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Abstract— We analyze a game theoretic model of competing and is similar to the techniques used in [1]. In the present
network service providers that strategically price their rvice  paper, we provide an independent derivation of the same
in the presence of elastic user demand. Demand is elastic in result. In contrast to the proof of [3], our proof is motivate

that it diminishes both with higher prices and congestion. b i | bet th twork orici d
The model we study is based on a model first proposed y maxing an analogy between the network pricing game an

and studied by Acemoglu and Ozdaglar and later extended an electrical circuit where each branch represents a peovid
by Hayrapetyan, Tardos, and Wexler to consider elastic user link and the current represents flow, and uses techniques fro

demand. We consider the price of anarchy, which we define |inear algebra. Our technique is useful because it provides
as the ratio of the social welfare of the system when a social an intuitive explanation for the result, as well as provigin

planner chooses link prices versus the social welfare attagd f K f hich to deri tensi to th It
when link owners choose the link prices selfishly. Ozdaglar ramework from which to derive extensions to the resuit.

has recently shown that the price of anarchy in the network The models of [1] and [2] are part of a stream of recent
pricing game with elastic demand is no more than 1.5. We have literature studying the price of anarchy for games of selfish
independently derived the same result. In contrast to Ozdagr's  routing. Several works, see for example [4], [5], [6], study
proof based on mathematical programming techniques, our gameg where users are selfish, but the network is passive,
proof uses linear algebra and is motivated by making an . . .
analogy to a network of resistors. Our technique is useful th? owners of the edges are not §trateglcally choosing thelr
because it provides an intuitive explanation for the result as  Prices. Other work such as [7] consider the problem of having
well as providing a framework from which to derive extensiors  the network choosing prices to induce optimal routing among
to the result. selfish users, rather than having parts of the network shiffish
choose prices to maximize revenue.

Another related work is by Johari and Tsitsiklis [8]. In

We study a a network pricing model first proposed an{B] the authors study games where the users request a bit
studied by Acemoglu and Ozdaglar [1] and later extendemite from the network, and in turn the network returns to
by Hayrapetyan, Tardos, and Wexler [2]. The model studiassers a price that depends on the sum of the requested rates
the pricing behavior of several providers competing to roffeon each resource. The model of [8] and the model of this
users connectivity between two nodes, and it has the featugeaper study very different situations. In particular in {Bg
that a provider's link becomes less attractive as it becomesain strategic agents are the users and in the model we study
congested and that user demand is elastic — users will chodke strategic agents are link operators seeking to maximize
not to use any link if the sum of the price and latency of th@rofit. However, there are many similarities between the two
available links is too high. In the first version of the modebames in terms of the structure of the payoff functions of the
studied by Acemoglu and Ozdaglar, the user elasticity iglayers. As in this paper, the authors of [8] derive bounds
modeled by assuming that all users have a single reservation the efficiency loss.
utility and that if the best available price plus latency exds
this level, users do not use any service. In this setting, tHe Model
authors find that the price of anarchy — the worst case ratio of We consider a network consisting of a single source and
social welfare achieved by a social planner choosing ptizes destination node. The nodes are connectea liyks, each
the social welfare arising when providers strategicallgage of which is owned by a distinct selfish provider. Provider
their prices — is(v/2 + 1)/2 [1]. (Or expressed the other charges a pricep; per unit flow. Each link has a load
way, as the ratio of welfare in Nash equilibrium to sociabdependent latency df(f;) where f; is the flow on link+
optimum, the ratio i2y/2 — 2.) Hayrapetyan, Tardos, and and wherd;(-) is a convex function. We will pay particular
Wexler consider the model where user demand is elastigitention to the linear case whetgf;) = a;f; + b;. The
which is the form of the model we study in the presentdisutility” of each link is the sum of latency and price and
paper [2]. They derived the first bound on the price otherefore isl;(f;) + p;. Users are nonatomic and are free to
anarchy of this form of the model, and find a bound of 5.064hoose the link that has the lowest disutility. Therefore, i
Recently, Ozdaglar has proved that the bound is actualgquilibrium, all used links have a common disutility value.
1.5, and furthermore that this bound is tight [3]. Ozdaglar'Users have a limit to how much disutility they will tolerate —
derivation uses techniques of mathematical programming,all the links have a disutility higher than a user’s toleca

or “willingness to suffer”, that user does not use any link.

Research supported in part by NSF Grant ANI-0331659. _Users are distributed in their willingness to suffer, so we
J. Musacchio and S. Wu are with the Technology and Informatio

Management Program, University of California, Santa C/@anta Cruz, May define a functio/(z) to ij' the disutility_tha_t would
CA 95064, USA{j ohnm swu}@oe. ucsc. com induce a total flow of: across all links. To describe it another

I. MOTIVATION & | NTRODUCTION



way, suppose each user has a willingness to suffer thedntinuous and that therefore Brouwer’s fixed point theorem
is independent and identically distributed like the randonguarantees the existence of a Nash equilibrium. [ ]
variable W. Let S be the total population of users and Next we characterize the Nash equilibrium, the result is
let R(d) = SP(W > d) be S times the complementary similar to Lemma 2.1 of [2].

cumulative distribution function of willingness to suffér. Lemma 2: Consider a gam¢& with linear latency func-
ThenU () is the inverse function oR(d). ClearlyU(z) is  tions and where the disutility functiot’(-) is continuous,
decreasing. We make the additional assumptionlat) is  concave, and everywhere differentiable. Also suppose that
concave. The assumption thét(x) is concave is a strong all links are used in the Nash equilibrium 6f Equivalently
assumption, but is necessary to derive the bound in thiswork; > 0Vi . Then

The authors of [3] and [2] make this assumption as well.

We refer to an instance of the network pricing game as !

G. An instanceg is specified by the collection of latency bi _ a; + Z 1 + ! (1)
functions{l;(-)} and the disutility functiorl/(-). fi PR

We are interested in studying two configurations of the _ )
system@. In the first configuration, the link owners ad-Where s = —U’(f), and f is the total flow in Nash

just their prices non-cooperatively until Nash equilipniu €quilibrium.

is achieved. In the “social optimum configuration”, a social ~ Proof: Suppose the total flow at Nash equilibrium is
planner chooses all prices to maximize social welfare. In & We defines = —U’(f). We now derive conditions so
sense the social optimum configuration is a type of Nas#at no player (link owner) wants to deviate from her Nash
equilibrium, in particular a Wardrop equilibrium, whereeth €quilibrium strategy. Suppose playeunilaterally lowers his
non atomic users are free to be strategic while the linkarice so that the new disutility i — h. We consider what
are assigned prices by a social planner. However to avofdfect this has on the overall flow in the system, as well as the
confusion, we will refer to this situation as simply the sdaci flow on each of the other player’s links. The total flow in the
optimum configuration. The social welfare of the system i¢he system increases by an amount not more tHahecause
defined to be the profit of providers plus the utility gatheredf the concavity assumption. Leﬁgﬁ < % be the actual
by users. The utility gathered by users is found by integgati amount of the increase, and note thaty,_, @ — 1.
the difference between each unit of flow's willingness tasimilarly, the flow in each other link decreases byLaLj,

tolerate d|SUt|||ty, and the d|SUt|||ty the flow aCtually s, provided that the Original flow on ||n.k was at |eashl.' To

Therefore the utility gathered by users is cover the possibility that the original flow were not thisgar
f definey;(h) = min (f;a;,h). Then,limy,_o yj,gh) =1 and
/0 (U(z) - d)dz the flow in link j decreases biiilg—h) Thus the flow on link
. . i y; (h) (h) ; i
where f is the total flow carried by the system, adds the increases b, ; 25 + £22. For notational convenience,
equilibrium disutility found on all used links. let

Il. AFFINE LATENCY FUNCTIONS

S

FFINE LATENCY oy — |5 LUk | g/
Throughout this section we will assumgf;) = a; f; + b; ; aj
and thata; > 0 for all . In the full paper we will address '
the case where; = 0 by using a continuity argument. The flow increase on link can now be expressed simply as
, , ) hé. The new pricep,can be found by taking the difference
A. Price-Flow Relationships between the new disutility and the new latency inlink.

In this subsection we find relations between the pricg&his difference is
of each link and the flow on each link in both Nash
equilibrium and the social optimum configuration. By using (R h
these relations we are able to draw an analogy between the pi=(d—h)—ai| fi+ Z ? T % —bi
pricing game and a network of resistors. In the analogous it
resistor network, providers choose the resistance on their =pi —h —a;ho(h)
branch of the circuit. In Nash equilibrium, providers pick a _ . ) ) )
resistance value that is higher than the social optimumeyaluVherep; is the original price. We write an expression for
causing current (flow) to be less than the socially optimdhe new profitr’ by taking the product of the new price and

We start by repeating a result found in [2], that a Nash
equilibrium exists. 7 = (pi — h —a;h0(R)) (f; + hO(h)) =

Lemma 1. The network pricing game with affine latency — — r%(1 + a;0(h))0(h) + h[(p; — aifi) O(h) — f;] + .
functions has a pure strategy Nash equilibrium.
Proof: The proof is found in [2]. The proof shows that We would like to find conditions for’ is not greater than
players’ best response functions are well defined, uniqde athe old profitz for any 4. The first order condition requires



that the linear term of the above quadratic formhimave a
coefficient of0. This in turn requires that

fi= pi(Zj;éi % + %)
! 1+az(277&1%+%)

Note that this condition is also sufficient to insure that 0 ‘
is a global maximum, because under this condition, the tinea T
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term inh vanishes and all that is left is the term that depends
on h? that has a negative coefficient. Reducing the condition

further, we find that the condition is equivalent to P
— =a; —+ - . 2 E—
7ot ; ot )

|
Now consider the socially optimal pricing. We first give an
intuitive argument why the socially optimal price should be
a; f* where f* is the flow of link¢ in social optimum. The

socially optimal pricing should price the flow so that each b b o +
user bears the marginal cost to society of each additional YT 2 T T
unit of new flow. The latency on each link i f; + b;. i

However, the social cost is the latency times the amount of
flow bearing that latency. Therefore the costig; >+ b; f; .
Thus the marginal cost ia, f; + b;. The latency born by
users isa; f* + b;. Therefore to make the disutility born by
users reflect marginal social cost, the price should be set to

Fig. 1. A circuit analogous to the network pricing game.

v associated with the inequality constraints and simpldyin
We formalize the argument in the lemma and proof tha-}-hiS yields d y pidy
follows.
Lemma 3: In the gamej the social optimum price vector d* —2a;ff —bi=0 fF>0
satisfies d*—b;, <0 f* =0
pi = a;if;

whered* = U(f*) is the disutility of the used links in the
for all i where f is the flow in social optimum. optimal solution. In our model the difference between the
Proof: If a set of prices were to induce a flow vector thatdisutility and the link latency should be the price of the

maximizes social welfare, that set of prices would be shcial link. The above expression shows that for each used link
optimal. One way to quantify social welfare is to integrate, the disutility minus the latency; f; + b; is equal toa; f7,
the area under the disutility curvé(x) up to the amount therefore the prices that achieve a socially optimal flow are
of flow carried, and then subtract the welfare lost due to th@ifi*- u

latency in each link. Therefore the socially optimal flow can The proof of Lemma 3 also demonstrates that the optimal
be found by solving the following optimization problem: price achieves the optimal flow vector. In other words, if

F we were to give the social planner the power to assign user
/ Uz)| — Z(aiff +bifs) routes (choose the flow vector) the planner could not achieve
0 7 a better welfare than by merely choosing the link prices.
st zi:fi—f:(), B. Circuit Analogy
fi > 0Vi. Before we make the analogy between the game and a
network of resistors, we introduce an illustration like tree
Note that the function- Uof U(:c)} + Y i(aif? +bifi) is  used in [2] to visualize the relations between flgiy price
convex and Slater’s constraint qualification conditiondsol p;, latency function slope:; and offsetb; for each linki.
so there is no duality gap if we use Lagrangian techniquéhe illustration is shown in panel (i) of Figure 2. The figure
to find the optimal solution [9]. We therefore may expresshows that the price; plus latencyu; f; + b; of each link is
the solution to the above problem by writing the Lagrangiarequal to the common valué](f; + fo + f3) = U(f). The

evaluating the first order conditions as well as the compldigure also shows the areas that correspond to link owner
mentary slackness conditions for the Lagrange multipliensrofit and user surplus.
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Fig. 2. i) The Nash equilibrium of the gant ii) The Nash equilibrium of the gamég,;, where the disutility function off has been linearized. Note
that the flow vector is unchanged from the Nash equilibriunGofii) The Nash equilibrium of the gamé;, where the disutility function off has been
linearized and “truncated.” iv) The social optimum configion of the gamej;. Note that the flowf* > f and that link 2 is not used in the social
optimum configuration of this example.

We illustrate our analogy to a network of resistors inThis is analogous to having a battery &f volts with an
Figure 1. In the analogy, each link is one af parallel internal resistance of ohms. As the current drawn from
branches in a circuit. The current in the braé®analogous the battery increases, the voltage output (analogous to the
to the flow on link: and the latency is analogous to thewillingness to tolerate disutility) decreases.
voltage drop across a resistor @f ohms and voltage source  Alternatively, we could avoid linearizing by considering
of b; volts connected in series. To ensure that our imaginagy general power source with a nonlinear current to voltage
voltage source does not ever cause flow to go the wrong waliaracteristic. In particular the current to voltage fimrct
(become negative), we place a diode in each branch of teould matches the disutility functidii(-) which of course

circuit. relates flow to disutility.
The pricep; is found by taking the voltage drop across a To model the social optimum configuration, we keep the
resistor ofd; + a; ohms where general power source but replace the resistor modelling
1 the price-to-flow relationship frona; + 6; to a; on each
1 1 i branchi. Clearly, by decreasing the resistance in all branches,
0; = Z a_j 5 - fi @i () the total amount of current (flow) should increase, and the
S voltage drop (disutilityd*) on all branches should decrease.

The price plus the latency on a link equals the commohiowever, the ratio of the flows between branches can change,
disutility found across all used links. In the circuit angyp because the ratio of the resistances changes between the two

the V0|tage representing price p|us the Vo|tage reprmnticases. Therefore |t is pO_SSible that the flow on a particular
latency equals the common voltageacross all the parallel branch decreases in social optimum. The flow on a branch

branches where can even become zero if* < b;. We also note that a
branch with a low enough; to carry a nonzero flow in the
d=p;+a;fi+b; = 2a;+6)fi +b;. social optimum configuration should also carry a nonzero

flow in the Nash equilibrium configuration. In other words,

The valued should also correspond to the point ong |ink that is used in social optimum should be used in Nash
the valueU(f), and there is a circuit analogy for this equilibrium.

correspondence as well. Suppose wéldbe the y-intercept
of the tangent to the disutility curve at the poiiit /) = d.
Then

Intuition suggests that ib; << a; were small for alli,
the difference between social optimum and Nash equilibrium
should also be small. Indeef] is smaller thana; for all
V—s Z fi =d. j # i. However, for the smallest;, it could be that; > a;.



Thus we cannot attempt to show thitis negligibly small. wheres = U’(f). Then the Nash equilibrium flow and price
In the next section, we will describe the relation betweemectors of the new gamé; are the same as the Nash flow
the 0;’s and a;’s, using linear algebra in order to developand price vectors of the original gange

our proof on the price of anarchy bound. Proof: The argument is essentially the same as pre-
_ _ sented in [2]. Recall that Lemma 2 found that relation (2)
C. The Price of Anarchy for Linear Latency holds in Nash equilibrium whenever the disutility functisn

In this section we will show that the price of anarchy is agoncave and everywhere differentiable. To prove this tesul
most 1.5 for linear latency functions, where price of angrchwe must show that (2) still holds for the truncated disufilit
is defined to be the ratio of welfare in social optimum tdunction. While the truncated disutility function is no lger
the welfare in Nash equilibrium. We will first argue that weboth-sided differentiable at the equilibrium point, it ight
can restrict our attention to examples where the disutilitpand differentiable. The first order condition on figwfound
function has been “linearized” for values larger or equal tavith the right hand derivative is almost the same as was
the equilibrium flowf and has been “truncated” or set to befound in Lemma 2 but instead it holds with inequality. More
equal a constant for smaller values of flow. This argument igrecisely

. . . 1 1
also made in [2], but presented again here for completeness. fi pl(zjyéi o T 3)
We Illustrate the progression from the original game, to a = 1+ai(zj# ai 4 %)
J

game with a linearized disutility function, and finally to a
truncated disutility function in Figure 2. Once we have show AL ot
that we may restrict our analysis to truncated linear digpti €duilibrium of gameg,. However, the Nash equilibrium flow

functions, we use techniques of linear algebra to prove tHeCtor for gamed, must satisfy the above condition with
final result. equality, therefore it is also a Nash equilibrium@f =

Before we begin to prove the 1.5 bound of the price of L€mMMa6: Let N(G) and S(G) be the social welfare in

anarchy, we give an example where the price of anarchy gge Nash equilibrium and social optimum configurations of
exactly 1.5. Consider a network consisting of only one linkhe gameg. Then

for all i is the necessary and sufficient test to identify a Nash

where the disutility function is S(G) _ S(9)
N(G; G) )
U(f) = 1 f<0 Proof: Let U(G) be the user welfare in the Nash
2—f 1< f<2. equilibrium of gamegG. In the Nash equilibrium of game

o . ) G:, Lemma 6 shows that the flow vector will be the same
and the latency function i f) = 0. Itis easy to verify that a5 the Nash flow off. Thus the provider welfare will be

the Nash equilibrium price is = 1 which yields a profit of he same in both cases. However, the user welfare will be 0.
1 for the provider and) user surplus. The socially optimal Thus we have

price isp = 0 which yields a profit of0 for the provider,
but a user surplus of/2. Therefore the price of anarchy in N(G) = N(G) - U(9).

this example is 1.5. The rest of this section will prove that ~gnsider a new gamg,, with the same latency functions
there is not an example where the price of anarchy is larggg G but with a disutility function that has been truncated

than this. o but not linearized. Therefore

Lemma 4. Let f be the total Nash equilibrium flow of the
gameg. Let G, be a new game identical § except that the U (z) = d r<f
disutility function of the new game is a line tangential te th ‘ U(z) z=>f.

disutility function ofg at the point/(f) = d. Then both the whered and f are the Nash equilibrium disutility and flow

Nash equilibrium flow and price vectors of the new gagne £G, Uy (-) is the disutility function ofG,,, and(-) is the

g;emtgge same as the Nash flow and price vectors of the OE‘ljsutility function of G. Because we know the disutility* in

- social optimum is less tha# we can view the optimization
Proof: The Nash flow vector of satisfies the necessary roblempof findina the ontimal flow vector for pan@ as
and sufficient condition in Lemma 2 to be a Nash equilibP 9 P g *

. S . . the same problem as finding the optimal flow vector for the
rium. Because the slope of the disutility functiongfis the . Y
same when the total flow ig, the Lemma 2 conditions for gameg but with the constant/ (G) = fO (U(w) - d)dz sub-

G, evaluated at the Nash flow vector @fare satisfied. Thus ;lracted ?ﬁ the.”ott))Jef:dtlvet_furﬁnon. Thus, the fSOC'aI optmu
the Nash flow vector of is also a Nash flow fog; m OW vector will be identical for game;, as for gamey;.
) . . Thus
Lemma 5: Consider the gamé, that consists of the same S(Gu) = S(G) — U(Q)
latency functions ag and G; but has a disutility curve that te '
is modified from the disutility curve igj; by “truncating” it Now consider the gamg; where we have both truncated
in the following way: and linearized the disutility function. By convexity, the
disutility function of G, is never smaller than that d,,.
Uz) = {d r<f Thus the solution to the optimization problem of finding the
d—s(x—f) x> f. optimal flow vector has an objective function that is never



smaller than the objective function that we maximized to findvhere

S(G:e). Consequently Hy=A+A—AQA+sM)*A

S(Gr) > 5(Gex) = 5(G) — U(G). His = —sA24 + sM) e,
Combining our observations, we have Hy = HJ;, and
S(Gy) - S(G)—UG) _ S(G) Hjy = 3_A+ 3A + slpwk — 8 Lexm (24 + M) ™ 1.
NG, = NG)—U©) = N@©) Proof: We have that
n 2A+sM+A)F =V —b. (5)

We define the following notation. The vectors of flows in

o . ) We can write a similar expression for the flow in social
Nash equilibrium and social optimum are

optimum case, with the following modification. In social

F =[f1, fo, . fu] T and F* = [fF, f2, . /7 optimum, the disutilityd* may fall belowb; for somezi,
so that some links that were used in Nash equilibrium may
respectively. We define become not used in the social optimum case. Without loss of
generality, we renumber the links so that the the used links

V =[V,V,.V]" , andb = [by, by, ...b,] " numberl...m and the unused links numbén + 1)...(m +

k) =n.Let A, M, A, be the uppefn by m blocks of the
matricesA, M and A respectively. We therefore have

[2A + SM,Oka]F* = [Imxmaomxk](v - b)

as ann dimensional vector of all’’s and the vector ob;’s
respectively. The matrices

A= diag(al, ag, ..., an) , andA = diaq&, 62, ceey (Sn) .
or equivalently
are diagonal matrices of th€s andd,’s respectively where (24 + s3)~!
w%

Om
recall §; is defined by 3. It will also be convenient to define Xk} (V—0b).

Okxm Okxk

11 By substituting (5) we find
(1 1 - _
M= . [@A+SAD)™ Ops
F* = X
Okxm Okxk
to be an x n matrix of all ones. 24+ sM + A $lmxk r
Without loss of generality, we may renumber the links $lkxm 2A+sM+A

so that links used both in Nash equilibrium and in socia}ich reduces to

optimum are numbered...m and the links used in Nash - 1% - S

equilibrium but not social optimum are numberéch + F* = {IJF (24+sM)7' A 5(2A+ sM) 1”“] o
1)...(m + k) = n. There cannot exist links used in social Orxcm Ok

optimum that are not used in Nash equilibrium, while there With a linear (not truncated) disutility curve, the total
could be links that are not used in social optimum nor irsocial welfare gathered in Nash equilibrium is given by
Nash equilibrium, but we will only consider examples where 1

such links are removed. Thus, we may defite A, be the W=F"A+ §sM +A)F

upperm x m blocks of the matricesl and A respectively. . -
These blocks contain the’s and §'s associated with links While the welfare gathered by the usersjig™ M F'. There-

that used both in Nash equilibrium and social optimum. fore the Nash equilibrium social welfare for a truncateedin
Similarly we defined , A to be the lowetk x k blocks of d€mand curve is

A and A respectively. These blocks contain tags andd’s Wy = FT(A+ A)F. (6)

associated with links that are used both in Nash equilibrium

but are undercut (not used) in social optimum. We therefore For a linear (not truncated) disutility function the social
have welfare gathered in the optimal configuration is given by

A 0 A 0 * *T 1 *
. ) o ) W = F A —|— —SM F
A_L)’ A} andA_{()’ é} (A +5sM)
Theorem 1. Consider the pricing gamé; with linear
latency functions, and a truncated linear disutility fuoit
The difference between three times the Nash welfafe= W = EF*T(QA +sM)F* — FT(ESM)F
N(G;) and two times the social welfaf&;" = S(G;) can be 2

expressed as = %F*T [(QA+sM)+ A, slyxr| F— %FT(SM)F

While for a linear truncated disutility function, the sdcia
welfare in the optimal configuration is

owrs 2T pr [Huo Higl [F 1 Gn G
o=t e @ LG G v



where To derive the next identity, recall; = [Z#i ai + ﬂ—l.
Gi = 2A+2A + AQ2A+sM) A, Therefore
Giz = sAQ2A + sM) ™ Ly, AT = [tr(A_l)Jr 1} — A
Go1 = GT,, and 5
Gaoy = SQIka(2fl + sM)fllmxk — slpxk-

The Nash equilibrium social welfare, taken from expres] NUSAA™! = ad I, and therefore\A~" = (aA—1)~".

sion (6) but expressed using the block matrix notation is NOte by constructione > 1/min; a; S0 that(ad — 1)~
exists. Finally we may conclude th&t = (a4 — I)71A.

=al — AL

W, =FT [A '(f)' A ) _(: A} F (8) To derive the next identity we observe that:
We can use expressions (7) and (8) to express three timéié(yi1 +sM)'e
the Nash welfare minus two times the social optimal welfare _ l(a[l —)le— i[a[l I leeT A e
as 2 20 )

owrs 2T pr [Huo Higl [F _1 A— D) le— tr(A™") A--t

3W, —2W; = [FTF ]{Hm ol |F =5 (a ) te 7”(1471”2/8(04 )" le
where _ %(aA—I)_le.
Hy=A+A—AQA+sM)'A, s
The final identity follows from the following reasoning:

His = —SA(2A + SM)_llmxk,

_ _ 1 _ 1 .- _
Hoy = HI‘FQ, and eT(QA—i- SM)_le =3 [eTA_le — BeTA_leeTA_le}
Hyy = 3A+ 3A + slpxk — 8 Lksm (24 + sM) ™ .

_1 Sy tr(ATh? ]
o = i([:(i ) - w@ T2/
BE2/s+tr(A7h), T
at1/s+1tr(A™"), and -
e: vl With the identities of Lemma 7, we can now prove the

main result of the section.
. o N Theorem 2: Consider the pricing gamé with affine la-
Provided that; > 0 for all ¢, the following identities are tency functions. The price of anarchy, defined %%)) is at

true: most 1.5.
(sA + s~ :l A1 _ l/’rlerl Proof: By Lemma 6 it is sufficient to show that
2 Ié) the price of anarchy for a game with a truncated linear
A=(A-1)""1A disutility function is 1.5. Without loss of generality, weam
L 1 assume that all links are used in Nash equilibrium, becduse i
AQRA+sM) e = ﬁ(aA —I)"te otherwise, a link not used in Nash equilibrium would not be
B B tr(A-1) used in Social Optimum. Therefore one can discard the links
el (2A 4 sM) " te = unused in Nash equilibrium from the game without changing

S .
Proof: The Matrix Inversion Lemma states that the price of anarchy.
1 1 . . TR Applying the identities in Lemma 7 to the bound of
(F+UCV)" =F" - F U +VFU)"VF Theorem 1, we have

whereF, U, C,V are arbitrary matrices with only the condi-
tion that the matrices are of appropriate dimension andhall t
inverses in the above expression exist. Eet 24, U = e, 1 - .
V = e, C = 5/2 and note thatV/ = ee’ = 1,,,x,,. Then Hiy = E(O‘A — 1) emey
we may apply the Matrix Inversion Lemma in the foIIowingH21 e

Hyp = (@A - 1)1 (a? A3 — aA? — %fl—i— %M)(aﬁi -n!

way: 2 T (o, o\ —1 T
. . . T f-1,1-1 Hao > slpxi — s“ege,, (2A 4+ sM) ™ eney,
@A+ si) = At - g, [_ 4+ e} T A1 24 str(A-1) Str(A1)
2 4 s 2 = lexk - lexk
-1
iAo A Zaway| At 2%
- 9 S - B kxk
O where recall thatd,,, Hi», Ho21, and H»» are the blocks of
=—|AT - AT MA . g :
2 I} the matric in expression (4).



Let
Q2 (aA-1)"'F and
Z £ ||Ell = exE.

Note that@) > 0 becausena; > 1 for all i. By changing
variables fromF” and F’ to () and Z we obtain that

3W, — 2W;
a?A3 —aA2 A+ LM —1Le,
g [P A A e [
grm B

1 , 2 2,
=— - 2Qlhz + 5 2%+

ﬁ”QHl ﬁHQHl 5

QT (0?43 — aA? - %A)Q. 9)

Note that the quadrati®||?—2||Q||1 Z+2Z? is nonnegative.
Consider the following two cases.
Case 1:Supposen?A?® — aA? — 1A > 0, or equivalently
ad; > 155 for eacha; on the diagonal ofi. Then3W; —
2Wr > 0.
Case 2:Suppose that for somg aa; < 1+2—\/§ Let z £
aaj; — 1. Let j be the index of any such;

We therefore have

1+3
2 b

We divide both sides of the equality by;, and substitute
thata £ tr(A71) + 1 =tr(A=1) +tr(A™") + L to obtain
that

aa; =r+1<

(10)

From these last two relations, we have that

1]‘1
We will now find an upper bound on the total Nash equi-

librium flow on links that are not used in social optimum.
Thus

(2dj +§j) = (2$—|— 1) [L 4+ Z 1 +

a_j; a

1
2a;

2

£ =

> 22-1% < [d-min)] 3

— 5 ld — min,).

We also note that

oAb
5= v,
J J
Consequently,
B[ _ [d— mini(b,)] 2a; + 3,
Fp 7 d=b; 20

We note that, > Bj for any ¢ because links that are used
in social optimum must have a lower ‘than links that are
not used in social optimum. Therefore

IE|L _ 23+,
Fj - 2@
_ 2z+1

11 1t
— +-+- .
2a a-; a s

We also observe that

z+1 1 1 1
— = —+ —+ -
a; Zaz Z.Qi § A— [ -1p— F; &
' ' ||Q||1—e(a Zcm—l aa; —1 x
i J
where{a,} are the diagonal entries of. Thus ) . )
Thus if we recallZ £ ||F||;, we obtain
x 1 1
C—L——Z ﬁzg—ﬁg- Z _Quile[1 1 177
_ A Rk~ 22 la; a s
Define L
. » et
_ 1 1 Qe+Daz[1 1 117"
A A X x
a—j; = —- a= - = | — — — .
To extend our circuit analogy, ; is the equivalent resistance Then Z < v[|Q[|1. If Z € [0,3]|Q|[1] then |Q]]? —

of all of the resistorg{a;}, .. connected in parallel while
is the equivalent resistance of the resistdas} connected
in parallel. After substituting these definitions, we hakatt

and thus
(11)

Recall that

2|Q|1Z + 222 decreases withZ. From the expression
above we see thal' < %(2z + 1)z, while we also have

that z < ¥3-1 < 0.367 from (10). This impliesv <
.32 < .5 and thereforeZ must lie in the range where
Q|12 — 2||Q||1Z + 222 decreases i. Thus we have

QIF = 2llQIhZ +22% > |QIF(1 - 2v + 2v?)
=Q" ((1-2v+20*)M) Q.

After we substitute the above bound into (9) we obtain

3W; — 2W* >
Q ((;zﬂ - %v + %)M + a2 A% — aA? - %A)Q.



We defineA to be the matrix betwee)” and @ in the We may now write the term of (13) we seek to evaluate as
above expression. Therefore

(% + 2 — .5)Ba; =

2 2 1 - - 1.
A2 ((BUQ — BU+ %)M-l-a?/ﬁ —ad? - EA) (Sz[xz 2 — .5+ sa[22% + 42% + z — 1]+> 2 .
a?223 + 322 — 5] —J
Note that it is sufficient to show that all entries 4&f are
non-negative becaus@ is non-negative. The off-diagonal <82g[x3 + 322 + 1.5z — 1]+> —
elements ofA are clearly positive. Any diagonal element sa®[3x3 + 522 + 050 — 1] ) 7
k satisfying aa, > #5 is also non-negative because
this condition makes\?a} — aa} — a; non-negative and a?s%[a® + 222 + 5z — 5]
(3v° = 2v+ 55) is always nonneagtive. Thus we can focus (a_ja+as+a_;s)?
on diagonal elements of indeX satisfyingaa; < # (14)

and recall we defined indexto be any arbitrary index for
whichaa; < 1+—2‘/§ is satisfied. Thus it is sufficient to show We now turn to deriving an expression for the* —2v+1/2
that jth diagonal element which is term of (13). Recall

1. -1

iaj' (12) U_(Zx—i—l)x[ 1 +1+1:| .
2a

is nonnegative . Equivalently, we need to show that .

This reduces to

NjjB=20"—20+1/2+ (z* + 2 —1/2)(Ba;) (13) (x+1/2)xsa_;

= — — . (15)
is positive. Note that we have used the fact thaj = =+ 1. a—j@+as+a—;s
We will first derive an expression for thér? + = —
1/2)(Ba;) term. Recall that In order to have the denominator the same as that of

expression (14) we multiply numerator and denominator by
1 1 2 a common expression to obtain
B=—+—+-.
aj a,j S
s(z+1/2)x(s +a)a?, + salx + 1/2)za_;
We can substitute relation (11) to obtain v = ( /2 (, )a - ( 5 /2 L. (16)
(@-ja+as+a;s)

~sa(r+1)+a_ja2r +1)+a_js
A= Ta_jsa ’ While squaring (15) yields

while we also note that 2 s?[at + a® + 2? /4]a? a7
(d_jQ +as+ d_.j8)2

B 1 1 117t Ta—;as
a; =¢|—+—+-— = = — . . ;
a_; a s a—;a+as+a—j;s Using expressions (16) and (17) we have that
Therefore 202 — 2+ 5
6‘ SQ(CC —+ 1) + C_ijg(2117 —+ 1) —+ C_L,jS (82[2564 —+ 2:63 — 15:172 — ,CC]+) d2 +
a; = . 2 —J
’ a—ja+as+a—;s sa[—22* — 7] J
L . . . s2a(—22% — x)a_;
Later on it will be useful to have this expression with = _ —— +.5
a denominator of(a_ja + as + a_;s)?. By multilplying (@—ja+as+a;s)
numerator and denominator by a common expression we
obtain s2[2z* + 22% — 1.52% — x + 5]+ _
a’ i+
sa[—2x2 — x + 1] + .5a> —J
(@*[2z + 1] + s* + sa[2z + 2])a® ;+
(s2a[z + 2] + sa®[3z + 2))a_;+ (s2a[—22% — x + 1] + sa®)a_; + .5s%a?

QQSQ[ZC “+ 1] - (d-jg + as + d_j8)2
(@_ja+as+a_;s)? ' (18)




By combining (14) and (18) we obtain Thus the price of anarchy of is the same as that of
G.. Gameg;, has the same Nash welfare s, but has
AjiBB = a higher (not smaller) social optimal welfare. Therefore th
s2[2z* + 223 — 522] + sa[22® + 222+ _, price of anarchy ofj,; is as large as the price of anarchy of
( a?[223 + 322 ) 4= G. Therefore 1.5, the worst case price of anarchy for games
with linear latency functions, is also the worst case prite o
s?alx® + 2% + 5x]+ \ - anarchy for games with convex latency functions, provided
<sg2 [323 + 5z? + 0.5x]) -yt the latter has a pure strategy Nash equilibrium. [

-+

J

IV. CONCLUSION

a?s%[x® + 222 + 5z
— - 5 We have developed a new technique for proving a bound
(G—ja+as+a—_;s) ) " )
) ) ~on the price of anarchy for a network pricing game with
We see that the 0_n|y4term 3that C(2)ntalnS a minus sign in the,mpetition, congestion, and elastic demand. We belieate th
above expression @¢" + 2z — .57, but this is positive for - his technique will be useful in studying a number of related
x> 0. Therefore we may conclude thas; is positive. B nodels and extensions. One particular case that we hope to
I1l. CONVEX LATENCY FUNCTIONS study in future work is one in which users vary in the reIatiV(_e
In this section we extend the result of Theorem 2 t(é/alues they place on price and latency. In other WQFdS, n
; .. .. the model of the current paper, all users only consider the
convex latency functions. For convex latency functionss it . .
.sum of price and latency. An extension would be to study a

possible that a pure strategy Nash equilibrium does nOt'EX'?nodeI where users look at a weighted sum of the two, and

The authors c_)f 1] proylde such an example. Therefore, Otffrhe weights would be different values for different types of
theorem applies only in the case that a pure strategy NaaSerS

equilibrium exist.
Theorem 3: Consider the pricing gam with convex and ACKNOWLEDGMENT
differentiable latency functions. Provided th@thas a pure  \yi thank Jean Walrand for many useful conversations
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50) % ot ot 15 %bout this work.
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The flow F' is also the Nash equilibrium of the gange, .
This is because the first order conditions that determine
whether aF' is a Nash equilibrium in gamg;, must also

be by satisfied byl to be a Nash equilibrium of7,.
Furthermore, the provider profit and user welfare are the
same as in the Nash equilibrium 6f, .

The social optimum welfare df;, is not worse than the
social optimum welfare ofj, . This is because the convex
latency functions ofj;,. are never smaller than their tangents,
which were used to make the latency functiongjgf Thus
the optimum welfare fog,;,. cannot be less than fa@f,..



Correction to The Price of Anarchy in a Network
Pricing Game

John Musacchio and Shuang Wu

This document corrects an error in the proof of Theorem 2 of the paper “The Price of Anarchy
in a Network Pricing Game,” which was presented at the Allerton Conference on Communication and
Control in September 2007 [1] 1. The error in the proof of Theorem 2 was in the last step that claims
that the polynomial 2z + 223 — 522 is positive for 2 > 0, which is not true. The polynomial takes
negative values between x = 0 and z = %(\/5 —1) reaching a minimum of about —0.00354. The original
proof required finding relations between the Nash equilibrium flow on links that are not used in the
social optimum configuration to the flow on other links. Revising this portion of the original proof
would have required revising many of the preceding steps, and probably adding even more complexity
in order to retain tighter bounds through each step. Rather than taking this approach, we have instead
developed a revised argument that avoids having to treat separately the links that are not used in the
social optimum configuration.

In the paper, we explained why some links that are used in Nash equilibrium may not be used
when prices are set to socially optimal levels. This is because the Wardrop equilibrium disutility level
d* may fall below the minimum latency b; of one or more links ¢. To account for this in the original
proof of Theorem 2, we separated the links into two classes, those that are used in the social optimum
configuration, and those that are not. Furthermore, in our circuit analogy, we placed diode elements
in each branch to prevent the flow on some branches from going in the reverse direction which would
happen if b; was larger than d*, the common voltage seen by all the branches. We call such branches
whose minimum latency is more than d* as “undercut.” Recall that the social optimum configuration
flow rates are modeled by the circuit pictured in Figure 1 with the following modification. To model
social optimum pricing, the resistors representing the ratio of price to flow are changed to be a;,
not a; + d; which models Nash equilibrium pricing and is what is shown in the figure. The profit
on each link is a;f;?, and the user welfare is 1s(3" f7)? for a linear disutility function. (Recall our
measure of social welfare is consumer surplus, which is found by integrating the area under the demand
(disutility) function above the market clearing disutility d*. For a linear disutility function, the region
is triangular shaped, hence the factor of % in the expression for user welfare.) Also note that each
resistor a; representing provider pricing is paired on the same branch with another resistor of size a;
representing that provider’s latency function. Thus the social welfare (sum of profits and user welfare)
in this situation is exactly half the power dissipated by resistors in the circuit.

Suppose that in the social optimum configuration we do indeed have “undercut” branches whose
flow in the circuit analogy is kept from going negative (backwards) by the diode elements. A natural
question is whether if the undercut branches were turned “on.” (i.e. the diode preventing backward flow
were removed) would the power dissipated by resistors go up or down. If one can show that the power
never goes down, then one can upper-bound the social welfare of the social optimum configuration by
half the power dissipated by resistors of the circuit with the diodes removed. Such a bound would
greatly simplify the analysis by obviating the need of keeping track of the undercut branches. In the
following lemma, we show that such an upper-bound can be constructed.

"We are very grateful to Xingang Shi of the Chinese University of Hong Kong for finding the error and bringing it our
attention. His discovery of this problem led us to develop the corrected and improved proof we describe here.



Lemma A. Let W} be the social welfare of the social optimum configuration for a linear disutility,
(thus equal to half the power dissipated by resistors in the circuit with diodes that shuts off undercut
links.) Let /VIV/I* be half the power dissipated by resistors in the same circuit but with such diodes remouved.
Then -

Wi < Wy

Proof: Consider the circuit representing social optimum configuration with branches i € {1...m}

carrying positive flow. Define
m 1 -1 m b
a= —| , b=a)y —

i=1
to be the Thevinin equivalent resistance and voltage respectively of branches that carry flow in social
optimum. Also note that

2a - s
2a+ s * 20+ s
Now suppose an undercut branch j ¢ {1..m} with b; > d* is “turned on.” A current h will flow from the
branch into the node shared by all the other branches. To balance the new incoming current, Kirkoff’s
laws dictate that the flow on the branches representing links will increase (which one can think of as
one Thevenin equivalent branch) while the flow coming from source V' will decrease. Because by the
superposition principal this new current distributes itself according to the ratio of the conductances,
source V’s contributed power is reduced by

=V

2a
2a+ s

Similarly the power dissipated by the b; voltage sources will increase by a total of

S

bh )
2a + s

Since newly “turned on” voltage source b; is larger than d* we can use the expression for d* to determine
that the power that source b; contributes is larger than

2 _
¢ 2

Vh .
2a + s 2a + s

Thus the power that source b; contributes more than makes up for both the decline in power by source
V and increased consumption of the b; sources. Consequently the power dissipated by resistors in the
circuit increases when undercut branch j is “turned on.”

If we have several undercut branches, we can turn them on one at a time in order of increasing b;.
As we do this, we can see that the new voltage d’ (the voltage of the common node that was originally
d* before turning on undercut branches) will never exceed the last b; turned on. Consequently, each
turned on branch will only increase the power dissipated by resistors. We conclude that the power
dissipated by resistors in the circuit representing social optimum configuration increases (does not
decrease) when all the diode elements are removed.

|

The following Lemma is similar to Theorem 1 of the original paper, but uses the simplifications

made possible by Lemma A.

Lemma B. Consider the pricing game Gy with linear latency functions, and a truncated linear disutility
function. The difference between three times the Nash welfare Wy = N(G;) and two times the social
welfare W = S(Gy) can be expressed as

3W; — 2W; > FT[A+ A — A2A + sM)"LAJF. (1)

Proof: From analyzing the voltage drops across the branches of the circuit describing the Nash
equilibrium of the game we have that

(2A4+sM+A)F =V —b



where recall from the original paper that V is a vector of all Vs, b is a vector containing the values
of each b;, A is a diagonal matrix with entries {a;}, M is a matrix fully populated with 1’s, and A is
a diagonal matrix with diagonal entries {0;} defined by (3) of the original paper. With a linear (not
truncated) disutility curve, the total social welfare gathered in Nash equilibrium is given by

1
W=FT(A+ 55M + A)F,

while the welfare gathered by the users is §F TMF. Therefore the Nash equilibrium social welfare for
a truncated linear demand curve is

Wy = FT(A+ A)F.

Now consider the power dissipated by resistors in the circuit describing the social optimum config-
uration for linear disutility, but with the diodes removed (undercut branches “turned on.”). Half of
this power, which we already assigned the notation W;* can be expressed as

W — %(V — 0T (24 + sM)" (V —b),

By Lemma A, W < fV\V/l* Consequently for a linear truncated disutility function, the social welfare in
the optimal configuration satisfies

Wy =Wy — gFTMF < Wy — gFT MF.

For convenience let the right most expression be denoted Wt*. Thus 3W; — 2W; > 3W; — 2/W7t*.
Combining the above identities we have that

3W, — 2W; = FT(3A + 3A + sM)F — FT(2A 4+ sM + A)(2A + sM) ™ (2A 4+ sM + A)F
= FT(A+2A)F — FT(2A + sM + A)(2A + sM) ' AF
= FT[A4+ A - AQ2A +sM)"'A]F.

[
The following is a restatement of Theorem 2 of the original paper along with the new proof.

Theorem 2. Consider the pricing game G with affine latency functions. The price of anarchy, defined

as % 1s at most 1.5.

Proof: By Lemma 6 of the paper it is sufficient to show that the price of anarchy for a game with
a truncated linear disutility function is 1.5. Without loss of generality, we may assume that all links
are used in Nash equilibrium, because if otherwise, a link not used in Nash equilibrium would not be
used in social optimum. Therefore one can discard the links unused in Nash equilibrium from the game
without changing the price of anarchy.

From Lemma B we have that

3W; — 2W; > FT[A+ A — A2A + sM) "' AJF. (2)

Since the Nash equilibrium flow vector has only positive entries, it is sufficient to show that the matrix
in square brackets has nonnegative entries in order to show the whole expression is nonnegative. That
is the focus of the remainder of the proof. By the Matrix Inversion Lemma,

1

137 4-1
t+ 2/3A MA

(2A 4 sM)™! = % [A‘l —

where t £ tr(A~!). From the definition of A

Al = [tr(A_l) + 1} I—-Al=ar-A"!
S



and therefore A = (aA — I)71A. Substituting this relation we have that

AQA+ M)A = (A — 1) EA - i/;/s

M} (@A —1)71

and therefore the right side of (2) can be written as

1/2
t+2/s

1
A+A—-ARA+sM)'A=(aA-1)"" [a2A3 —aA? - 54+ M] (A — 1)L,
The matrix (A — I)~! is diagonal with positive diagonal entries. Thus to show that the matrix
expression on the right side of of the above equation has nonnegative entries, it is sufficient to show
that the term in square brackets has nonnegative entries. Because o = t 4+ 1/s The term in square
brackets is

1 1
m (t+2/8)(t+1/3)2f43—(t+2/s)(t+1/s)A2—§(t+2/3)A+§M]‘

Let ¥ denote the matrix in square brackets of the above expression. The ith diagonal entry of ¥
satisfies

Wi = +12/S :(t +25 1)t +1/s)%al — (t+2/5)(t + 1/s)ai — %(t +2/8)a; + ﬂ
= +12/S :(t?’ + 4257 4 ptsT2 4 QS—B)Q? _ (t2 Lgts 1y S_g)a? B %tai sl %}
B ﬁ :(t?)a? —t%a7) + [(3t%a7 — 3ta;) + (t*af — 1)] ais™" + (5ta; — 1)a7s™* + 2as™> — %tai + %}
ﬁ :(tai)s — (ta;)? — %(tai) + %
> m[tai —1]

Note the last two steps use the fact that ta; > 1. Consequently, we have that

ta1—1 1 1

1 tag—l 1

2(t+2/s)¥ > : : :
1 1 ..o tay —1

where the > relation is element by element. The right side has all nonnegative entries, therefore W,
and consequently [A + A — A(2A + sM)~'A] have all nonnegative entries. Thus 3W; — 2W;* > 0.
|
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