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Abstract

Following up on a recently renewed interest in computational methods for M /G/1-type processes, this paper considers an
M /G/1-like system in which the service time distribution is represented by a Coxian series of memoryless stages. We present a novel
approach to the solution of such systems. Our method is based on conditional probabilities, and provides a simple, computationally
efficient and stable approach to the evaluation of the steady-state queue length distribution. We provide a proof of the numerical sta-
bility of our method. Without explicit use of matrix-geometric techniques or stochastic complementation, we are able to handle sys-
tems with state-dependent service and arrival rates. The proposed approach can be used to compute the queue length distribution for
both finite and infinite M /G/1-like queues. In the case of an infinite, state-independent queue, our method allows us to show using
elementary tools that the queue length distribution is asymptotically geometric. The parameter of the asymptotic geometric can be
expressed through a simple set of equations, easily solved using fixed point iteration. Our approach is very thrifty in terms of mem-
ory requirements, easy to implement, and generally fast. Numerical examples illustrate the performance of the proposed method.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

M /G/1-type queues are an essential tool in the performance analysis of computers and computer networks. Devices
ranging from volumes in a storage subsystem to stations in an optical ring network have been represented as M /G/1
queues. Oftentimes, it is necessary to take into account the finite buffer space at such devices (e.g. to properly size
the buffers), and, in some systems, the fact that the service rate may depend on the number of customers in the
system (e.g. due to contention for shared resources). The efficient and numerically stable solution of such queues, in
particular, the calculation of the stationary queue length probabilities, is therefore of importance. Recently, there has
been a renewed interest in computational methods for M /G/1-type processes [27,30]. As discussed by Stathopoulos
et al. [30], matrix analytic techniques introduced by Neuts [23,24] are often used to evaluate such processes. In
particular, Ramaswami’s algorithm [25,21] provides a numerically stable approach to the computation of steady-state
probabilities in an M /G/1-type system. This algorithm is based on stochastic complementation [28], and its fastest
implementation uses the FFT [22] (cf. [30]). The ETAQA method [27] has been proposed as an alternative for the
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computation of the moments of the queue length distribution (but not the distribution itself). Stathopoulos et al. [30]
derive a new formulation for ETAQA and demonstrate its links with the Ramaswami’s method.

The large body of previous work includes the work by Gaver et al. [14], who consider finite queues in randomly
changing environments, and derive a numerical method involving recursive determination of certain matrices. Bright
and Taylor [10] extend the logarithmic reduction algorithm proposed by Latouche and Ramaswami [18] to level-
dependent infinite queues. They note possible numerical problems when recursively calculating matrices involved in
the solution. Such problems are also mentioned in Gaver et al. [14]. Latouche shows in [17] that Newton’s method
applied to non-linear equations in Markov chains is quadratically convergent although not very attractive because of
its computational complexity. Bini and Meini [6] extend the cyclic reduction techniques to infinite block matrices, and
later propose an improvement based on FFT to lower computational cost and increase numerical stability [7]. Akar
and Sohraby [1] propose an invariant subspace approach with at least quadratic convergence rates and potentially
improved accuracy due to the avoidance of truncation. Ramaswami and Taylor [26] study the generalization of
matrix-geometric stationary distribution to level-dependent quasi-birth-and-death processes. More recently, Bean
et al. [3] consider quasistationary distributions for level-dependent processes and their computation using methods
akin to the Latouche–Ramaswami algorithm. Ye [31] studies the theoretical properties of the Latouche–Ramaswami
logarithmic reduction algorithm, pointing out numerical stability issues and offering an alternative based on a more
stable algorithm for inverting a diagonally dominant matrix.

The asymptotic behavior of an infinite queue has been studied, among others, by Bean et al. [4] who consider
quasi-birth-and-death processes with decomposable spaces, and use the matrix-geometric form of the steady state
probability vector to derive a numeric method for computing the “caudal characteristic factor” of the process using
matrices smaller than earlier traditional methods. Knessl et al. [15] consider a state-dependent M /G/1 where the
interarrival and the service time distributions depend on the amount of unfinished work in the system. They apply
perturbation methods to derive approximations for several measures pertaining to the unfinished work and the mean
busy period in such a queue. In a related work, Knessl et al. [16] study a GI/G/1 queue with a similar form of state
dependence using the same perturbation methods.

The reader is referred to the books by Latouche and Ramaswami [19], and by Bini et al. [5] for an overview of
properties of matrix analytic approaches and numerical methods for quasi-birth-and-death problems and M /G/1-type
Markov chains. Practical considerations and software implementation for several of the methods mentioned above are
discussed by Bini et al. [8,9].

In this paper, we consider an M /G/1-like system in which the service time distribution is represented by a
Coxian [12] series of memoryless stages. It is well known that a Coxian distribution can approximate arbitrarily
closely any distribution, and a two-stage Coxian can be used to match the first two moments of any distribution [2]
whose coefficient of variation is greater than 1. Several authors have considered algorithms for matching an arbitrary
distribution by a Coxian, e.g. [11,29,13,20].

Our method is based on conditional probabilities, and provides a simple, computationally efficient and numerically
stable approach to the evaluation of the steady-state queue length distribution. Without any explicit use of matrix-
geometric techniques or stochastic complementation, we are able to solve systems with state-dependent service and
arrival rates. As a result, the proposed approach can be used for finite M /G/1-like queues as well. In the case of an
infinite, state-independent queue, the form of the queue length distribution indicates that it is asymptotically geometric
with a coefficient given as a solution of a simple set of equations, easily solved via fixed point iteration. To the best of
our knowledge, the proposed method is novel.

This paper is organized as follows. In Section 2 we describe in more detail the queue considered and present
our computational approach. Section 3 is devoted specifically to the case of an infinite state-independent queue and
its asymptotically geometric queue length distribution. In Section 4 we outline the proof of numerical stability of
our method. Section 5 presents numerical results to illustrate the behavior of our method, and Section 6 concludes
this paper. Additionally, in the Appendix we show that the conditional probability on which we base our approach
converges to a single fixed point in the case of an infinite state-independent queue.

2. M/G/1-like model and its recurrent solution

2.1. Model considered and its equations

The single-server queuing model considered is shown in Fig. 1.
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Fig. 1. M /G/1-type queue with Coxian-like service.

We assume that customers arrive from a quasi-Poisson source with rate λ(n) where n denotes the current number of
customers in the system. The service of a customer is represented by a state-dependent Coxian-like distribution [12]
with a total of k stages. Both the completion rates of the memoryless stages and the exit probabilities in this distribution
may depend on the number of customers in the queue. We denote by µi (n) the service rate of stage i and by qi (n) the
probability that the customer completes its service following stage i, i = 1, . . . , k. We let q̂i (n) = 1 − qi (n) denote
the probability that the customer proceeds to stage i + 1 upon completion of stage i when there are n customers
in the system. We assume that µi (n) > 0, i = 1, . . . , k, 0 < q̂i (n) ≤ 1 for i < k and q̂k(n) = 0. Note that our
formulation allows not only the mean value but also the nature of the service time distribution to change as the number
of customers in the queue changes.

We consider the system of Fig. 1 in steady state, and we use the couple (n, i) where n (n ≥ 1) is the current
number of customers and i (i = 1, . . . , k) is the current stage of service to describe the state of the system when it is
not idle. We denote by p(n, i) the corresponding steady state probability, and by p(0) the probability that there are no
customers in the system.

It is straightforward to obtain the balance equations for the corresponding state probabilities

p(1, 1)[λ(n) + µ1(n)] =

k∑
i=1

p(n + 1, i)µi (n + 1)qi (n + 1) + p(0)λ(0) (1)

p(1, i)[λ(n) + µi (n)] = p(n, i − 1)µi−1(n)q̂i−1(n), i > 1 (2)

for n = 1, and

p(n, 1)[λ(n) + µ1(n)] =

k∑
i=1

p(n + 1, i)µi (n + 1)qi (n + 1) + p(n − 1, 1)λ(n − 1) (3)

p(n, i)[λ(n) + µi (n)] = p(n, i − 1)µi−1(n)q̂i−1(n) + p(n − 1, i)λ(n − 1), i > 1 (4)

for n > 1.
These balance equations can be transformed into equations for the conditional probabilities of the service stage

number given the current number of customers, and solved as a simple recurrence.

2.2. Recurrent solution

Our goal is to transform the standard balance equations (1)–(4) into easy-to-evaluate recurrence relations. We
denote by p(i | n) the conditional probability that the current service stage is i given that the number of customers is
n, and by p(n) the marginal probability that the number of customers in our M /G/1-like queue is equal to n. For all
n ≥ 1 and i = 1, . . . , k we have

p(n, i) = p(i | n)p(n). (5)

From (5) and the balance equations (1)–(4), it is easy to see that p(n) can be expressed as

p(n) =
1
G

n∏
l=1

λ(l − 1)/u(l), (6)

where G is a normalizing constant and

u(n) =

k∑
i=1

p(i | n)µi (n)qi (n) (7)
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u(n) is the conditional rate of completion given n, and 1/u(n) can be viewed as the mean service time given that there
are n customers in the system.

Substituting (5) and (6) into the balance equations, and using the fact that p(n) > 0 for all feasible values of n, we
readily obtain the equations for the conditional probabilities p(i | n)

p(1 | 1)[λ(1) + µ1(1)] = λ(1) + u(1) (8)

p(i | 1)[λ(1) + µi (1)] = p(i − 1 | 1)µi−1(1)q̂i−1(1), i > 1 (9)

for n = 1, and

p(1 | n)[λ(n) + µ1(n)] = λ(n) + p(1 | n − 1)u(n) (10)

p(i | n)[λ(n) + µi (n)] = p(i − 1 | n)µi−1(n)q̂i−1(n) + p(i | n − 1)u(n), i > 1 (11)

for n > 1.
Since we must have

k∑
i=1

p(i | n) = 1 for n ≥ 1, (12)

we can express the solution of (8) and (9) as

p(i | n = 1) =
1
H

i∏
j=2

µ j−1(1)q̂ j−1(1)/[λ(1) + µ j (1)], (13)

where H is a normalizing constant. The empty product is equal to 1 by convention, so that we have p(1 | 1) = 1/H .
Note that Eqs. (8) and (9), together with the normalizing condition (12), imply that we must have u(1) < µ1(1) in the
steady state of our system.

We now consider Eqs. (10) and (11) for increasing values of n = 2, 3, . . . For each n, the p(i | n − 1) are
known from the preceding step, so that (10) and (11) is a system of k equations for the k conditional probabilities
p(i | n), i = 1, . . . , k. We note that Eqs. (10) and (11) involve u(n), a linear combination of the conditional
probabilities p(i | n), and we can express the latter as

p(i | n) = bi (n)λ(n) + ci (n)u(n). (14)

From (10) we have

b1(n) = 1/[λ(n) + µ1(n)], and c1(n) = p(1 | n − 1)/[λ(n) + µ1(n)]. (15)

Eq. (11) yields the following recurrence

bi (n) = bi−1(n)µi−1(n)q̂i−1(n)/[λ(n) + µi (n)],

ci (n) = [ci−1(n)µi−1(n)q̂i−1(n) + p(i | n − 1)]/[λ(n) + µi (n)] for i > 1.
(16)

Having computed the coefficients bi (n) and ci (n) from the above recurrence, we determine u(n) from the normalizing
condition (12)

u(n) =

[
1 − λ(n)

k∑
i=1

bi (n)

]/ k∑
i=1

ci (n). (17)

For n = 1, we can use a similar approach or the solution form given by (13). Note that the recurrence itself (15) and
(16) involves no subtractions to detract from numerical stability. A formal proof of stability is outlined in Section 4.
Space requirements of our recurrent computation are very modest since we need only one set (for a single value of
n) of the conditional probabilities p(i | n) at any time. Even the values of u(n) need not be kept if we embed our
recurrence into the computation of the marginal probability p(n). The latter is given by the familiar product-form
formula (6) identical to that of a state-dependent M /M /1 queue with arrival rate λ(n) and service rate u(n). Clearly,
if λ(n) vanishes for some value of n, the customer population is limited and the recurrence has a “natural” stopping



370 A. Brandwajn, H. Wang / Performance Evaluation 65 (2008) 366–381

point. If the population in the queue is unrestricted, as would be the case with a Poisson source, the computation will
have to stop when values of p(i | n) (and thus u(n)) for consecutive values of n no longer change more than some
reasonable tolerance we fix as the convergence criterion. To the best of our knowledge, the proposed approach to the
computation of the stationary queue length probabilities in an M /G/1-like queue is novel. The next section is devoted
to the particular case of an infinite state-independent queue.

3. Infinite state-independent queue

We now restrict our attention to the particular case of an M /G/1-like queue with Poisson arrivals and standard
Coxian service distribution. Specifically, we have λ(n) = λ, µi (n) = µi , and qi (n) = qi . Since the approach
presented in the preceding section involves a recurrent computation of the conditional probabilities p(i | n)

for consecutive values of n, it might seem that, for the open queue, the method would require the solution of
an infinite number of such recurrences. In this section we argue that, in practice, these conditional probabilities
tend to quickly reach a limiting value, so that only a relatively small number of recurrences need to be solved.
In the process, we demonstrate the asymptotically geometric form of the steady-state distribution p(n) for large
n.

For the queue considered, the equations for the conditional probability for n = 1 become

p(1 | n = 1)[λ + µ1] = λ + u(1) (18)

p(i | n = 1)[λ + µi ] = p(i − 1 | n = 1)µi−1q̂i−1, i > 1, (19)

and for n > 1 we have

p(1 | n)[λ + µ1] = λ + p(1 | n − 1)u(n) (20)

p(i | n)[λ + µi ] = p(i − 1 | n)µi−1q̂i−1 + p(i | n − 1)u(n), i > 1. (21)

As n tends to infinity, the conditional probability p(i | n) and u(n) tend to their limiting values which we denote by
p̃(i) and ũ, respectively. A rigorous proof of this convergence is presented in the Appendix. Given the form of p(n)

in (6), the convergence to limiting values means that we have asymptotically for large n,

p(n + 1)/p(n) ≈ λ/ũ, (22)

i.e., the steady-state distribution is asymptotically geometric.
In our numerical experiments, we found that, typically, the solution of Eqs. (20) and (21) tends rapidly to the

limiting distribution p̃(i) as n increases. Consequently, we can use the following computational approach to obtain
the queue length distribution for the infinite state-independent queue. Select a convergence criterion, e.g. ‖p(i | n)

− p(i | n −1)‖ < ε with some reasonable value of ε, and let ñ be the value of n for which the convergence is attained.
We can express the steady-state distribution p(n) as

p(n) ≈
1
G



n∏
l=1

λ/u(l), n ≤ ñ[
ñ∏

l=1

λ/u(l)

]
(λ/ũ)n−ñ, n > ñ.

(23)

The normalizing constant G can be written as

G = 1 +

ñ−1∑
n=1

n∏
l=1

λ/u(l) +

[
ñ∏

l=1

λ/u(l)

]
1

1 − (λ/ũ)
.

Thus, we use the recurrence described in Section 2.2 (13)–(17) for n = 1, . . . , ñ (i.e. simply until convergence has
been reached in the computation of p(i | n) and u(n)). Once convergence has been attained, we use the last computed
value for u(n) as the limiting value ũ in the geometric tail of the distribution p(n). With this approach, the expected
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number of customers in the system can be written as

n̄ ≈
1
G

{
ñ∑

n=1

np(n) +

[
ñ

1 − (λ/ũ)
+

(λ/ũ)

[1 − (λ/ũ)]2

] ñ∏
l=1

λ/u(l)

}
.

Clearly, the system is stable as long as λ < ũ.
In practice, it has been our experience that convergence to ũ tends occur quite rapidly, resulting typically in

moderate values for ñ. In Section 5, we present numerical results to illustrate the behavior of our method.
Our recurrent algorithms produce the set of u(n) for n = 1, . . . , ñ, i.e., until convergence to ũ. If desired, the

limiting value ũ can also be computed independently as follows. The limiting conditional probabilities p̃(i) and the
limiting service rate value ũ satisfy the following equations

p̃(1)[λ + µ1] = λ + p̃(1)ũ (24)

p̃(i)[λ + µi ] = p̃(i − 1)µi−1q̂i−1 + p̃(i)ũ, i > 1. (25)

Eqs. (24) and (25) can be easily (and, generally, rapidly) solved using a fixed-point iteration. Starting with an initial
probability distribution p̃0(i) (we use a superscript to denote the iteration number) and the corresponding value ũ0,
we compute values at iteration j

p̃ j (1) ∝ [λ + p̃ j−1(1)ũ j−1
]/[λ + µ1] (26)

p̃ j (i) ∝ [ p̃ j (i − 1)µi−1q̂i−1 + p̃ j−1(i)ũ j−1
]/[λ + µi ], i > 1. (27)

At each iteration we normalize the values so as to have
∑k

i=1 p̃ j (i) = 1. This allows us to determine the limiting
values p̃(i) and ũ. The latter is the service rate value for the asymptotically geometric state probability. We do not
have a formal proof of convergence of this iterative scheme. In practice, it has converged without any damping in the
iteration for all the cases investigated.

The next section is devoted to a formal proof that our recurrent algorithm is numerically stable.

4. Stability of recurrent solution

Our goal in this section is to show that our recurrent solution described in Section 2 is computationally stable. For
our purposes here, we find it convenient to rewrite the recurrence as

p(i | n)[λ(n) + µi (n)] = p(i − 1 | n)µi−1(n)q̂i−1(n) + λ(n)δi,1 + p(i | n − 1)u(n), (28)

where we use the following notation

p(i | 0) =

{
1, i = 1
0, i > 1,

p(0 | n) = 0 and δi,1 =

{
1, i = 1
0, i 6= 1.

As described in Section 2, the solution can be expressed as

p(i | n) = bi (n)λ(n) + ci (n)u(n) (29)

with the coefficients bi (n) and ci (n) given by

bi (n)[λ(n) + µi (n)] = bi−1(n)µi−1(n)q̂i−1(n) + δi,1 (30)

ci (n)[λ(n) + µi (n)] = ci−1(n)µi−1(n)q̂i−1(n) + p(i | n − 1). (31)

By convention, we let b0(n) = c0(n) = 0. u(n) is given by (17), i.e.

u(n) =

[
1 − λ(n)

k∑
i=1

bi (n)

]/ k∑
i=1

ci (n).

We assume that the Coxian service time distribution has indeed k stages, so that

µi (n) > 0, i = 1, . . . , k, 0 < q̂i (n) ≤ 1 for i < k and q̂k(n) = 0.

We start by showing that our recurrence for p(i | n) produces positive values.
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Lemma 1. If p(1 | n − 1) > 0 and p(i | n − 1) ≥ 0 for i > 1, then we have

(1) bi (n) > 0 and ci (n) > 0 for i ≥ 1,
(2) u(n) > 0, and
(3) p(i | n) > 0 for i ≥ 1.

Proof. (1) Follows directly from (30) and (31).
(2) Summing (30) over all values of i and using the fact that q̂k(n) = 0, we have

k∑
j=1

b j (n)[λ(n) + µ j (n)] =

k∑
j=1

b j (n)µ j (n)q̂ j (n) + 1.

Rearranging the terms and using the fact that q j (n) = 1 − q̂ j (n), we get

1 − λ(n)

k∑
j=1

b j (n) =

k∑
j=1

b j (n)µ j (n)q j (n) > 0, and hence u(n) > 0.

(3) Follows directly from the results of (1) and (2).

Lemma 1 tells us that p(i | n) > 0 for i ≥ 1 and n ≥ 1. �

We now consider a set of perturbed conditional probabilities (the perturbation corresponding to floating point
round-off errors)

p̃(i | n − 1) = p(i | n − 1) + ∆p(n−1)
i .

Since the conditional probability is normalized at each step of the recurrence, the perturbations ∆p(n−1)
i must

satisfy
∑k

i=1 ∆p(n−1)
i = 0. We also assume that the perturbations are small so that we have p̃(i | n − 1) > 0. (30)

shows that the perturbation does not affect bi (n). Let c̃i (n) = ci (n)+∆c(n−1)
i be the solution of (31) when p(i | n−1)

is replaced by p̃(i | n − 1). ∆p(n−1)
i and ∆c(n)

i are related by

∆c(n)
i [λ(n) + µi (n)] = ∆c(n)

i−1µi−1(n)q̂i−1(n) + ∆p(n−1)
i . (32)

In Lemma 2 we bound relative perturbations in pi (n − 1) in terms of relative perturbations in ci (n).

Lemma 2. ∆p(n−1)
i and ∆c(n)

i satisfy

max
j

∆c(n)
j

c j (n)
≤ max

j

∆p(n−1)
j

p( j | n − 1)

min
j

∆c(n)
j

c j (n)
≥ min

j

∆p(n−1)
j

p( j | n − 1)
.

Proof. See Appendix. �

Let p̃(i | n) = p(i | n) + ∆p(n)
i be the conditional probabilities at n corresponding to p̃(i | n − 1). p̃(i | n) is

expressed in (29) as

p̃(i | n) = bi (n)λ(n) + c̃i (n)ũ(n),

where

ũ(n) =

[
1 − λ(n)

k∑
i=1

bi (n)

]/ k∑
i=1

c̃i (n).

The next lemma relates ∆p(n)
i to ∆c(n)

i .



A. Brandwajn, H. Wang / Performance Evaluation 65 (2008) 366–381 373

Lemma 3. ∆p(n)
i satisfies

∆p(n)
i

u(n)ci (n)
=

1

1 + ∆β(n)

[
∆c(n)

i

ci (n)
− ∆β(n)

]
,

where

∆β(n)
=

k∑
j=1

∆c(n)
j

/ k∑
j=1

c j (n).

Proof. See Appendix. �

We now have the elements to prove the stability of our recurrent algorithm. Consider a function “measuring” the
magnitude of the relative error in p(i | n)

g(n) =

max
j

∆p(n)
j

p( j |n)
− min

j

∆p(n)
j

p( j |n)

1 + min
j

∆p(n)
j

p( j |n)

.

Theorem 1. g(n) satisfies

(1) g(n) ≤ g(n − 1)

(2) max j |
∆p(n)

j
p( j |n)

| ≤ g(n).

Proof. (1)
∑k

j=1 ∆p(n)
j = 0 implies

max
j

∆p(n)
j

p( j | n)
≥ 0 and min

j

∆p(n)
j

p( j | n)
≤ 0. (33)

Using (29) and the results of Lemma 1, we have

max
j

∆p(n)
j

p( j | n)
≤ max

j

∆p(n)
j

u(n)ci (n)
and min

j

∆p(n)
j

p( j | n)
≥ min

j

∆p(n)
j

u(n)ci (n)
.

Substituting into function g(n) yields

g(n) ≤

max
j

∆p(n)
j

u(n)c j (n)
− min

j

∆p(n)
j

u(n)c j (n)

1 + min
j

∆p(n)
j

u(n)c j (n)

.

From the results of Lemmas 2 and 3 it follows[
max

j

∆p(n)
j

u(n)c j (n)
− min

j

∆p(n)
j

u(n)c j (n)

]
=

1

1 + ∆β(n)

[
max

j

∆c(n)
j

c j (n)
− min

j

∆c(n)
j

c j (n)

]

≤
1

1 + ∆β(n)

[
max

j

∆p(n−1)
j

p( j | n − 1)
− min

j

∆p(n−1)
j

p( j | n − 1)

]
and

1 + min
j

∆p(n)
j

u(n)c j (n)
=

1

1 + ∆β(n)

[
1 + min

j

∆c(n)
j

c j (n)

]

≥
1

1 + ∆β(n)

[
1 + min

j

∆p(n−1)
j

p( j | n − 1)

]
> 0.
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Fig. 2. Speed of convergence for Erlang-k service distribution.

Fig. 3. Limiting service rate for Erlang-k service distribution.

Combining these results we get g(n) ≤ g(n − 1).
(2) Using (33), we conclude that

g(n) ≥ max
j

∆p(n)
j

p( j | n)
− min

j

∆p(n)
j

p( j | n)
≥ max

j

∣∣∣∣∣ ∆p(n)
j

p( j | n)

∣∣∣∣∣ .
Theorem 1 demonstrates that our recurrent algorithm is numerically stable. �

In the next section we present numerical results that illustrate the computational behavior of our method.

5. Numerical results

We start by illustrating the behavior of our method in the case of infinite state-independent queues. Unless specified
otherwise, the convergence criterion used in our results for infinite queues was |1 − u(n)/u(n − 1)| < ε for all n ≥ 1
with ε = 10−15. In all examples presented in this section, the mean service time was kept at 1. Fig. 2 shows the
number of recurrence steps before convergence is reached when the service time is an Erlang distribution of order k
for k = 2, 4, 8, 16, 32, and 64. More specifically, we take µ1 = · · · = µk = k and q̂1 = · · · = q̂k−1 = 1. The
corresponding coefficient of variation of the Erlang distribution is 1/

√
k, i.e., 0.71, 0.5, 0.35, 0.25, 0.18, and 0.125

in our example. We consider three values of server utilization: 0.25, 0.5, and 0.999, the latter value corresponds to a
system that is barely ergodic. In Fig. 3, we present the corresponding value of the service rate at convergence, i.e., the
limiting value ũ (in the asymptotically geometric state probability distribution p(n)). Figures are labeled with the
coefficient of variation of the service time distribution.

We observe that, in this example, convergence occurs within a few tens of recurrence steps. This seems to be the
case for many systems. Interestingly, the value of the limiting service rate ũ is generally very different from the inverse
of the expected service time, and only approaches the latter near server saturation.
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Fig. 4. Example of slower convergence.

Fig. 5. Limiting service rate for slower convergence case.

Although convergence to the limiting service rate value tends to occur rapidly for many systems, there are cases
when considerably more recurrence steps are needed to achieve the stringent convergence level we used. Fig. 4
shows the number of recurrence steps in one of the worst cases we have encountered. The Coxian service time
distribution used in this example corresponds to the following parameters: k = 9, µ1 = 2, µ2 = · · · µk = 2(k − 1)q̂1,
q̂2 = · · · = q̂k−1 = 1, and the values of q̂1 are 0.1, 0.01 and 0.001. The resulting coefficient of variation of the service
time distribution is 1.68, 5.30, and 16.77, respectively, and we use it to label the results. In Fig. 5, we have represented
the corresponding limiting service rates.

We observe that the number of iteration steps needed to satisfy the specified convergence criterion reaches 2500 in
this case.

Note that although the number of recurrence steps in this example increases with the coefficient of variation of the
service time distribution, other high variability distributions exhibit much faster convergence. Figs. 6 and 7 show the
results for a two-stage Coxian with µ1 = 2 and the following sets of parameter values for the second stage and the
probability that stage 2 will follow the completion of stage 1:

set 1: µ2 = 0.3, q̂1 = 0.15;

set 2: µ2 = 0.1, q̂1 = 0.05;

set 3: µ2 = 0.01, q̂1 = 0.05;

set 4: µ2 = 0.001, q̂1 = 0.0005.

The resulting coefficient of variation is 1.83, 3.16, 10, and 31.62, respectively.
Here we observe that the number of recurrence steps remains below one hundred even for the highest variability

case and very close to server saturation. As before, the limiting service rate is quite different from the inverse of
the mean service time (1, in our case), except close to saturation. Interestingly, for the high variability distribution
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Fig. 6. Speed of convergence for high variability distribution.

Fig. 7. Limiting service rate for high variability distribution.

Fig. 8. Convergence speed versus convergence stringency.

the limiting service rate value ũ is lower than the inverse of the mean service time (unlike for the Erlang service
distribution).

While the value of ε in the convergence criterion used in our examples yields accurate results both for the expected
number in the system and for selected state probabilities, it may seem rather stringent. In our next example, we study
the influence of the convergence stringency on the number of recurrence steps. The results shown in Fig. 8 have been
obtained for a service time distribution similar to that used in Figs. 4 and 5, except that the total number of stages in
the Coxian distribution is 7. The coefficient of variation of the service time distribution is 17.08. The results in Fig. 8
are labeled by the server utilization.
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Fig. 9. Expected number of customers in finite source system.

Fig. 10. Probability server is idle in finite source system.

We notice that, at higher server utilization levels, the convergence stringency may have an important effect on the
number of recurrence steps required. For the convergence criterion used in these examples, |1 − u(n)/u(n − 1)| < ε

for all n ≥ 1, it has been our experience that ε = 10−13 is sufficient to achieve accurate results for most systems with
server utilization of up to 0.98. For server utilizations not exceeding 0.7, ε = 10−11 tends to be sufficient. Note that
for many systems the number of recurrence steps to convergence is quite low even with more stringent values for ε,
and the solution time in all cases is negligible. The computational effort at each recurrence step is minimal. Note also
that the storage requirements of our approach are very low. If we embed the recurrence steps inside the computation
of state probabilities p(n) for increasing values of n, there is no need to store more than the last set of the conditional
probabilities p(i | n) and the last two values of the service rate u(n). It is also sufficient to store only the values of p(n)

(and any derived quantities) one is interested in. Additionally, we note that, even in the cases where a larger number of
recurrence steps is needed, we have not encountered numerical problems. Since we know the limiting service rate ũ
from the solution of Eqs. (24) and (25), we can double check for any loss of accuracy when the recurrent computation
of u(n) ends due to convergence.

As a last example, we consider a system with state-dependent arrivals where λ(n) = (N − n)α. This form of the
arrival rate corresponds to a set of N customers each generating a request with rate α. The results shown in Figs. 9 and
10 pertain to a system with N = 100 and the nine-stage high variability service time distribution used in Figs. 4 and
5. In this finite-source example, we consider more values for q̂1: 0.5, 0.1, 0.05, 0.01, 0.005, and 0.001. The resulting
coefficient of variation for the service time distribution ranges from 0.75 to 16.77, and is used as a label in Figs. 8 and 9.

Fig. 9 displays the expected number of customers in the system as a function of the maximum arrival rate Nα.
Fig. 10 shows the corresponding probability that the server is idle in such a system versus the same maximum arrival
rate.

It is interesting to note the effect of service time variability on the expected number of customers in the system,
as well as on the probability that the system is idle. As the coefficient of variation of the service time distribution
increases so does the probability that the server is idle. This effect becomes more visible as the maximum arrival rate
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increases. The expected number of customers increases with service time variability but the relative increase with
service time variability becomes smaller as the arrival rate increases.

Overall, in all the examples we studied, we have found the proposed method to be numerically well behaved, and
generally very fast. Additionally, our method is quite easy to implement in a language like C, C++, Java or FORTRAN,
with minimal memory space requirements.

6. Conclusion

We have proposed an approach, believed to be novel, to the solution of M /G/1-like queues in which the service time
distribution is represented by a Coxian series of memoryless stages. Our method is based on elementary conditional
probabilities, and provides a simple, computationally efficient and stable recurrence that allows us to obtain state-
dependent service rates, and, hence, the steady-state queue length distribution. Unlike existing methods, the proposed
approach does not rely on the use of matrix-geometric techniques or stochastic complementation. It can handle
generalized queues in which both the arrival rates and the parameters of the service time distribution, including the
probabilities of moving from stage to stage, may be state dependent. Our method can be applied to both finite and
infinite M /G/1-like queues. We believe that our method combines conceptual simplicity, ease of implementation and
computational efficiency.

In the case of an infinite, state-independent queue, the explicit product form of the queue length distribution in our
method allows us to show that it is asymptotically geometric. Additionally, we have given a simple set of equations that
defines the limiting service rate for this geometric distribution, and we have presented a simple fixed-point iteration
to solve it.

We have provided a proof of the numerical stability of our algorithm in the general case, and a proof of its
convergence to the unique non-negative fixed point in the case of a state-independent infinite queue. We have included
several examples to illustrate the performance of our method in the case of an infinite M /G/1-like queue. We have
considered both low and high service time variability, and server utilizations ranging from low to very close to
saturation. Our results for infinite queues suggest that, in general, only a moderate number of recurrence steps is
needed to reach the limiting service rate with high accuracy. In many cases, just a few tens of recurrence steps may be
sufficient. We have also included an example to illustrate the results obtained with our method in the case of a finite
number of customers and state-dependent arrivals.

The proposed method is in general fast, very thrifty in terms of memory space requirements, conceptually simple,
and easy to implement. It is stable even for systems with server utilization very close to saturation. Its simplicity
and numeric stability should make it attractive to performance analysts. An extension of this approach to M /G/1-like
systems with service interruptions is under study.
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Appendix A

A.1. Proof of lemmas

Proof of Lemma 2. Suppose max j
∆c(n)

j
c j (n)

is attained at j = m. At i = m, we write (32) as[
∆c(n)

m

cm(n)

]
cm(n)[λ(n) + µm(n)] −

[
∆c(n)

m−1

cm−1(n)

]
cm−1(n)µm−1(n)q̂m−1(n) =

[
∆p(n−1)

m

p(m | n − 1)

]
p(m | n − 1)

which leads to[
∆c(n)

m

cm(n)

]
{cm(n)[λ(n) + µm(n)] − cm−1(n)µm−1(n)q̂m−1(n)} ≤

[
∆p(n−1)

m

p(m | n − 1)

]
p(m | n − 1).
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On the other hand, at i = m, (31) becomes

cm(n)[λ(n) + µm(n)] − cm−1(n)µm−1(n)q̂m−1(n) = p(m | m − 1).

Combining these two results, we obtain

max
j

∆c(n)
j

c j (n)
=

∆c(n)
m

cm(n)
≤

∆p(n−1)
m

p(m | n − 1)
≤ max

j

∆p(n−1)
j

p( j | n − 1)
.

Using an analogous approach, we can show that

min
j

∆c(n)
j

c j (n)
≥ min

j

∆p(n−1)
j

p( j | n − 1)
. �

Proof of Lemma 3.

∆u(n) = ũ(n) − u(n)

=

1 − λ(n)
k∑

j=1
b j (n)

k∑
j=1

[c j (n) + ∆c(n)
j ]

−

1 − λ(n)
k∑

j=1
b j (n)

k∑
j=1

c j (n)

=

−

(
1 − λ(n)

k∑
j=1

b j (n)

)(
k∑

j=1
∆c(n)

j

)
(

k∑
j=1

c j (n)

)(
k∑

j=1
c j (n) +

k∑
j=1

∆c(n)
j

) = −u(n)
∆β(n)

1 + ∆β(n)

∆p(n)
i = p̃(i | n) − p(i | n)

= [u(n) + ∆u(n)] [ci (n) + ∆c(n)
i ] − u(n)ci (n)

= u(n)∆c(n)
i + ∆u(n)[ci (n) + ∆c(n)

i ]

= u(n)

[
∆c(n)

i −
∆β(n)

1 + ∆β(n)
[ci (n) + ∆c(n)

i ]

]
=

u(n)

1 + ∆β(n)
[∆c(n)

i − ∆β(n)ci (n)]. �

Proof of Lemma 4. Using (29) and the fact that p( j |n)−λb j
p( j |n)

≤ 1 − λ min j b j = α, we obtain

max
j

∆p(n)
j

p( j | n)
= max

j

(
p( j | n) − λb j

p( j | n)
·

∆p(n)
j

u(n)ci (n)

)
≤ α max

j

∆p(n)
j

u(n)ci (n)

min
j

∆p(n)
j

p( j | n)
= min

j

(
p( j | n) − λ b j

p( j | n)
·

∆p(n)
j

u(n)ci (n)

)
≥ α min

j

∆p(n)
j

u(n)ci (n)
.

Substituting into function g(n) yields

g(n) ≤ α

max
j

∆p(n)
j

u(n)c j (n)
− min

j

∆p(n)
j

u(n)c j (n)

1 + min
j

∆p(n)
j

u(n)c j (n)

.

Then g(n) ≤ αg(n − 1) follows from the proof of Theorem 1. �
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A.2. Convergence to fixed point for infinite state-independent queue

Consider now the infinite state-independent queue of Section 3. For an infinite state-independent queue, all
parameters are independent of n. As a results, the coefficients bi defined in (30) are also independent of n. Let
α = 1 − λ min j b j . From Lemma 1 we get 0 < α < 1, and we have

Lemma 4. For an infinite state-independent queue, g(n) satisfies

g(n) ≤ αg(n − 1).

Proof of Lemma 4. See Appendix A.1. �

For notational convenience, we let Ep(n) = (p(1 | n), p(2 | n), . . . , p(k | n))T . We have

Theorem 2. The sequence { Ep(n), n = 1, 2, . . . , } converges to a unique fixed point.

Proof of Theorem 2. The key to the proof is to view Ep(n + 1) as Ep(n) perturbed:

p( j | n + 1) = p( j | n) + ∆p(n)
j .

Using the results of Theorem 1 and Lemma 4, we have

‖ Ep(n + 1) − Ep(n)‖∞ = max
j

|∆p(n)
j | ≤ max

j
|

∆p(n)
j

p( j | n)
| ≤ g(n) ≤ αng(1)

and

‖ Ep(N + m) − Ep(N )‖∞ ≤

N+m−1∑
n=N

‖ Ep(n + 1) − Ep(n)‖∞ ≤

(
N+m−1∑

n=N

αn

)
g(1) ≤ αN g(1)

1 − α
.

Thus, { Ep(n), n = 1, 2, . . . , } is a Cauchy sequence with respect to the infinity norm, and converges with respect to
this norm to a limit Ep(∞). Since Ep(∞) is the limit of both Ep(n) and Ep(n + 1), it must be a fixed point. �

Now we show that our recurrent algorithm has only one non-negative fixed point. Suppose Ep(n) =

(p(1), p(2), . . . , p(k))T is a fixed point of our recurrent algorithm. Substituting into (28), we have

p(i)(λ + µi ) = p(i − 1)µi−1q̂i−1 + λδi,1 + p(i)u, where u =

k∑
j=1

p( j)µ j q j . (34)

Let us treat u as a parameter and write p(i) as

p(i) = [p(i − 1)µi−1q̂i−1 + λδi,1]/(λ + µi − u).

To ensure that p(i) is non-negative, we must have u < min j (λ + µ j ). It is clear that for u < min j (λ + µ j ),
p(i) is a strictly increasing function of u. When u = 0, summing (34) over all values of i and dividing by λ yields∑k

i=1 p(i) = 1 −
1
λ

∑k
i=1 p(i)µi qi < 1. As u → min j (λ + µ j ),

∑k
i=1 p(i) → +∞ > 1. Since

∑k
i=1 p(i) is a

continuous and strictly increasing function of u, there is a unique value of u such that
∑k

i=1 p(i) = 1 is satisfied. This
means that the non-linear equation (34) has a unique non-negative solution.
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