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Abstract— We analyze a game theoretic model of competing
network service providers that strategically price their service
in the presence of elastic user demand. Demand is elastic in
that it diminishes both with higher prices and congestion.
The model we study is based on a model first proposed
and studied by Acemoglu and Ozdaglar and later extended
by Hayrapetyan, Tardos, and Wexler to consider elastic user
demand. We consider the price of anarchy, which we define
as the ratio of the social welfare of the system when a social
planner chooses link prices versus the social welfare attained
when link owners choose the link prices selfishly. Ozdaglar
has recently shown that the price of anarchy in the network
pricing game with elastic demand is no more than 1.5. We have
independently derived the same result. In contrast to Ozdaglar’s
proof based on mathematical programming techniques, our
proof uses linear algebra and is motivated by making an
analogy to a network of resistors. Our technique is useful
because it provides an intuitive explanation for the result, as
well as providing a framework from which to derive extensions
to the result.

I. M OTIVATION & I NTRODUCTION

We study a a network pricing model first proposed and
studied by Acemoglu and Ozdaglar [1] and later extended
by Hayrapetyan, Tardos, and Wexler [2]. The model studies
the pricing behavior of several providers competing to offer
users connectivity between two nodes, and it has the features
that a provider’s link becomes less attractive as it becomes
congested and that user demand is elastic – users will choose
not to use any link if the sum of the price and latency of the
available links is too high. In the first version of the model
studied by Acemoglu and Ozdaglar, the user elasticity is
modeled by assuming that all users have a single reservation
utility and that if the best available price plus latency exceeds
this level, users do not use any service. In this setting, the
authors find that the price of anarchy – the worst case ratio of
social welfare achieved by a social planner choosing pricesto
the social welfare arising when providers strategically choose
their prices – is(

√
2 + 1)/2 [1]. (Or expressed the other

way, as the ratio of welfare in Nash equilibrium to social
optimum, the ratio is2

√
2 − 2.) Hayrapetyan, Tardos, and

Wexler consider the model where user demand is elastic,
which is the form of the model we study in the present
paper [2]. They derived the first bound on the price of
anarchy of this form of the model, and find a bound of 5.064.
Recently, Ozdaglar has proved that the bound is actually
1.5, and furthermore that this bound is tight [3]. Ozdaglar’s
derivation uses techniques of mathematical programming,
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and is similar to the techniques used in [1]. In the present
paper, we provide an independent derivation of the same
result. In contrast to the proof of [3], our proof is motivated
by making an analogy between the network pricing game and
an electrical circuit where each branch represents a provider
link and the current represents flow, and uses techniques from
linear algebra. Our technique is useful because it provides
an intuitive explanation for the result, as well as providing a
framework from which to derive extensions to the result.

The models of [1] and [2] are part of a stream of recent
literature studying the price of anarchy for games of selfish
routing. Several works, see for example [4], [5], [6], study
games where users are selfish, but the network is passive,
the owners of the edges are not strategically choosing their
prices. Other work such as [7] consider the problem of having
the network choosing prices to induce optimal routing among
selfish users, rather than having parts of the network selfishly
choose prices to maximize revenue.

Another related work is by Johari and Tsitsiklis [8]. In
[8] the authors study games where the users request a bit
rate from the network, and in turn the network returns to
users a price that depends on the sum of the requested rates
on each resource. The model of [8] and the model of this
paper study very different situations. In particular in [8]the
main strategic agents are the users and in the model we study
the strategic agents are link operators seeking to maximize
profit. However, there are many similarities between the two
games in terms of the structure of the payoff functions of the
players. As in this paper, the authors of [8] derive bounds
on the efficiency loss.

A. Model

We consider a network consisting of a single source and
destination node. The nodes are connected byn links, each
of which is owned by a distinct selfish provider. Provideri
charges a pricepi per unit flow. Each link has a load
dependent latency ofli(fi) wherefi is the flow on link i
and whereli(·) is a convex function. We will pay particular
attention to the linear case whereli(fi) = aifi + bi. The
“disutility” of each link is the sum of latency and price and
therefore isli(fi) + pi. Users are nonatomic and are free to
choose the link that has the lowest disutility. Therefore, in
equilibrium, all used links have a common disutility value.
Users have a limit to how much disutility they will tolerate –
if all the links have a disutility higher than a user’s tolerance
or “willingness to suffer”, that user does not use any link.
Users are distributed in their willingness to suffer, so we
may define a functionU(x) to be the disutility that would
induce a total flow ofx across all links. To describe it another



way, suppose each user has a willingness to suffer that
is independent and identically distributed like the random
variable W . Let S be the total population of users and
let R(d) = SP (W > d) be S times the complementary
cumulative distribution function of willingness to sufferW .
ThenU(x) is the inverse function ofR(d). ClearlyU(x) is
decreasing. We make the additional assumption thatU(x) is
concave. The assumption thatU(x) is concave is a strong
assumption, but is necessary to derive the bound in this work.
The authors of [3] and [2] make this assumption as well.

We refer to an instance of the network pricing game as
G. An instanceG is specified by the collection of latency
functions{li(·)} and the disutility functionU(·).

We are interested in studying two configurations of the
systemG. In the first configuration, the link owners ad-
just their prices non-cooperatively until Nash equilibrium
is achieved. In the “social optimum configuration”, a social
planner chooses all prices to maximize social welfare. In a
sense the social optimum configuration is a type of Nash
equilibrium, in particular a Wardrop equilibrium, where the
non atomic users are free to be strategic while the links
are assigned prices by a social planner. However to avoid
confusion, we will refer to this situation as simply the social
optimum configuration. The social welfare of the system is
defined to be the profit of providers plus the utility gathered
by users. The utility gathered by users is found by integrating
the difference between each unit of flow’s willingness to
tolerate disutility, and the disutility the flow actually bears.
Therefore the utility gathered by users is

∫ f

0

(U(x) − d)dx

wheref is the total flow carried by the system, andd is the
equilibrium disutility found on all used links.

II. A FFINE LATENCY FUNCTIONS

Throughout this section we will assumeli(fi) = aifi + bi

and thatai > 0 for all i. In the full paper we will address
the case whereai = 0 by using a continuity argument.

A. Price-Flow Relationships

In this subsection we find relations between the price
of each link and the flow on each link in both Nash
equilibrium and the social optimum configuration. By using
these relations we are able to draw an analogy between the
pricing game and a network of resistors. In the analogous
resistor network, providers choose the resistance on their
branch of the circuit. In Nash equilibrium, providers pick a
resistance value that is higher than the social optimum value,
causing current (flow) to be less than the socially optimal
value.

We start by repeating a result found in [2], that a Nash
equilibrium exists.

Lemma 1: The network pricing game with affine latency
functions has a pure strategy Nash equilibrium.

Proof: The proof is found in [2]. The proof shows that
players’ best response functions are well defined, unique and

continuous and that therefore Brouwer’s fixed point theorem
guarantees the existence of a Nash equilibrium.

Next we characterize the Nash equilibrium, the result is
similar to Lemma 2.1 of [2].

Lemma 2: Consider a gameG with linear latency func-
tions and where the disutility functionU(·) is continuous,
concave, and everywhere differentiable. Also suppose that
all links are used in the Nash equilibrium ofG. Equivalently
fi > 0 ∀i . Then

pi

fi

= ai +





∑

j 6=i

1

aj

+
1

s





−1

(1)

where s = −U ′(f), and f is the total flow in Nash
equilibrium.

Proof: Suppose the total flow at Nash equilibrium is
f . We defines = −U ′(f). We now derive conditions so
that no player (link owner) wants to deviate from her Nash
equilibrium strategy. Suppose playeri unilaterally lowers his
price so that the new disutility isd − h. We consider what
effect this has on the overall flow in the system, as well as the
flow on each of the other player’s links. The total flow in the
the system increases by an amount not more thanh 1

s
because

of the concavity assumption. Letq(h)
s

≤ h
s

be the actual
amount of the increase, and note thatlimh→0

q(h)
h

→ 1.
Similarly, the flow in each other linkj decreases byh 1

aj
,

provided that the original flow on linkj was at leasth 1
aj

. To
cover the possibility that the original flow were not this large
defineyj(h) = min (fjaj , h). Then, limh→0

yj(h)
h

= 1 and
the flow in link j decreases byyj(h)

aj
. Thus the flow on linki

increases by
∑

j 6=i

yj(h)
aj

+ q(h)
s

. For notational convenience,
let

θ(h) =





∑

j

yj(h)/h

aj

+
q(h)/h

s



 .

The flow increase on linki can now be expressed simply as
hθ. The new pricep′ican be found by taking the difference
between the new disutility and the new latency oni’s link.
This difference is

p′i = (d − h) − ai



fi +
∑

j 6=i

yj(h)

aj

+
q(h)

s



 − bi

= pi − h − aih θ(h)

wherepi is the original price. We write an expression for
the new profitπ′ by taking the product of the new price and
flow which is

π′ = (pi − h − aihθ(h)) (fi + hθ(h)) =

− h2(1 + aiθ(h))θ(h) + h [(pi − aifi) θ(h) − fi] + π.

We would like to find conditions forπ′ is not greater than
the old profitπ for anyh. The first order condition requires



that the linear term of the above quadratic form inh have a
coefficient of0. This in turn requires that

fi =
pi(

∑

j 6=i
1
aj

+ 1
s
)

1 + ai(
∑

j 6=i
1
aj

+ 1
s
)
.

Note that this condition is also sufficient to insure thath = 0
is a global maximum, because under this condition, the linear
term inh vanishes and all that is left is the term that depends
on h2 that has a negative coefficient. Reducing the condition
further, we find that the condition is equivalent to

pi

fi

= ai +





∑

j 6=i

1

aj

+
1

s





−1

. (2)

Now consider the socially optimal pricing. We first give an
intuitive argument why the socially optimal price should be
aif

∗
i wheref∗

i is the flow of link i in social optimum. The
socially optimal pricing should price the flow so that each
user bears the marginal cost to society of each additional
unit of new flow. The latency on each link isaif

∗
i + bi.

However, the social cost is the latency times the amount of
flow bearing that latency. Therefore the cost isaif

∗2
i + bif

∗
i .

Thus the marginal cost is2aif
∗
i + bi. The latency born by

users isaif
∗
i + bi. Therefore to make the disutility born by

users reflect marginal social cost, the price should be set to
aif

∗
i .

We formalize the argument in the lemma and proof that
follows.

Lemma 3: In the gameG the social optimum price vector
satisfies

pi = aif
∗
i

for all i wheref∗
i is the flow in social optimum.

Proof: If a set of prices were to induce a flow vector that
maximizes social welfare, that set of prices would be socially
optimal. One way to quantify social welfare is to integrate
the area under the disutility curveU(x) up to the amount
of flow carried, and then subtract the welfare lost due to the
latency in each link. Therefore the socially optimal flow can
be found by solving the following optimization problem:

max

[

∫ f

0

U(x)

]

−
∑

i

(aif
2
i + bifi)

s.t.
∑

i

fi − f = 0,

fi ≥ 0 ∀i.

Note that the function−
[

∫ f

0
U(x)

]

+
∑

i(aif
2
i + bifi) is

convex and Slater’s constraint qualification condition holds
so there is no duality gap if we use Lagrangian techniques
to find the optimal solution [9]. We therefore may express
the solution to the above problem by writing the Lagrangian,
evaluating the first order conditions as well as the comple-
mentary slackness conditions for the Lagrange multipliers

a11
a1b1

Power =ProviderProfitp1
Power =Latency Loss

a22
a2b2

a33
a3b3

Vs

Fig. 1. A circuit analogous to the network pricing game.

associated with the inequality constraints and simplifying.
This yields

{

d∗ − 2aif
∗
i − bi = 0 f∗

i > 0

d∗ − bi < 0 f∗
i = 0

whered∗ = U(f∗) is the disutility of the used links in the
optimal solution. In our model the difference between the
disutility and the link latency should be the price of the
link. The above expression shows that for each used link
i, the disutility minus the latencyaif

∗
i + bi is equal toaif

∗
i ,

therefore the prices that achieve a socially optimal flow are
aif

∗
i .

The proof of Lemma 3 also demonstrates that the optimal
price achieves the optimal flow vector. In other words, if
we were to give the social planner the power to assign user
routes (choose the flow vector) the planner could not achieve
a better welfare than by merely choosing the link prices.

B. Circuit Analogy

Before we make the analogy between the game and a
network of resistors, we introduce an illustration like theone
used in [2] to visualize the relations between flowfi, price
pi, latency function slopeai and offsetbi for each link i.
The illustration is shown in panel (i) of Figure 2. The figure
shows that the pricepi plus latencyaifi + bi of each link is
equal to the common value,U(f1 + f2 + f3) = U(f). The
figure also shows the areas that correspond to link owner
profit and user surplus.
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Fig. 2. i) The Nash equilibrium of the gameG. ii) The Nash equilibrium of the gameGl, where the disutility function ofG has been linearized. Note
that the flow vector is unchanged from the Nash equilibrium ofG. iii) The Nash equilibrium of the gameGt, where the disutility function ofG has been
linearized and “truncated.” iv) The social optimum configuration of the gameGt. Note that the flowf∗ > f and that link 2 is not used in the social
optimum configuration of this example.

We illustrate our analogy to a network of resistors in
Figure 1. In the analogy, each link is one ofn parallel
branches in a circuit. The current in the branchi is analogous
to the flow on link i and the latency is analogous to the
voltage drop across a resistor ofai ohms and voltage source
of bi volts connected in series. To ensure that our imaginary
voltage source does not ever cause flow to go the wrong way
(become negative), we place a diode in each branch of the
circuit.

The pricepi is found by taking the voltage drop across a
resistor ofδi + ai ohms where

δi =





∑

j 6=i

1

aj

+
1

s





−1

=
pi

fi

− ai. (3)

The price plus the latency on a link equals the common
disutility found across all used links. In the circuit analogy,
the voltage representing price plus the voltage representing
latency equals the common voltaged across all the parallel
branches where

d = pi + aifi + bi = (2ai + δi)fi + bi.

The value d should also correspond to the point on
the value U(f), and there is a circuit analogy for this
correspondence as well. Suppose we letV be the y-intercept
of the tangent to the disutility curve at the pointU(f) = d.
Then

V − s
∑

fi = d.

This is analogous to having a battery ofV volts with an
internal resistance ofs ohms. As the current drawn from
the battery increases, the voltage output (analogous to the
willingness to tolerate disutility) decreases.

Alternatively, we could avoid linearizing by considering
a general power source with a nonlinear current to voltage
characteristic. In particular the current to voltage function
should matches the disutility functionU(·) which of course
relates flow to disutility.

To model the social optimum configuration, we keep the
general power source but replace the resistor modelling
the price-to-flow relationship fromai + δi to ai on each
branchi. Clearly, by decreasing the resistance in all branches,
the total amount of current (flow) should increase, and the
voltage drop (disutilityd∗) on all branches should decrease.
However, the ratio of the flows between branches can change,
because the ratio of the resistances changes between the two
cases. Therefore it is possible that the flow on a particular
branch decreases in social optimum. The flow on a branch
can even become zero ifd∗ ≤ bi. We also note that a
branch with a low enoughbi to carry a nonzero flow in the
social optimum configuration should also carry a nonzero
flow in the Nash equilibrium configuration. In other words,
a link that is used in social optimum should be used in Nash
equilibrium.

Intuition suggests that ifδi << ai were small for alli,
the difference between social optimum and Nash equilibrium
should also be small. Indeedδi is smaller thanaj for all
j 6= i. However, for the smallestai, it could be thatδi > ai.



Thus we cannot attempt to show thatδi is negligibly small.
In the next section, we will describe the relation between
the δi’s and ai’s, using linear algebra in order to develop
our proof on the price of anarchy bound.

C. The Price of Anarchy for Linear Latency

In this section we will show that the price of anarchy is at
most 1.5 for linear latency functions, where price of anarchy
is defined to be the ratio of welfare in social optimum to
the welfare in Nash equilibrium. We will first argue that we
can restrict our attention to examples where the disutility
function has been “linearized” for values larger or equal to
the equilibrium flowf and has been “truncated” or set to be
equal a constant for smaller values of flow. This argument is
also made in [2], but presented again here for completeness.
We illustrate the progression from the original game, to a
game with a linearized disutility function, and finally to a
truncated disutility function in Figure 2. Once we have shown
that we may restrict our analysis to truncated linear disutility
functions, we use techniques of linear algebra to prove the
final result.

Before we begin to prove the 1.5 bound of the price of
anarchy, we give an example where the price of anarchy is
exactly 1.5. Consider a network consisting of only one link
where the disutility function is

U(f) =

{

1 f ≤ 0

2 − f 1 ≤ f ≤ 2.

and the latency function isl(f) = 0. It is easy to verify that
the Nash equilibrium price isp = 1 which yields a profit of
1 for the provider and0 user surplus. The socially optimal
price is p = 0 which yields a profit of0 for the provider,
but a user surplus of3/2. Therefore the price of anarchy in
this example is 1.5. The rest of this section will prove that
there is not an example where the price of anarchy is larger
than this.

Lemma 4: Let f be the total Nash equilibrium flow of the
gameG. Let Gl be a new game identical toG except that the
disutility function of the new game is a line tangential to the
disutility function ofG at the pointU(f) = d. Then both the
Nash equilibrium flow and price vectors of the new gameGl

are the same as the Nash flow and price vectors of the old
gameG.

Proof: The Nash flow vector ofG satisfies the necessary
and sufficient condition in Lemma 2 to be a Nash equilib-
rium. Because the slope of the disutility function ofGl is the
same when the total flow isf , the Lemma 2 conditions for
Gl evaluated at the Nash flow vector ofG are satisfied. Thus
the Nash flow vector ofG is also a Nash flow forGl

Lemma 5: Consider the gameGt that consists of the same
latency functions asG andGl but has a disutility curve that
is modified from the disutility curve inGl by “truncating” it
in the following way:

U(x) =

{

d x ≤ f

d − s(x − f) x > f.

wheres = U ′(f). Then the Nash equilibrium flow and price
vectors of the new gameGt are the same as the Nash flow
and price vectors of the original gameG.

Proof: The argument is essentially the same as pre-
sented in [2]. Recall that Lemma 2 found that relation (2)
holds in Nash equilibrium whenever the disutility functionis
concave and everywhere differentiable. To prove this result,
we must show that (2) still holds for the truncated disutility
function. While the truncated disutility function is no longer
both-sided differentiable at the equilibrium point, it is right
hand differentiable. The first order condition on flowfi found
with the right hand derivative is almost the same as was
found in Lemma 2 but instead it holds with inequality. More
precisely

fi ≥
pi(

∑

j 6=i
1
aj

+ 1
s
)

1 + ai(
∑

j 6=i
1
aj

+ 1
s
)

for all i is the necessary and sufficient test to identify a Nash
equilibrium of gameGt. However, the Nash equilibrium flow
vector for gameG, must satisfy the above condition with
equality, therefore it is also a Nash equilibrium ofGt.

Lemma 6: Let N(G) and S(G) be the social welfare in
the Nash equilibrium and social optimum configurations of
the gameG. Then

S(Gt)

N(Gt)
>

S(G)

N(G)
.

Proof: Let U(G) be the user welfare in the Nash
equilibrium of gameG. In the Nash equilibrium of game
Gt, Lemma 6 shows that the flow vector will be the same
as the Nash flow ofG. Thus the provider welfare will be
the same in both cases. However, the user welfare will be 0.
Thus we have

N(Gt) = N(G) − U(G).

Consider a new gameGtx with the same latency functions
as G but with a disutility function that has been truncated
but not linearized. Therefore

Utx(x) =

{

d x ≤ f

U(x) x > f.

whered andf are the Nash equilibrium disutility and flow
of G, Utx(·) is the disutility function ofGtx, andU(·) is the
disutility function ofG. Because we know the disutilityd∗ in
social optimum is less thand we can view the optimization
problem of finding the optimal flow vector for gameGtx as
the same problem as finding the optimal flow vector for the
gameG but with the constantU(G) =

∫ f

0
(U(x)−d)dx sub-

tracted off the objective function. Thus, the social optimum
flow vector will be identical for gameGtx as for gameGt.
Thus

S(Gtx) = S(G) − U(G).

Now consider the gameGt where we have both truncated
and linearized the disutility function. By convexity, the
disutility function of Gt is never smaller than that ofGtx.
Thus the solution to the optimization problem of finding the
optimal flow vector has an objective function that is never



smaller than the objective function that we maximized to find
S(Gtx). Consequently

S(Gt) ≥ S(Gtx) = S(G) − U(G).

Combining our observations, we have

S(Gt)

N(Gt)
≥ S(G) − U(G)

N(G) − U(G)
≥ S(G)

N(G)

We define the following notation. The vectors of flows in
Nash equilibrium and social optimum are

F = [f1, f2, ..., fn]T , andF ∗ = [f∗
1 , f∗

2 , ..., f∗
n]T

respectively. We define

V = [V, V, ...V ]T , andb = [b1, b2, ...bn]T

as ann dimensional vector of allV ’s and the vector ofbi’s
respectively. The matrices

A = diag(a1, a2, ..., an) , and∆ = diag(δ1, δ2, ..., δn)

are diagonal matrices of thea′
is andδi’s respectively where

recall δi is defined by 3. It will also be convenient to define

M =







1 1 ...
1 1 ...
...

...
. . .







to be an × n matrix of all ones.
Without loss of generality, we may renumber the links

so that links used both in Nash equilibrium and in social
optimum are numbered1...m and the links used in Nash
equilibrium but not social optimum are numbered(m +
1)...(m + k) = n. There cannot exist links used in social
optimum that are not used in Nash equilibrium, while there
could be links that are not used in social optimum nor in
Nash equilibrium, but we will only consider examples where
such links are removed. Thus, we may defineĀ , ∆̄, be the
upperm × m blocks of the matricesA and∆ respectively.
These blocks contain theai’s and δ’s associated with links
that used both in Nash equilibrium and social optimum.

Similarly we defineA , ∆ to be the lowerk×k blocks of
A and∆ respectively. These blocks contain theai’s andδ’s
associated with links that are used both in Nash equilibrium
but are undercut (not used) in social optimum. We therefore
have

A =

[

Ā, 0
0, A

]

and∆ =

[

∆̄, 0
0, ∆

]

.

Theorem 1: Consider the pricing gameGt with linear
latency functions, and a truncated linear disutility function.
The difference between three times the Nash welfareWt =
N(Gt) and two times the social welfareW ∗

t = S(Gt) can be
expressed as

3Wt − 2W ∗
t = [F̄T FT ]

[

H11 H12

H21 H22

] [

F̄
F

]

(4)

where

H11 = Ā + ∆̄ − ∆̄(2Ā + sM)−1∆̄,

H12 = −s∆̄(2Ā + sM)−11m×k,

H21 = HT
12, and

H22 = 3A + 3∆ + s1k×k − s21k×m(2Ā + sM)−11m×k.
Proof: We have that

(2A + sM + ∆)F = V − b. (5)

We can write a similar expression for the flow in social
optimum case, with the following modification. In social
optimum, the disutilityd∗ may fall below bi for some i,
so that some links that were used in Nash equilibrium may
become not used in the social optimum case. Without loss of
generality, we renumber the links so that the the used links
number1...m and the unused links number(m + 1)...(m +
k) = n. Let Ā , M̄ , ∆̄, be the upperm by m blocks of the
matricesA, M and∆ respectively. We therefore have

[2Ā + sM̄, 0m×k]F ∗ = [Im×m, 0m×k](V − b)

or equivalently

F ∗ =

[

(2Ā + sM̄)−1 0m×k

0k×m 0k×k

]

(V − b).

By substituting (5) we find

F ∗ =

[

(2Ā + sM̄)−1 0m×k

0k×m 0k×k

]

×
[

2Ā + sM̄ + ∆̄ s1m×k

s1k×m 2A + sM + ∆

]

F

which reduces to

F ∗ =

[

I + (2Ā + sM̄)−1∆̄ s(2Ā + sM̄)−11m×k

0k×m 0k×k

]

F.

With a linear (not truncated) disutility curve, the total
social welfare gathered in Nash equilibrium is given by

W = FT (A +
1

2
sM + ∆)F

while the welfare gathered by the users iss
2FT MF . There-

fore the Nash equilibrium social welfare for a truncated linear
demand curve is

Wt = FT (A + ∆)F. (6)

For a linear (not truncated) disutility function the social
welfare gathered in the optimal configuration is given by

W ∗ = F ∗T (A +
1

2
sM)F ∗

While for a linear truncated disutility function, the social
welfare in the optimal configuration is

W ∗
t =

1

2
F ∗T (2Ā + sM)F ∗ − FT (

1

2
sM)F

=
1

2
F̄ ∗T

[

(2Ā + sM) + ∆̄, s1m×k

]

F − 1

2
FT (sM)F

=
1

2
FT

[

G11 G12

G21 G22

]

F (7)



where

G11 = 2Ā + 2∆̄ + ∆̄(2Ā + sM)−1∆̄,

G12 = s∆̄(2Ā + sM)−11m×k,

G21 = GT
12, and

G22 = s21k×m(2Ā + sM)−11m×k − s1k×k.

The Nash equilibrium social welfare, taken from expres-
sion (6) but expressed using the block matrix notation is

Wt = FT

[

Ā + ∆̄ 0
0 A + ∆

]

F. (8)

We can use expressions (7) and (8) to express three times
the Nash welfare minus two times the social optimal welfare
as

3Wt − 2W ∗
t = [F̄T FT ]

[

H11 H12

H21 H22

] [

F̄
F

]

where

H11 = Ā + ∆̄ − ∆̄(2Ā + sM)−1∆̄,

H12 = −s∆̄(2Ā + sM)−11m×k,

H21 = HT
12, and

H22 = 3A + 3∆ + s1k×k − s21k×m(2Ā + sM)−11m×k.

Lemma 7: Define

β , 2/s + tr(Ā−1),

α , 1/s + tr(A−1), and

e , 1m×1.

Provided thatai > 0 for all i, the following identities are
true:

(sĀ + sM̄)−1 =
1

2

[

Ā−1 − 1

β
Ā−1MĀ−1

]

∆̄ = (αĀ − I)−1Ā

∆̄(2Ā + sM)−1e =
1

sβ
(αĀ − I)−1e

eT (2̄A + sM̄)−1e =
tr(A−1)

sβ
Proof: The Matrix Inversion Lemma states that

(F + UCV )−1 = F−1 − F−1U(C−1 + V F−1U)−1V F−1

whereF, U, C, V are arbitrary matrices with only the condi-
tion that the matrices are of appropriate dimension and all the
inverses in the above expression exist. LetF = 2Ā, U = e,
V = eT , C = s/2 and note thatM = eeT = 1m×m. Then
we may apply the Matrix Inversion Lemma in the following
way:

(2Ā + sM̄)−1 =
1

2
Ā−1 − 1

4
Ā−1e

[

1

s
+

eT Ā−1e

2

]−1

eT Ā−1

=
1

2

[

Ā−1 − Ā−1e

[

2

s
+ tr(Ā−1)

]−1

eT Ā−1

]

=
1

2

[

Ā−1 − 1

β
Ā−1MĀ−1

]

.

To derive the next identity, recallδi =
[

∑

j 6=i
1
ai

+ 1
s

]−1

.
Therefore

∆̄−1 =

[

tr(A−1) +
1

s

]

− Ā−1

= αI − Ā−1.

ThusĀ∆̄−1 = αĀ− I, and thereforē∆Ā−1 = (αĀ− I)−1.
Note by construction,α > 1/ mini ai so that(αĀ − I)−1

exists. Finally we may conclude that̄∆ = (αĀ − I)−1Ā.
To derive the next identity we observe that:

∆̄(2Ā + sM)−1e

=
1

2
(αĀ − I)−1e − 1

2β
[αĀ − I]−1eeT Ā−1e

=
1

2

[

(αĀ − I)−1e − tr(Ā−1)

tr(Ā−1) + 2/s
(αĀ − I)−1e

]

=
1

sβ
(αĀ − I)−1e.

The final identity follows from the following reasoning:

eT (2Ā + sM̄)−1e =
1

2

[

eT Ā−1e − 1

β
eT Ā−1eeT Ā−1e

]

=
1

2

[

tr(A−1) − tr(A−1)2

tr(A−1) + 2/s

]

=
tr(A−1)

sβ
.

With the identities of Lemma 7, we can now prove the
main result of the section.

Theorem 2: Consider the pricing gameG with affine la-
tency functions. The price of anarchy, defined asS(G)

N(G) is at
most 1.5.

Proof: By Lemma 6 it is sufficient to show that
the price of anarchy for a game with a truncated linear
disutility function is 1.5. Without loss of generality, we may
assume that all links are used in Nash equilibrium, because if
otherwise, a link not used in Nash equilibrium would not be
used in Social Optimum. Therefore one can discard the links
unused in Nash equilibrium from the game without changing
the price of anarchy.

Applying the identities in Lemma 7 to the bound of
Theorem 1, we have

H11 = (αĀ − I)−1(α2Ā3 − αĀ2 − 1

2
Ā +

1

2β
M̄)(αĀ − I)−1

H12 =
1

sβ
(αĀ − I)−1emek

H21 = HT
12

H22 ≥ s1k×k − s2ekeT
m(2̄A + sM̄)−1emeT

k

=
2 + s tr(Ā−1)

β
1k×k − s tr(Ā−1)

β
1k×k

=
2

β
1k×k

where recall thatH11, H12, H21, andH22 are the blocks of
the matric in expression (4).



Let

Q , (αĀ − I)−1F̄ and

Z , ||F ||1 = ekF .

Note thatQ > 0 becauseαai > 1 for all i. By changing
variables fromF̄ andF to Q andZ we obtain that

3Wt − 2W ∗
t

≥ [QT , ZT ]

[

α2Ā3 − αĀ2 − 1
2 Ā + 1

2β
M̄ − 1

β
em

− 1
β
eT

m
2
β

] [

Q
Z

]

=
1

2β
||Q||21 −

2

β
||Q||1Z +

2

β
Z2+

QT (α2Ā3 − αĀ2 − 1

2
Ā)Q. (9)

Note that the quadratic|Q||21−2||Q||1Z+2Z2 is nonnegative.
Consider the following two cases.
Case 1:Supposeα2Ā3 − αĀ2 − 1

2 Ā ≥ 0, or equivalently

αāj ≥ 1+
√

3
2 for eachāj on the diagonal of̄A. Then3Wt −

2W ∗
t > 0.

Case 2: Suppose that for somej, αāj < 1+
√

3
2 . Let x ,

αāj − 1. Let j be the index of any such̄aj

We therefore have

αāj = x + 1 <
1 +

√
3

2
, (10)

We divide both sides of the equality bȳaj, and substitute
that α , tr(A−1) + 1

s
= tr(Ā−1) + tr(A−1) + 1

s
to obtain

that

x + 1

āj

=
∑

i

1

āi

+
∑

i

1

ai

+
1

s

where{ai} are the diagonal entries ofA. Thus

x

āj

=
∑

i6=j

1

āi

+
∑

i

1

ai

+
1

s
.

Define

ā−j ,





∑

i6=j

1

āi





−1

a ,

[

∑

i

1

ai

]−1

To extend our circuit analogy,̄a−j is the equivalent resistance
of all of the resistors{āi}i6=j connected in parallel whilea
is the equivalent resistance of the resistors{ai} connected
in parallel. After substituting these definitions, we have that

x

āj

=
1

ā−j

+
1

a
+

1

s

and thus

āj = x

[

1

ā−j

+
1

a
+

1

s

]−1

. (11)

Recall that

δj =

[

1

ā−j

+
1

a
+

1

s

]−1

.

From these last two relations, we have that

(2āj + δj) = (2x + 1)

[

1

ā−j

+
1

a
+

1

s

]−1

.

We will now find an upper bound on the total Nash equi-
librium flow on links that are not used in social optimum.
Thus

||F ||1 =
∑ d − bi

2ai + δi

< [d − min
i

(bi)]
∑ 1

2ai

=
1

2a
[d − min

i
(bi)].

We also note that

F̄j =
d − b̄j

2āj + δ̄j

.

Consequently,

||F ||1
F̄j

≤ [d − mini(bi)]

d − b̄j

2āj + δ̄j

2a
.

We note thatbi > b̄j for any i because links that are used
in social optimum must have a lower ‘b’ than links that are
not used in social optimum. Therefore

||F ||1
F̄j

≤ 2āj + δ̄j

2a

=
2x + 1

2a

[

1

ā−j

+
1

a
+

1

s

]−1

.

We also observe that

||Q||1 = eT (αĀ − I)−1F̄ =
∑ Fi

αāi − 1
≥ Fj

αāj − 1
=

Fj

x
.

Thus if we recallZ , ||F ||1, we obtain

Z

||Q||1
≤ (2x + 1)x

2a

[

1

ā−j

+
1

a
+

1

s

]−1

.

Let

υ =
(2x + 1)x

2a

[

1

ā−j

+
1

a
+

1

s

]−1

.

Then Z < υ||Q||1. If Z ∈ [0, 1
2 ||Q||1] then |Q||21 −

2||Q||1Z + 2Z2 decreases withZ. From the expression
above we see thatΥ < 1

2 (2x + 1)x, while we also have
that x <

√
3−1
2 < 0.367 from (10). This impliesυ <

.32 < .5 and thereforeZ must lie in the range where
|Q||21 − 2||Q||1Z + 2Z2 decreases inZ. Thus we have

|Q||21 − 2||Q||1Z + 2Z2 > |Q||21(1 − 2υ + 2υ2)

= QT
(

(1 − 2υ + 2υ2)M
)

Q.

After we substitute the above bound into (9) we obtain

3Wt − 2W ∗ >

QT ((
2

β
υ2 − 2

β
υ +

1

2β
)M + α2Ā3 − αĀ2 − 1

2
Ā)Q.



We defineΛ to be the matrix betweenQT and Q in the
above expression. Therefore

Λ , ((
2

β
υ2 − 2

β
υ +

1

2β
)M + α2Ā3 − αĀ2 − 1

2
Ā).

Note that it is sufficient to show that all entries ofΛ are
non-negative becauseQ is non-negative. The off-diagonal
elements ofΛ are clearly positive. Any diagonal element
k satisfying αāk ≥ 1+

√
3

2 is also non-negative because
this condition makesα2ā3

k − αā2
k − 1

2 āk non-negative and
( 2

β
υ2 − 2

β
υ + 1

2β
) is always nonneagtive. Thus we can focus

on diagonal elements of indexj′ satisfyingαāj′ < 1+
√

3
2

and recall we defined indexj to be any arbitrary index for
which αāj′ < 1+

√
3

2 is satisfied. Thus it is sufficient to show
that jth diagonal element which is

λjj =
2

β
υ2 − 2

β
υ +

1

2β
+ α2ā3

j − αā2
j −

1

2
āj . (12)

is nonnegative . Equivalently, we need to show that

λjjβ = 2υ2 − 2υ + 1/2 + (x2 + x − 1/2)(βāj) (13)

is positive. Note that we have used the fact thatαaj = x+1.
We will first derive an expression for the(x2 + x −

1/2)(βāj) term. Recall that

β =
1

āj

+
1

ā−j

+
2

s
.

We can substitute relation (11) to obtain

β =
sa(x + 1) + ā−ja(2x + 1) + ā−js

xā−jsa
,

while we also note that

āj = x

[

1

ā−j

+
1

a
+

1

s

]−1

=
xā−jas

ā−ja + as + ā−js
.

Therefore

βāj =
sa(x + 1) + ā−ja(2x + 1) + ā−js

ā−ja + as + ā−js
.

Later on it will be useful to have this expression with
a denominator of(ā−ja + as + ā−js)

2. By multilplying
numerator and denominator by a common expression we
obtain

βāj =





(a2[2x + 1] + s2 + sa[2x + 2])ā2
−j+

(s2a[x + 2] + sa2[3x + 2])ā−j+
a2s2[x + 1]





(ā−ja + as + ā−js)2
.

We may now write the term of (13) we seek to evaluate as

(x2 + x − .5)βāj =




















(

s2[x2 + x − .5] + sa[2x3 + 4x2 + x − 1]+
a2[2x3 + 3x2 − .5]

)

ā2
−j+

(

s2a[x3 + 3x2 + 1.5x − 1]+
sa2[3x3 + 5x2 + 0.5x− 1]

)

ā−j+

a2s2[x3 + 2x2 + .5x − .5]





















(ā−ja + as + ā−js)2
.

(14)

We now turn to deriving an expression for the2υ2−2υ+1/2
term of (13). Recall

υ =
(2x + 1)x

2a

[

1

ā−j

+
1

a
+

1

s

]−1

.

This reduces to

υ =
(x + 1/2)xsā−j

ā−ja + as + ā−js
. (15)

In order to have the denominator the same as that of
expression (14) we multiply numerator and denominator by
a common expression to obtain

υ =
s(x + 1/2)x(s + a)ā2

−j + s2a(x + 1/2)xā−j

(ā−ja + as + ā−js)2
. (16)

While squaring (15) yields

υ2 =
s2[x4 + x3 + x2/4]ā2

−j

(ā−ja + as + ā−js)2
(17)

Using expressions (16) and (17) we have that

2υ2 − 2υ + .5

=









(

s2[2x4 + 2x3 − 1.5x2 − x]+
sa[−2x2 − x]

)

ā2
−j+

s2a(−2x2 − x)ā−j









(ā−ja + as + ā−js)2
+ .5

=









(

s2[2x4 + 2x3 − 1.5x2 − x + .5]+
sa[−2x2 − x + 1] + .5a2

)

ā2
−j+

(s2a[−2x2 − x + 1] + sa2)ā−j + .5s2a2









(ā−ja + as + ā−js)2

(18)



By combining (14) and (18) we obtain

λjjβ =




















(

s2[2x4 + 2x3 − .5x2] + sa[2x3 + 2x2]+
a2[2x3 + 3x2]

)

ā2
−j+

(

s2a[x3 + x2 + .5x]+
sa2[3x3 + 5x2 + 0.5x]

)

ā−j+

a2s2[x3 + 2x2 + .5x]





















(ā−ja + as + ā−js)2
.

We see that the only term that contains a minus sign in the
above expression is2x4 +2x3− .5x2, but this is positive for
x > 0. Therefore we may conclude thatλjj is positive.

III. C ONVEX LATENCY FUNCTIONS

In this section we extend the result of Theorem 2 to
convex latency functions. For convex latency functions, itis
possible that a pure strategy Nash equilibrium does not exist.
The authors of [1] provide such an example. Therefore, our
theorem applies only in the case that a pure strategy Nash
equilibrium exist.

Theorem 3: Consider the pricing gameG with convex and
differentiable latency functions. Provided thatG has a pure
strategy Nash equilibrium, the price of anarchy defined as
S(G)
N(G) , is at most 1.5.

Proof: Let F be a Nash equilibrium flow vector forG.
If there is are more than one pure strategy Nash equilibria,
arbitrarily pick one. Letai = d

dx
li(fi) for eachi ∈ 1, ..., n,

thenpi andfi must satisfy the first order conditions laid out
in Lemma 2. Thus equation 2 must hold for alli ∈ 1, ...n.
Let b′i = l(fi)−aifi, i ∈ 1, ..., n. Someb′i might be negative,
so let B be the magnitude of the largest negativeb′i term,
and letbi = b′i + B for all i = 1, ..., n. Now consider a new
gameG+ derived from gameG by taking

li+(x) , li(x) + B ∀ i ∈ 1, ..., n andx ∈ R
+,

U+(x) , U(x) + B ∀ x ∈ R
+.

It is straightforward to see that the Nash equilibrium flow,
provider welfare, and user welfare should all be the same in
G+ as inG.

Define a new gameGl+ by taking

lil+(x) , aix + bi ∀ i ∈ 1, ..., n andx ∈ R
+

U+(x) , U(x) + B ∀ x ∈ R
+.

The flow F is also the Nash equilibrium of the gameGl+.
This is because the first order conditions that determine
whether aF is a Nash equilibrium in gameGl+ must also
be by satisfied byF to be a Nash equilibrium ofG+.
Furthermore, the provider profit and user welfare are the
same as in the Nash equilibrium ofG+.

The social optimum welfare ofGl+ is not worse than the
social optimum welfare ofG+. This is because the convex
latency functions ofGl+ are never smaller than their tangents,
which were used to make the latency functions ofG+. Thus
the optimum welfare forGl+ cannot be less than forG+.

Thus the price of anarchy ofG is the same as that of
G+. GameGl+ has the same Nash welfare asG+, but has
a higher (not smaller) social optimal welfare. Therefore the
price of anarchy ofGl+ is as large as the price of anarchy of
G. Therefore 1.5, the worst case price of anarchy for games
with linear latency functions, is also the worst case price of
anarchy for games with convex latency functions, provided
the latter has a pure strategy Nash equilibrium.

IV. CONCLUSION

We have developed a new technique for proving a bound
on the price of anarchy for a network pricing game with
competition, congestion, and elastic demand. We believe that
this technique will be useful in studying a number of related
models and extensions. One particular case that we hope to
study in future work is one in which users vary in the relative
values they place on price and latency. In other words, in
the model of the current paper, all users only consider the
sum of price and latency. An extension would be to study a
model where users look at a weighted sum of the two, and
the weights would be different values for different types of
users.
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Correction to The Price of Anarchy in a Network

Pricing Game

John Musacchio and Shuang Wu

This document corrects an error in the proof of Theorem 2 of the paper “The Price of Anarchy
in a Network Pricing Game,” which was presented at the Allerton Conference on Communication and
Control in September 2007 [1] 1. The error in the proof of Theorem 2 was in the last step that claims
that the polynomial 2x4 + 2x3 − .5x2 is positive for x ≥ 0, which is not true. The polynomial takes
negative values between x = 0 and x = 1

2(
√

2−1) reaching a minimum of about −0.00354. The original
proof required finding relations between the Nash equilibrium flow on links that are not used in the
social optimum configuration to the flow on other links. Revising this portion of the original proof
would have required revising many of the preceding steps, and probably adding even more complexity
in order to retain tighter bounds through each step. Rather than taking this approach, we have instead
developed a revised argument that avoids having to treat separately the links that are not used in the
social optimum configuration.

In the paper, we explained why some links that are used in Nash equilibrium may not be used
when prices are set to socially optimal levels. This is because the Wardrop equilibrium disutility level
d∗ may fall below the minimum latency bi of one or more links i. To account for this in the original
proof of Theorem 2, we separated the links into two classes, those that are used in the social optimum
configuration, and those that are not. Furthermore, in our circuit analogy, we placed diode elements
in each branch to prevent the flow on some branches from going in the reverse direction which would
happen if bi was larger than d∗, the common voltage seen by all the branches. We call such branches
whose minimum latency is more than d∗ as “undercut.” Recall that the social optimum configuration
flow rates are modeled by the circuit pictured in Figure 1 with the following modification. To model
social optimum pricing, the resistors representing the ratio of price to flow are changed to be ai,
not ai + δi which models Nash equilibrium pricing and is what is shown in the figure. The profit
on each link is aif

∗
i

2, and the user welfare is 1
2s(

∑

f∗
i )2 for a linear disutility function. (Recall our

measure of social welfare is consumer surplus, which is found by integrating the area under the demand
(disutility) function above the market clearing disutility d∗. For a linear disutility function, the region
is triangular shaped, hence the factor of 1

2 in the expression for user welfare.) Also note that each
resistor ai representing provider pricing is paired on the same branch with another resistor of size ai

representing that provider’s latency function. Thus the social welfare (sum of profits and user welfare)
in this situation is exactly half the power dissipated by resistors in the circuit.

Suppose that in the social optimum configuration we do indeed have “undercut” branches whose
flow in the circuit analogy is kept from going negative (backwards) by the diode elements. A natural
question is whether if the undercut branches were turned “on.” (i.e. the diode preventing backward flow
were removed) would the power dissipated by resistors go up or down. If one can show that the power
never goes down, then one can upper-bound the social welfare of the social optimum configuration by
half the power dissipated by resistors of the circuit with the diodes removed. Such a bound would
greatly simplify the analysis by obviating the need of keeping track of the undercut branches. In the
following lemma, we show that such an upper-bound can be constructed.

1We are very grateful to Xingang Shi of the Chinese University of Hong Kong for finding the error and bringing it our

attention. His discovery of this problem led us to develop the corrected and improved proof we describe here.
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Lemma A. Let W ∗
l be the social welfare of the social optimum configuration for a linear disutility,

(thus equal to half the power dissipated by resistors in the circuit with diodes that shuts off undercut

links.) Let ˜W ∗
l be half the power dissipated by resistors in the same circuit but with such diodes removed.

Then
W ∗

l ≤ ˜W ∗
l .

Proof: Consider the circuit representing social optimum configuration with branches i ∈ {1...m}
carrying positive flow. Define

ā =

[

m
∑

i=1

1

ai

]−1

, b̄ = ā

m
∑

i=1

bi

ai

to be the Thevinin equivalent resistance and voltage respectively of branches that carry flow in social
optimum. Also note that

d∗ = V
2ā

2ā + s
+ b̄

s

2ā + s
.

Now suppose an undercut branch j /∈ {1..m} with bj > d∗ is “turned on.” A current h will flow from the
branch into the node shared by all the other branches. To balance the new incoming current, Kirkoff’s
laws dictate that the flow on the branches representing links will increase (which one can think of as
one Thevenin equivalent branch) while the flow coming from source V will decrease. Because by the
superposition principal this new current distributes itself according to the ratio of the conductances,
source V’s contributed power is reduced by

V h
2ā

2ā + s
.

Similarly the power dissipated by the bi voltage sources will increase by a total of

b̄h
s

2ā + s
.

Since newly “turned on” voltage source bj is larger than d∗ we can use the expression for d∗ to determine
that the power that source bj contributes is larger than

V h
2ā

2ā + s
+ b̄h

s

2ā + s
.

Thus the power that source bj contributes more than makes up for both the decline in power by source
V and increased consumption of the bi sources. Consequently the power dissipated by resistors in the
circuit increases when undercut branch j is “turned on.”

If we have several undercut branches, we can turn them on one at a time in order of increasing bj .
As we do this, we can see that the new voltage d′ (the voltage of the common node that was originally
d∗ before turning on undercut branches) will never exceed the last bj turned on. Consequently, each
turned on branch will only increase the power dissipated by resistors. We conclude that the power
dissipated by resistors in the circuit representing social optimum configuration increases (does not
decrease) when all the diode elements are removed.

�

The following Lemma is similar to Theorem 1 of the original paper, but uses the simplifications
made possible by Lemma A.

Lemma B. Consider the pricing game Gt with linear latency functions, and a truncated linear disutility
function. The difference between three times the Nash welfare Wt = N(Gt) and two times the social
welfare W ∗

t = S(Gt) can be expressed as

3Wt − 2W ∗
t ≥ F T [A + ∆ − ∆(2A + sM)−1∆]F. (1)

Proof: From analyzing the voltage drops across the branches of the circuit describing the Nash
equilibrium of the game we have that

(2A + sM + ∆)F = V − b

2



where recall from the original paper that V is a vector of all V ’s, b is a vector containing the values
of each bi, A is a diagonal matrix with entries {ai}, M is a matrix fully populated with 1’s, and ∆ is
a diagonal matrix with diagonal entries {δi} defined by (3) of the original paper. With a linear (not
truncated) disutility curve, the total social welfare gathered in Nash equilibrium is given by

W = F T (A +
1

2
sM + ∆)F,

while the welfare gathered by the users is s
2F T MF . Therefore the Nash equilibrium social welfare for

a truncated linear demand curve is

Wt = F T (A + ∆)F.

Now consider the power dissipated by resistors in the circuit describing the social optimum config-
uration for linear disutility, but with the diodes removed (undercut branches “turned on.”). Half of

this power, which we already assigned the notation ˜W ∗
l can be expressed as

˜W ∗
l =

1

2
(V − b)T (2A + sM)−1(V − b).

By Lemma A, W ∗
l ≤ ˜W ∗

l . Consequently for a linear truncated disutility function, the social welfare in
the optimal configuration satisfies

W ∗
t = W ∗

l − s

2
F T MF ≤ W̃ ∗

l − s

2
F T MF.

For convenience let the right most expression be denoted ˜W ∗
t . Thus 3Wt − 2W ∗

t ≥ 3Wt − 2˜W ∗
t .

Combining the above identities we have that

3Wt − 2˜W ∗
t = F T (3A + 3∆ + sM)F − F T (2A + sM + ∆)(2A + sM)−1(2A + sM + ∆)F

= F T (A + 2∆)F − F T (2A + sM + ∆)(2A + sM)−1∆F

= F T [A + ∆ − ∆(2A + sM)−1∆]F.

�

The following is a restatement of Theorem 2 of the original paper along with the new proof.

Theorem 2. Consider the pricing game G with affine latency functions. The price of anarchy, defined
as S(G)

N(G) is at most 1.5.

Proof: By Lemma 6 of the paper it is sufficient to show that the price of anarchy for a game with
a truncated linear disutility function is 1.5. Without loss of generality, we may assume that all links
are used in Nash equilibrium, because if otherwise, a link not used in Nash equilibrium would not be
used in social optimum. Therefore one can discard the links unused in Nash equilibrium from the game
without changing the price of anarchy.

From Lemma B we have that

3Wt − 2W ∗
t ≥ F T [A + ∆ − ∆(2A + sM)−1∆]F. (2)

Since the Nash equilibrium flow vector has only positive entries, it is sufficient to show that the matrix
in square brackets has nonnegative entries in order to show the whole expression is nonnegative. That
is the focus of the remainder of the proof. By the Matrix Inversion Lemma,

(2A + sM)−1 =
1

2

[

A−1 − 1

t + 2/s
A−1MA−1

]

where t , tr(A−1). From the definition of ∆

∆−1 =

[

tr(A−1) +
1

s

]

I − A−1 = αI − A−1

3



and therefore ∆ = (αA − I)−1A. Substituting this relation we have that

∆(2A + sM)−1∆ = (αA − I)−1

[

1

2
A − 1/2

t + 2/s
M

]

(αA − I)−1

and therefore the right side of (2) can be written as

A + ∆ − ∆(2A + sM)−1∆ = (αA − I)−1

[

α2A3 − αA2 − 1

2
A +

1/2

t + 2/s
M

]

(αA − I)−1.

The matrix (αA − I)−1 is diagonal with positive diagonal entries. Thus to show that the matrix
expression on the right side of of the above equation has nonnegative entries, it is sufficient to show
that the term in square brackets has nonnegative entries. Because α = t + 1/s The term in square
brackets is

1

t + 2/s

[

(t + 2/s)(t + 1/s)2A3 − (t + 2/s)(t + 1/s)A2 − 1

2
(t + 2/s)A +

1

2
M

]

.

Let Ψ denote the matrix in square brackets of the above expression. The ith diagonal entry of Ψ
satisfies

Ψii =
1

t + 2/s

[

(t + 2s−1)(t + 1/s)2a3
i − (t + 2/s)(t + 1/s)a2

i −
1

2
(t + 2/s)ai +

1

2

]

=
1

t + 2/s

[

(t3 + 4t2s−1 + 5ts−2 + 2s−3)a3
i − (t2 + 3ts−1 + s−2)a2

i −
1

2
tai − ais

−1 +
1

2

]

=
1

t + 2/s

[

(t3a3
i − t2a2

i ) +
[

(3t2a2
i − 3tai) + (t2a2

i − 1)
]

ais
−1 + (5tai − 1)a2

i s
−2 + 2a3

i s
−3 − 1

2
tai +

1

2

]

≥ 1

t + 2/s

[

(tai)
3 − (tai)

2 − 1

2
(tai) +

1

2

]

≥ 1

2(t + 2/s)
[tai − 1]

Note the last two steps use the fact that tai ≥ 1. Consequently, we have that

2(t + 2/s)Ψ ≥











ta1 − 1 1 . . . 1
1 ta2 − 1 . . . 1
...

... . . .
...

1 1 . . . taN − 1











where the ≥ relation is element by element. The right side has all nonnegative entries, therefore Ψ,
and consequently [A + ∆ − ∆(2A + sM)−1∆] have all nonnegative entries. Thus 3Wt − 2W ∗

t ≥ 0.
�
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