
Aerial Photography using a Nokia N95

Mariano I. Lizarraga† David M. Ilstrup∗ Gabriel Hugh Elkaim† James Davis ∗

Abstract—A low cost UAV for aerial photography
is constructed and tested. The UAV transfers images
as they are captured via 802.11g to a ground station.
Photo-mosaics are immediately assembled using SIFT
keypoints for automatic image registration.

Keywords: Aerial Photography, UAV, SIFT

1 Introduction

The availability of current aerial imagery is important for
many applications. “Current” may mean a few minutes
for scenarios such as forest fire tracking, while a few hours
might be acceptable for missing person searches over a
region or intelligence gathering for military and law en-
forcement operations. Obtaining minutes- to hours-old
aerial imagery has typically been a capability outside all
but the most well funded organizations.

Unmanned Aerial Vehicles (UAVs) are often thought of as
strictly military devices, but in fact they are rapidly per-
meating the space of civilian applications (driven by lower
entry-level prices and a skilled and active community of
remote/radio control (RC) airplane hobbyists). Current
applications for UAVs include border surveillance, whale
and other marine mammal tracking, power-line verifica-
tion, and search and rescue missions in disaster areas [1].

Many of the commercially available UAVs are currently
able to relay video and photographs to users on the
ground. The usefulness of the imagery that these flying
robots relay to their controlling ground station is directly
related to how much information the operator can “ex-
tract” from the frames being watched. Image quality of
video relay, RF noise rejection, and image stabilization
have come to play important roles in the overall perfor-
mance measure of these missions.

While many of the mainstream UAVs have sophisticated
equipment onboard to take care of these problems, the
price tag has traditionally been on the order of millions
of dollars, making them unaffordable for all but military
applications.

Recent advances in solid-state sensors and overall reduc-
tion of the electronics have made it possible to greatly

∗University of California Santa Cruz, Baskin School of En-
gineering, Computer Science Department davei@soe.ucsc.edu,
davis@soe.ucsc.edu. † Computer Engineering Department mal-
ife@soe.ucsc.edu, elkaim@soe.ucsc.edu.

improve the capabilities of “hobbyist level” systems. Au-
topilots are now as cheap as $350.00 [2] but video down-
link capabilities and automatic high resolution image reg-
istration/photomosaicing are generally far beyond the re-
stricted budget of such a project.

In this project we develop a solution that provides high
quality continuous (photo-mosaic) view from an aerial
platform to small UAVs with small budgets, using a
Nokia N95 wireless phone, a personal computer and open
source or free software.

The aircraft is flown under pilot control from the ground
while position, heading, and imagery from the phone are
received within seconds of image capture. The results are
assembled into a photo-mosaic and geographically linked
using a GoogleEarthTMKML file. If internet is available
on site, a visual overlay of the flight course is immediately
viewable.

The rest of this document is organized as follows: Sec-
tion 2 presents previous work and how it relates to this
project. Section 3 describes in detail each component
of the system and how they interact. Section 4 shows
flight test results. Section 5 presents conclusions, dis-
cusses some of the weakness of this approach, and recom-
mends some directions for further work.

2 Related Work

The idea of using a wireless phone inside an RC airplane
to take pictures is not new. The company Pict’Earth [3]
has a yet unreleased commercial proposal very similar to
the one described here, but again, the price keeps it out
of reach of the typical restricted budget. As evidenced by
the demo of their commercial product, the opportunity
for improved image registration exists.

Image registration and photomosaicing of related imagery
from UAVs is an active research topic. Majumdar, et.al.
[4] presented a method for offline registration and mo-
saicing of collected images from UAVs. This method has
proven to give great results but is numerically intensive
and somewhat slow. Instead, we make use of the open
source Panorama Tools [10] to do the mosaicing of the
flight images.

Our contribution is to provide a complete system to ac-
quire aerial images, geographically tag them, download
them via Wi-Fi to a ground station, and stitch them to-

gether to create a mosaic. All these steps are done with
no intervention from the end-user aside from launching
the applications in the ground PC and the phone. If in-
ternet is available, the downloaded images as well as the
airplane’s trajectory can be observed in a geo-referenced
form in Google Earth. The system is based solely on open
source or free tools and can be put together for as little
as $170.00 for the RC airplane, assuming the end user
already owns the Nokia N95 phone and a wireless router.

3 System Description

The complete setup, shown in Figure 1 consists of an
RC airplane that has been modified to hold the Nokia
N95 wireless phone inside its fuselage (hand-launched and
controlled during flight by a pilot via radio control). Once
the airplane is in the air, two applications run on the
phone. One takes pictures and modifies their EXIF tags
[5] to include the GPS information; the other transmits
them down to the ground station through a TCP socket
via 802.11g.

The ground station computer runs a server that receives
the images. These are handed off to a set of applications
which assemble mosaics from sets of three pictures. At
the time the pictures are received, the appropriate KML
files are also modified to display the received images and
update the flight path for display in Google EarthTM.
The wireless link between the computer on the ground
and the phone is serviced by a wireless (802.11g) router
with high gain (7dB) antennas.

Panorama
Tools ScriptSe

rv
er

 S
cr

ip
t

G
ro

un
d

St
at

io
n

Sc
rip

t

Create and
Update KML

Script

G
oo

gl
e

Ea
rth

Flight Logs

Ground Station FM
 R

ec
ei

ve
r

Se
rv

os
 fo

r t
he

C

on
tro

l S
ur

fa
ce

s

C
am

er
a

Taking and
Tagging
Script

RC Airplane
Nokia N95

G
PS

W
i-F

i

Send
App

Throttle

Rudder

Elevator

Radio Control

FM
 T

ra
ns

m
itt

er

Wireless Router

Figure 1: Complete System Setup

There are three main components to the overall system:
(1) The modified airplane to fly with the phone installed,
(2) the applications residing on the phone itself, and (3)
the set of applications comprising the ground station.

The following subsections describe each of the three main
components in more detail.

3.1 Airplane Modification and Balancing

The first step to get the phone airborne was to modify a
hobby RC airplane to be able to safely house the phone
inside its fuselage. For this purpose we tried two different
airplanes: FlyZone’s SkyFly [6] and HobbyZone’s Super-
Cub [7], both shown on Figure 2. Both proved to be
sturdy and relatively easy to fly, but the Skyfly proved to
be under-powered and became very unstable in prelimi-
nary flights with an attached 130 gm weight simulating
the phone. The SuperCub was chosen for the main test
flights at UCSC.

The SuperCub’s fuselage was modified to safely house
the phone during flight (see Figure 2). Since the phone’s
GPS antenna is located under the keyboard, the fuselage
was molded to house the phone with the keyboard ex-
tended. Extra precautions were taken to keep the plane
aerodynamically stable.

Figure 2: Airplane Modification. Top Left: FlyZone’s
SkyFly (left) and HobbyZone’s SuperCub. Top Right:
Phone installed in the housing. Bottom Left: Cover
placed on the fuselage. Bottom Right: Balancing of the
airplane

3.2 The Phone Applications

Two independent applications were developed for the
phone. A block diagram of these can be seen in Fig-
ure 3. One is a Python script (PhoneApp.py) in charge
of initializing the Camera and the GPS, taking pictures
and geographically-tagging them and saving them on the
SD card. The other is a Symbian OS SIS application
(SendApp.sisx) that connects to the ground PC via Wi-
Fi and periodically scans a local directory to determine
whether a new picture has been taken. If so, it sends the
picture to the ground PC and tags it as sent.

InitCamera

InitGPS

Take Picture
Modify EXIF

Save File

PhoneApp.py

 L
og

 G
PS

 D
at

a
CloseCam

CloseGPS

InitWiFI

OpenSocket

Get New Picture
Send

Tag as Sent

SendApp.sisx

CloseWiFi

Close Socket

SD Card

Pictures

Flight Logs

Denotes Multiple
 Executions

Figure 3: General Architecture of the Phone Applications

3.3 The Ground Station

The ground station application (Figure 4) manages the
configuration of the host server for tagged image recep-
tion, on-the-fly image registration and update of the flight
path in a KML file.

This is the first application run when starting a flight,
as the image server must be available when the camera
application begins image transmission. The ground sta-
tions creates a unique flight directory to contain all flight
images, logs and KML files.

The main process of the ground station monitors the
progress of the image server. When a new image has
been completely received, the KML file’s path informa-
tion is updated and if sufficient files are available, image
registration, in sets of three, is performed.

Figure 4: General Architecture of the Ground Station

In image registration, perhaps the most interesting and
challenging aspect is establishing correspondence points
or keypoints between images. The open source software

Table 1: Mean and standard deviation for GPS accuracy

Mean Std. Dev
Picture Taking Frequency 3.4886 0.8164

Vertical Accuracy 28.1294 22.8255
Horizontal Accuracy 32.2818 21.0033

autopano-sift [8] automatically establishes these corre-
spondences. It uses Scale Invariant Feature Tracking
(SIFT) [9] to identify keypoints in each image. The iden-
tified correspondences of the processed images are then
stored in a ’*.pto’ file which the ground station software
modifies slightly to insert Point Of View (POV) informa-
tion specific to the phone’s camera.

Two tools from the Panorama Tools Library [10] are run
to find linear image transformations that minimize the
distance error between keypoints (PToptimizer) and then
to perform the image transformations (PTmender) re-
quired to create the photo-mosaic.

Finally, the Enblend application [11] is used to smooth
the pixel shading so the seams where images are joined
become unnoticeable.

The application is robust, so that all available files will be
processed even if a communication interruption occurs.

4 Results

To test the complete setup several flights were completed
mainly in two locations: UCSC East Remote parking lot
and in McMillan Airfield in Camp Roberts, CA. In the
following subsections we present our findings from these
flights.

4.1 GPS Accuracy and Picture Taking La-
tency

One of the key factors to successfully create a photo-
mosaic was the ability of the camera to take pictures
quickly enough so that pictures were able to overlap.
From the flight log we obtained data of how frequently a
picture was taken. Figure 5 shows a plot of the separation
(in seconds) between pictures.

Since the information being presented in Google
EarthTMwas very dependent on the accuracy of the
phone’s GPS module, then we decided to plot the data
from the flight logs to establish the expected accuracy
of the phone’s GPS. Figure 5 shows a plot of the verti-
cal and horizontal accuracy (in meters) of the GPS data
collected. Table 1 shows the mean and variance of the
image-capture frequency, vertical accuracy, and horizon-
tal accuracy of the GPS data.

0 10 20 30 40 50 60 70 80 90
0

2

4

6

Image Index

Ti
m

e
Se

pa
ra

tio
n

(s
ec

s)

0 10 20 30 40 50 60 70 80 90
0

50

100

150

Image Index

Ve
rti

ca
l A

cc
ur

ac
y(

m
)

0 10 20 30 40 50 60 70 80 90
0

50

100

150

Image Index

Ho
riz

on
ta

l A
cc

ur
ac

y(
m

)

Figure 5: Time separation between pictures. Vertical and
horizontal accuracy of the GPS

Figure 6: Multiple pictures of UCSC’s east remote park-
ing lot

4.2 Aerial Imagery

Three flights tests with an average of two launches per
flight were performed in Fall 2007 on the UCSC cam-
pus. Figure 6 shows four pictures of UCSC’s east remote
parking taken from the airplane.

From the pictures taken in those flights it became clear
that the creation of the photo-mosaic was dependent of
the skill of the pilot to keep the airplane in level flight and
on a straight line. Figure 7 shows a photo-mosaic assem-
bled from a set of pictures taken, with no user interaction.
Although it is clear that the “stitching” is not perfect, it
is reasonable and clearly the end user can extract plenty
of information from the view.

Several flights tests were conducted during Winter 2008
at the McMillan Airfield in Camp Roberts, CA. Figure 8
shows a photo-mosaic produced from some of the images
acquired during these tests which were done from one of
the UAVs that is part of the Naval Postgraduate School’s
Rapid Flight Test Prototyping System [13]. Having the

phone take pictures from a stabilized platform notice-
ably improves the results. Finally as images are received
Google Earth’sTMKML file is modified to display the last
known position of the airplane and includes a link to the
image taken in that position. The image can be seen in a
pop-up “balloon” inside Google EarthTMor by selecting
the link in the figure, in a standard image viewer. Figure
9 shows a screenshot of one of the flights.

Figure 9: Airplane’s path displayed in Google EarthTM

5 Conclusions and Further Work

The system presented successfully takes aerial pictures,
on average, every four seconds. Image registration to
create the photo mosaics is reasonable provided that the
airplane is flying so that successive pictures overlap. The
presentation of the pictures and the mosaics in Google
EarthTMproves to be very useful to analyze the received
pictures.

Although we have presented a complete system that is
able to take aerial pictures and create photo-mosaics with
them, it is far from complete. Much work is needed on the
ground computer software. Three different scripting lan-
guages are currently used on the ground station (shell,
Python and Perl) which ideally should be merged into
one. Currently there is no installer package to put these
tools onto a different computer than those used for devel-
opment. The system remains a fragile prototype, suitable
for research, but not yet ready for wide-scale deployment.

System performance is best in straight and level flight,
which is difficult under manual control of the UAV. Re-
sults from the UAV flight confirm this observation.

The image registration process is limited by the nature
of the transformations used by the tools employed. Some
method that takes account of parallax effects present in
images with large variations in ground distance would
also be an improvement.

Figure 7: Final panorama assembled from a picture triplet with no user interaction. East Remote Parking Lot UCSC

Adding roll and pitch to the current EXIF tags of the
images could potentially improve the process of image
correction and registration.

6 Acknowledgments

Many thanks are due to Natasha Gelfand at Nokia Re-
search in Palo Alto, CA. Thanks to Isaac Kaminer,
Vladimir Dobrokhodov, Kevin Jones, and Don Meeks at
the NPS for their flight support and interesting ideas.
Finally we profoundly thank Andrew Adams at Stanford
for providing us with a very efficient Python Module to
make use of the phone’s camera. This work was partially
funded by the Mexican National Science and Technology
Council (CONACyT).

References

[1] Nonami, K. ; Prospect and Recent Research & Devel-
opment for Civil Use Autonomous Unmanned Air-
craft as UAV and MAV, Journal of System Design
and Dynamics, Vol. 1, No. 2, 2007.

[2] UNAV, LLC; Pico Pilot: World’s Smallest Autopi-
lot, http://www.u-nav.com/picopilot.html.

[3] Pict’Earth, World on Live: Pict’Earth,
http://www.pictearth.com/.

[4] Majumdar, J., Vinay, S., Selvi, S.; Registration and
Mosaicing for Images Obtained from UAV, IEEE
International Conference on Signal Processing and
Communications (SPCOM), 2004.

[5] Technical Standardization Committee on AV & IT
Storage Systems and Equipment; Exchangeable im-
age file format for digital still cameras: Exif Version
2.2 , Japan Electronics and Information Technology
Industries Association, 2002.

[6] FlyZone, FlyZone SkyFly Ready
to Fly Radio Control Airplane,
http://www.flyzoneplanes.com/airplanes/
hcaa1961 index.html

[7] HobbyZone, HobbyZone SuperCub Ready to Fly Ra-
dio Control Airplane, http://www.hobbyzone.com/
rc planes hobbyzone super cub.htm

[8] Sabastian Nowozin,
Autopano-Sift, Making panoramas fun,
http://user.cs.tu-berlin.de/˜nowozin/
autopano-sift/, University of British Columbia,
patents apply.

[9] David G. Lowe, Distinctive image features from
scale-invariant keypoints, International Journal of
Computer Vision, 60, 2 (2004), pp. 91-110

[10] Open Source Project, Panorama Tools - libpano13-
2.9.12, http://panotools.sourceforge.net/.

[11] Open Source Project; Andrew Mihal, enblend,
http://enblend.sourceforge.net/.

[12] Nokia, Python for S60,
http://wiki.opensource.nokia.com/projects/PyS60.

Figure 8: Panoramas assembled from picture triplets with no user interaction. Camp Roberts, CA

[13] Dobrokhodov, V.N. and Yakimenko, O.A. and
Jones, K.D. and Kaminer, I.I. and Bourakov, E. and
Kitsios, I. and Lizarraga, M.., New Generation of
Rapid Flight Test Prototyping System for Small Un-
manned Air Vehicles, in Proceedings of the AIAA
Modeling and Simulation Technologies Conference
2007.

