundary between positive
and negative examples in high-dimensional space and uses
the boundary to classify a feature vector, as opposed to
kernNNs simply classifying feature vectors with the anno-
tation of their nearest neighbor in high-dimensional space.

HMMs, kernNN, and SVMs classify Levels 1 and 2 with
similar accuracy, but WU-BLAST classifies Level 1 much
better than Level 2. This may be due to the way BLAST
scores sequence similarity only with respect to the most
similar regions in a pair of sequences Maximal Segment
Pair scores (MSP; Altschul et al., 1990). Many Level 2
subfamilies with the same Level 1 parent contain lengthy
regions of high sequence similarity, making them difficult
to discriminate strictly on the basis of MSP scoring.
Figure 5 shows a serotonin receptor misclassified as an
octopamine receptor by BLAST in our experiments. Both
sequences are members of the Level 1 amine receptor
subfamily, but different Level 2 subfamilies. Inspection
of the alignment shows highly similar regions common
to both sequences. Note that the similarities are mainly
on the inside end of transmembrane helices and inside the
cellular membrane, not outside where ligand recognition
must occur.

It is time-consuming to classify a protein sequence with
the multi-class SVM we have described, using one-to-rest
classifiers for all its potential GPCR subfamilies. A
good approximation to this high-quality classification
can be achieved with the SVMtree method, which skips
classifiers whose parents in the GPCR family hierarchy
get poor discriminant scores. As shown in Figure 6a,
SVMtree discriminant scores farthest from zero have the
highest confidence. We can also see that SVMtree has
an extremely low rate of false positives. Out of 12601
classification trials in our cross-validation experiments,
there were only eleven false positive errors. These include
Q89609, which was predicted as a peptide receptor but
labeled in GPCRDB as a Class A Orphan, and two
sequences which were predicted as rhodopsin vertebrate
but labeled as rhodopsin Other (OPSP_COLLI, a pigeon
rhodopsin, and Q9W6K3, a chameleon rhodopsin). We
believe it is possible that Q89609, which receives a
discriminant score in the range of 0.7, may actually be
a peptide receptor. The remaining eight false positives
are the four members of the rdc receptor subfamily, each
of which was misclassified twice in our experiments,
both as glucocorticoid-induced and as ebv-induced
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Table 4. Computer time and space expense of methods we tested on GPCR subfamily classification

Database and model library requirements Total build Disk space for Final disk Classification time for
GPCRDB sequences HMMs FSVs SVMs time (h) build (MB) space (MB) one sequence (s)
BLAST X 19E—4 0.68 0.68 2
HMM X X 9.90 16.26 16.26 10
kernNN X X X 15.24 7692.78 7692.78 1047
SVMtree X X X X 24.73 9014.96 1338.44 51
SVM X X X X 24.73 9014.96 1338.44 173

Two-fold cross-validation testing of the methods required 1418 sequences, 182 HMMs, 252404 FSVs and 178 subfamily SVMs. For BLAST, the sequence
data is stored in a special format which takes approximately the same disk space as the raw sequence data. Reported disk space for the library builds is a sum
of requirements marked with an X in the columns to the left. All methods except BLAST require an HMM library as part of their final disk space
requirements. Note that final disk space for the SVM methods is substantially smaller than kernNN because only the support vectors and their final weights
are saved, and our implementation stores them in binary format. The long classification time reported for the kernNN method is due to the fact that it must
search through the entire FSV library (number of sequences times number of HMMs). The SVM method only searches the support vectors (see Appendix A),
and SVMtree searches only a subset of the support vectors (see Section 2.2). Library build time and time to classify one sequence into a GPCR subfamily are

given for an 800 MHz Pentium III PC running RedHat Linux 7.0

receptors. All three subfamilies are Class A Orphans,
and the glucocorticoid-induced and ebv-induced receptor
subfamilies contain only one known member apiece,
making it difficult to train our models to discriminate
them. Figure 6b shows the distribution of all SVMtree dis-
criminant scores reported in our two-way cross-validation
experiments. SVMtree does not make any errors for
discriminants greater than 0.75 or less than —1.05. A total
of 74 sequences received scores between 0.0 and 0.4, and
all were correctly classified.

We recently applied our SVMtree webserver to a list
of predicted peptides in the human genome produced
by Affymetrix and to a set of peptides currently in
Swissprot that GPCRDB has not been able to classify
beyond general inclusion in Class A. Although we do not
have the resources available at our laboratory to do the
wet-laboratory work (expression and binding assays) that
could confirm these predictions, we hope that others will
be encouraged to do so.

If we consider all hits getting an E-value of 1.0 or
better with respect to our HMMs for Classes A—C and
Frizzled-smoothened family GPCRs (a threshold where
the expected number of false positives is approximately
one in twenty-thousand), we predict 275 genes that encode
Class A, 52 genes that encode Class B, 41 genes that
encode Class C and 10 genes that encode Frizzled-
smoothened family GPCRs in the most recent set of
Affymetrix-predicted human genes (Kent, 2001). (If a
gene gets an E-value better than 1.0 for more than one
HMM, we assign it to the HMM that gives it the best E-
value.) Out of these 345 putative GPCRs, we have SVM
subfamily predictions for genes encoding 183 Class A, 19
Class B, 12 Class C and 7 Frizzled-smoothened family
peptides (not counting alternatively spliced variants). A
complete list of our class and subfamily predictions

Table 5. Some of our predictions for unclassified Class A (rhodopsin-like)
sequences found in GPCRDB as of May 2001. Each of the sequences
was rejected by all Level 2 subfamily classifiers underneath its predicted
Level 1 subfamily, indicating that the sequences may belong to novel Level 2
subfamilies. A detailed list of these predictions is available at http://www.
soe.ucsc.edu/research/compbio/gpcr/classA _unclassified

D Level 1 subfamily Discriminant score
QIVEGL Amine 0.924 95406
QIVCZ3 Amine 0.8089386
QIVN38 Amine 0.776 146 53
QIVGS7 Amine 0.763104 1
Q24511 Amine 0.747 67226
QIVEG2 Amine 0.507 829 07
QINHA4 Peptide 0.48891824
QI9VTU7 Rhodopsin 0.450289 37
QI9NHEF3 Amine 042113715
QIWUK?7 Rhodopsin 0.40932548
QIVRMO Peptide 0.40187144
062059 Peptide 0.354294 6
QI9VE32 Amine 0.345 894 63
QINSD7 Peptide 0.3192128
Q9Y344 Rhodopsin 0.310284 3
QIN324 Peptide 0.28772765
QINIS6 Amine 0.243 19479
Q9Z0T7 Peptide 0.11519429

for these genes is available at: http://www.soe.ucsc.edu/
research/compbio/gpcr_hg/class_results.

Table 5 presents a partial summary of our predictions for
the GPCRDB set. A full list is available at: http://www.
soe.ucsc.edu/research/compbio/gpcr/classA _unclassified.

In the future, we would like to apply a similar tree-based
approach to SVM training. An alternative to building the
Level 1 SVMs from scratch would be to retrain the class
SVMs, refining the support boundary that has already
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Fig. 5. ClustalW alignment of the serotonin receptor

SHIA_HUMAN (which was mistakenly classified as an oc-
topamine receptor by WU-BLAST) and the octopamine receptor
OAR2_LOCMI. The consensus line shows ‘*’ for a completely
conserved column, ‘:” for a conservative substitution, and
for a semi-conservative substitution (Higgins and Sharp, 1988).
BLAST gave the hit the very statistically signficant E-value of
5.8E—75. Inspection of the alignment shows that from a local
scoring perspective, the two sequences are highly similar. Both
sequences are members of the Level 1 amine receptor subfamily,
but different Level 2 subfamilies. Topology predictions done with
TMHMM (Sonnhammer et al., 1998b) (H = transmembrane helix,
I = intracellular loop, O = extracellular loop) show that the high
similarity regions tend to lie within the transmembrane helices of
the two receptors and in intra-cellular regions, which do not interact
with the ligand.

[

been computed for each subfamily’s parent. Likewise, the
Level 2 SVMs would be built by retraining the Level 1
SVMs. This would have the effect of filtering out easier
distinctions between examples higher on the hierarchy
prior to SVM training and concentrating training on the
most interesting distinctions between examples.

SVMs do not identify the features most responsible for
class discrimination, but we believe SVM performance
could be further improved by using feature vectors that
encode only the most relevant features. We are interested
in developing methods that are capable of identifying the

key residues involved in ligand binding and extracting
features from only these key residues, rather than the
full length of each GPCR sequence. To discover the
locations of binding residues, we plan to use unsupervised
algorithms for learning which features best discrimi-
nate GPCR subfamilies, in combination with biological
knowledge of each subfamily’s transmembrane topology.
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APPENDIX A
Two-class support vector machines

The SVM is a supervised learning algorithm that is trained
to discriminate examples from different classes. We will
consider first the two-class situation. During training, the
machine is shown a set of labeled training examples
(x;, yi) where the X; are vector representations of the
examples and the y; are class labels (1 and —1). The
closeness between two examples is computed by a kernel
function K(X,9), a generalization of the inner product
(X, y). The algorithm does several rounds of all-against-
all kernel scoring, and computes a final weight « for
each training example that measures its importance as a
discriminator between the two classes.

There are many known algorithms for training a SVM.
We used a steepest gradient ascent algorithm developed
by Jaakkola and Haussler (1998). This is a constrained
maximization procedure in which each of [ training
examples is assigned an initial @ weight of 0.5 and then
iteratively updated as

I
1=y Zyjoljﬂ.dl((fi,fj) + o K (X, X;)
j=1

o <—f g
new K(xl’xl)

)
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Fig. 6. Percentage misclassified versus discriminant score for SVMtree Level 2 subfamily predictions and overall distribution of discriminant
scores in the test sets for our two-way cross-validation experiments. Note that these results give a lower bound for the accuracy of the
webserver classifiers used to make the predictions in Table 5, because the SVMs evaluated here were trained on only one-half of our
GPCRDB data (see Section 2.2). The webserver classifiers were trained on all of the GPCRDB data, so they are likely to make fewer errors.
(a) Percentage misclassified versus discriminant score using a fixed threshold of zero. The percentages are calculated as follows. For each
bin in the histogram, we sum the false positives (negatively labeled examples that receive discriminant scores greater than zero) and false
negatives (positively labeled examples that receive discriminant scores less than or equal to zero) within this discriminant range, and divide
by the total number of sequences that fall into the discriminant range. (b) Histogram of discriminant scores for SVMtree Level 2 subfamily

test sets.
where
0, z<0
f@=1z. 0<x<1
1, z>1.

In our implementation, we speed up convergence by
dropping an example X; from the training set if «; stays
at zero for two consecutive iterations.

The constraints imposed by the clipping function f(-)
relax the requirement that the two classes of examples be
perfectly separated by a linear boundary during training,
a technique known as using a soft margin (Cristianini and
Shawe-Taylor, 2000).

Geometrically, an example vector can be plotted as a
point in an n-dimensional space (where n is the number
of components in the vector). The weight vector learned
during training defines the hyperplane with the widest
possible margin between the two classes of training
examples, with largest weights assigned to those examples
closest to the hyperplane.

Mathematically, the hyperplane is the zeros of a linear
function called the discriminant:

I
g%, Xy i, yi) = ) yici K (%, ).

i=1

2

The discriminant can be used to predict the class of
a new, previously unseen example by summing over
the weighted kernel scores of the new example and the

[ labelled examples from the training set. A positive
discriminant score predicts that the new example is in
the positive class and vice versa. As the discriminant’s
distance from zero increases, so does the confidence of
the prediction. It is possible to estimate the statistical
significance of these scores, but an unbiased calibration
requires more positive examples than we have in the
GPCR subfamily dataset (Platt, 1999).

We can observe in Figure 7 that the hyperplane is
completely defined by the training examples with the
largest o values, which lie adjacent to it. These are known
as support vectors. All other examples have « values
of 0 when the algorithm converges. Conveniently, this
simplifies computation of the discriminant when we want
to classify a new example.

To derive vectors for our examples, we use a method
developed by Jaakkola and Haussler (1998). The method
is based on building a statistical model of a group of
protein sequences, the HMM (Durbin et al., 1998), then
computing the gradient of the log likelihood that a protein
sequence of interest was generated by the model. Because
we consider the possibililty that the encoding of a protein
sequence into a feature vector is more important than the
algorithm used to classify feature vectors, and because this
transformation is critical for those who wish to reproduce
our experiments, we will go into the FSV encoding in
some detail.

To calculate the likelihood that a sequence X is a
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Fig. 7. A hyperplane separating two classes of examples. The
support vectors are the examples adjacent to the hyperplane.

member of the group of sequences modeled by the HMM
M, we use (3) to compute the posterior probability of X
given M.

P(X|M) = P(X|0, 1)

= Z 1_[ P(xil|si, @) P(si|si—1,T)

seesSn

Z l_[ Oxilsi Tsi—1lsi (3)

S
Slyeees Sno 1

Here, 0 represents the probability distributions in the
character emitting (match and insert; Krogh et al., 1994)
states of the model and t are the transition probabilities.
P(xils;, 0) is the probability of amino acid x; in emit-
ting state s;, given the probability distributions in M.
P (si|si—1, 7) is the probability of landing in emitting state
s; after being in emitting state s; 1, while in model M.

Because the sequence of n emitting states {sg, ..., $,}
through the model is hidden, we sum over all possible
such state sequences to compute the posterior probability.
This quantity can be viewed as the probability that X was
generated by M.

To avoid computational problems due to floating point
underflow, we use a simple transformation from multipli-
cation of probabilities P (X |0, t) to summation of log like-
lihoods log P(X10, 7).

The difference between model M generating two se-
quences X and Y can be quantified in the gradient space
of M. The gradient of the log likelihood of X with re-
spect to the parameters of the model is the vector of partial
derivates:

log P(X|0, 4
T g P(X10, 1) “)
where 63 ; makes explicit that each of the individual
parameters composing 6 gives the probability of an
amino acid X in state §. With respect to an individual
parameter, the gradient of the log likelihood represents the

contribution of that parameter in the process of generating
the sequence (Jaakkola and Haussler, 1998).

Each component of the FSV is computed by Fisher
sufficient statistics:

)
f5(x) = So—log P(X|6.7) = 5(; )

X,5 X,

—&6) (5

where £(X, 5) is the expected number of times we visit
state s and generate amino acid x, and £ (5) is the expected
number of times we visit state s, as we traverse all paths
through the model. These quantities are easily computed
using the standard forward—backward algorithm (Jaakkola
and Haussler, 1998). By using (5), we can compute
a fixed-length FSV for any protein sequence from the
parameters of an HMM and use it as an intermediate
representation between a sequence and an HMM. The
components of the FSV will be indexed by amino acid and
state (x, s; Jaakkola and Haussler, 1998). We construct
FSVs by taking partial derivatives with respect to the
match state emission parameters of the HMM, ignoring
transition parameters and emissions from the insert states.
This heuristic was used for the experiments reported in
Jaakkola et al. (2000) and resulted in fewer errors than
taking partial derivatives with respect to all the HMM
parameters (Diekhans, 1999). Consequently, each FSV
has twenty components for each match state in the HMM.
For example, a typical member of the histamine receptor
subfamily is approximately 500 residues long. Our HMM
for this subfamily contains 483 match states, so each
FSV computed with respect to this HMM will contain
9660 floating point components (77.3 kB). The training
set for the histamine receptor SVM has 2487 example
vectors, requiring 192 MB of disk space. Two-hundred and
fifty such training sets (one per GPCR subfamily) would
require 48 GB.

To deal with this problem, we used a feature reduction
technique (Jaakkola et al., 2000), in which enhanced FSVs
were computed using a set of pre-calculated amino acid
distributions known as mixture priors (Sjolander et al.,
1996). A mixture decomposes the probability of amino
acid x in state s into / components.

Oxis = Y _ ciisby - (©6)
l

The quantities 9)£l|)v are probabilities that amino acid x

in state s is in a given subclass, i.e. small, aromatic,
polar, positively charged, large, non-polar, hydrophilic,
hydrophobic, and so forth. The ¢;|; are mixture coefficients
that weight the subclasses and sum to one. In these
enhanced FSVs, the feature for component / in match state
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s is given by

9(1)'
a0 = 5 log POXI.c.1) = Esu,s)[f -1}

Cls x|s

@)
When mixture priors are used, the components of
the FSV are indexed by mixture component and state
(c,s) and their values are computed by (7). We used a
nine-component mixture, uprior.9comp (Karplus, 1996),
reducing the number of components in each FSV by
approximately one-half. Although the selection of mix-
ture components is somewhat arbitrary and the mixture
coefficients are never explicitly computed, this technique
makes manipulation of FSVs significantly more tractable
in terms of computer memory and disk space. We have
observed no decrease in discrimination performance due
to the feature reduction, a result also reported by Jaakkola
et al. (Diekhans, 1999).

In all of our classification experiments involving feature
vectors, we first transformed each protein sequence in our
data sets into a 9n-component FSV, where n is the number
of match states in the HMM. The closeness between a pair
of FSVs was then measured with the following radial basis
kernel function.

= (frs(X) = fis(¥))?

l,s

K(X,Y) =exp (8)

202

To get good discrimination and generalization perfor-
mance from the kernel function, the width parameter o
must match the scale of the examples being classified.
We set o to the median of Euclidean distances between
the feature vectors of positive examples and their nearest
negative neighbors in the training set, a heuristic approach
that has produced good results (Jaakkola et al., 2000).

APPENDIX B
Multi-class support vector machines

Three approaches have been proposed for k-class SVMs:
training k ‘one-against-the-rest’ classifiers, training O (k%)
‘one-against-one’ classifiers, in which a two-class SVM
is trained on all possible pairs of classes, and training
a single SVM, which constructs a discriminant that
considers all k classes at once (Weston and Watkins,
1998).

Our implementation of one-to-rest multi-class SVMs
involves training a two-class SVM for each of k& GPCR
subfamilies of interest. The predicted class i (X) for each
example X in the test set is the class with the largest
discriminant computed by any of the SVMs. For a labeled
training set of [ examples (x;, y;), which we will denote as

X, we have

h(¥) = argmax g (¥, X*, o) 9)

[
=argm]?x2y{‘af‘Kk(fi,5c'). (10)

i=1

There are many other ways to do multi-class SVMs, but no
consensus as to which one is best (Platt et al., 2000). Our
choice was motivated by the idiosyncracies of our data
set (few positive examples and many negative ones, large
number of classes, high-dimensional feature vectors), the
lower complexity of one-to-rest SVMs and reported lower
error rates of one-to-rest SVMs (Yeang et al., 2001).
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