
JMLR: Workshop and Conference Proceedings vol (2012) 1–15

New Bounds for Learning Intervals
with Implications for Semi-Supervised Learning

David P. Helmbold dph@soe.ucsc.edu
Department of Computer Science, University of California at Santa Cruz

Philip M. Long plong@google.com

Google

Abstract

We study learning of initial intervals in the prediction model. We show that for each
distribution D over the domain, there is an algorithm AD, whose probability of a mistake
in round m is at most

(
1
2 + o(1)

)
1
m . We also show that the best possible bound that can

be achieved in the case in which the same algorithm A must be applied for all distributions

D is at least
(

1√
e
− o(1)

)
1
m >

(
3
5 − o(1)

)
1
m . Informally, “knowing” the distribution D

enables an algorithm to reduce its error rate by a constant factor strictly greater than 1.
As advocated by Ben-David et al. (2008), knowledge of D can be viewed as an idealized
proxy for a large number of unlabeled examples.

Keywords: Prediction model, initial intervals, semi-supervised learning, error bounds.

1. Introduction

Where to place a decision boundary between a cloud of negative examples and a cloud of
positive examples is a core and fundamental issue in machine learning. Learning theory
provides some guidance on this question, but gaps in our knowledge persist even in the
most basic and idealized formalizations of this problem.

Arguably the most basic such formalization is the learning of initial intervals in the
prediction model (Haussler et al., 1994). Each concept in the class is described by a threshold
θ, and an instance x ∈ < is labeled + if x ≤ θ and − otherwise. The learning algorithm A is
given a labeled m-sample {(x1, y1), . . . , (xm, ym)} where yi is the label of xi. The algorithm
must then predict a label ŷ for a test point x. The x1, ..., xm and x are drawn independently
at random from an arbitrary, unknown probability distribution D. Let opt(m) be the
optimal error probability guarantee using m examples in this model. The best previously
known bounds (Haussler et al., 1994) were(

1

2
− o(1)

)
1

m
≤ opt(m) ≤ (1 + o(1))

1

m
. (1)

To our knowledge, this factor of 2 gap has persisted for nearly two decades.
The proof of the lower bound of (1) uses a specific choice of D, no matter what the target.

Thus, it also lower bounds the best possible error probability guarantee for algorithms that
are given the distribution D as well as the sample. The upper bound holds for a particular
algorithm and all distributions D, so it is also an upper bound on the best possible error
probability guarantee when the algorithm does not know D.
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The increasing availability of unlabeled data has inspired much recent research on the
question of how to use such data, and the limits on its usefulness. Ben-David et al. (2008)
proposed knowledge of the distribution D as a clean, if idealized, proxy for access to large
numbers of unlabeled examples. Since the lower bound in (1) did not exploit the algorithm’s
lack of a priori knowledge of D, improved lower bounds exploiting this lack of knowledge
may also shed light on the utility of unlabeled data.

This paper studies how knowledge ofD affects the error rate when learning initial intervals
in the prediction model. Our positive result is an algorithm that, when given D, has an
error rate at most

(
1
2 + o(1)

)
1
m . This matches the lower bound of (1) up to lower order

terms. As a complementary negative result, we show that any prediction algorithm without

prior knowledge of D can be forced to have an error probability at least
(

1√
e
− o(1)

)
1
m >(

3
5 − o(1)

)
1
m . Thus not knowing D leads to at least a 20% increase in the probability of

making a mistake (when the target and distribution are chosen adversarially). A third
result shows that the maximum margin algorithm can be forced to have the even higher
error rate (1− o(1)) 1

m .
The training data reduces the version space (the region of potential values of θ) to an

interval between the greatest positive example and the least negative example. Furthermore,
all examples outside this region are classified correctly by any θ in the version space. Our
algorithm achieving the

(
1
2 + o(1)

)
1
m error probability protects against the worst case by

choosing a hypothesis θ̂ in the middle (with respect to the distribution D) of this region of
uncertainty. This can be viewed as a D-weighted halving algorithm and follows the general
principle of getting in the “middle” of the version space (Herbrich et al., 2001; Kääriäinen,
2005).

As has become common since (Ehrenfeucht et al., 1989), our
(

1√
e
− o(1)

)
1
m lower bound

proceeds by choosing θ and D randomly and analyzing the error rate of the resulting
Bayes optimal algorithm. The distribution D in our construction concentrates a moderate
amount q of probability very close to one side or the other of the decision boundary. If
D is unknown, and no examples are seen from the accumulation point (likely if q is not
too large), the algorithm cannot reliably “get into the middle” of the version space. Unlike
most analyses showing the benefits of semi-supervised learning that rely on an assumption
of sparsity near the decision boundary, our analysis uses distributions that are peaked at
the decision boundary.
Related work. Learning from a labeled sample and additional unlabeled examples is

called semi-supervised learning. Semi-supervised learning is an active and diverse research
area; see standard texts like (Chapelle et al., 2006) and (Zhu and Goldberg, 2009) for more
information.

Our work builds most directly on the work of Ben-David et al. (2008). They proposed
using knowledge of D as a proxy for access to a very large number of unlabeled examples,
and considered how this affects the sample complexity of learning in the PAC model, which
is closely related to the error rate in the prediction model (Haussler et al., 1994). Their main
results concerned limitations on the impact of the knowledge of D; Darnstädt and Simon
(2011) extended this line of research, also demonstrating such limitations. In contrast, the
thrust of our main result is the opposite, that knowledge of D gives at least a 16% reduction
in the (worst-case) prediction error rate. Balcan and Blum (2010) introduced a framework
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to analyze cases in which partial knowledge of relationship between the distribution and
the target classifier can improve error rate, whereas the focus of this paper is to study the
benefits of knowing D even potentially in the absence of a relationship between D and
the target. Kääriäinen (2005) analyzed algorithms that use unlabeled data to estimate the

metric ρD(f, g)
def
= Prx∼D(f(x) 6= g(x)), and then choose a hypothesis at the “center” of the

version space of classifiers agreeing with the labels on the training examples. Our algorithm
for learning given knowledge of D follows this philosophy. Urner et al. (2011) proposed a
framework to analyze cases in which unlabeled data can help to train a classifier that can
be evaluated more efficiently.

The upper bound of (1) is a consequence of a more general bound in terms of the VC-
dimension. Li et al. (2001) showed that the leading constant in the general bound cannot
be improved, even in the case that the VC-dimension is 1. However their construction uses
tree-structured classes that are more complicated than the initial intervals studied here.

2. Further Preliminaries and Main Results

For any particular D and θ, the expected error of Algorithm A, Errm(A;D, θ), is the
probability that its prediction is not the correct label of x, where the probability is over the
m+ 1 random draws from D and any randomization performed by A. We are interested in
the worst-case error of the best algorithm: if the algorithm can depend on D, this is

optD(m) = inf
A

sup
θ

Errm(A;D, θ),

and, if not,
opt(m) = inf

A
sup
D,θ

Errm(A;D, θ).

Our main lower bound is the following.

Theorem 1 opt(m) ≥
(

1√
e
− o(1)

)
1
m ≥

(
3
5 − o(1)

)
1
m .

This means that for every algorithm learning initial intervals, there is a distribution D and
threshold θ such that the algorithm’s mistake probability (after seeing m examples, but not

the distribution D) is at least
(

1√
e
− o(1)

)
1
m . In our proof, distribution D depends on m.

Our main upper bound is the following.

Theorem 2 For all probability distributions D, optD(m) ≤
(
1
2 + o(1)

)
1
m .

We show Theorem 2 by analyzing an algorithm that gets into the middle of the version
space with respect to the given distribution D.

When there are both positive and negative examples, a maximum margin algorithm (Vap-
nik and Lerner, 1963; Boser et al., 1992) makes its prediction using a hypothesized threshold
θ̂ that is halfway between the greatest positive example, and the least negative example.

Theorem 3 For any maximum margin algorithm A, there is a D and a θ such that

Errm(AMM;D, θ) ≥ (1− o(1))
1

m
.
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Our construction chooses D and θ as functions of m. Note that in the case of intervals, the
maximum margin algorithm is similar to the (un-weighted) halving algorithm.

Throughout we use U to denote the uniform distribution on the open interval (0, 1).

3. Proof of Theorem 1

As mentioned in the introduction, we will choose the target θ and the distribution D
randomly, and prove a lower bound on the Bayes optimal algorithm when D and θ are
chosen in this way. No algorithm A can do better on average over the random choice of θ
and D than the Bayes optimal algorithm that knows the distributions over D and θ. This
in turn implies that for any algorithm A there exist a particular θ and D for which the lower
bound holds for A. [D: rephrased the the second sentence above to clarify Bayes Optimal]

Let q = c/m for a c ∈ [0,m) to be chosen later. Define distribution Dθ,q(x) as the
following mixture:

• with probability p = 1− q, x is drawn from U , the uniform distribution on (0, 1).

• with probability q = c/m, x = θ.

We will analyze the following:

1. Fix the sample size m.

2. Draw θ from U and set the target to be (−∞, θ] with probability 1/2, and (−∞, θ)
with probability 1/2.

3. Draw an m-sample S = {x1, . . . , xm} from Dm
θ,q. Extend S to the extended sample,

S+ by adding x0 = 0 and xm+1 = 1 to S. The labeled sample L = {(xi, yi)} where
xi ∈ S+ and yi is the label of xi given by the target (either (−∞, θ) or (−∞, θ]).

4. Draw a final test point x also iid from Dθ,q.

[P: can be compressed] This setting, which we call the open-closed experiment, is not
“legal”, because it sometimes uses open intervals as targets. However, we will now show
that a lower bound for this setting implies a similar lower bound when only closed initial
intervals are used. We define the legal experiment as above, except that instead of using
the open target (−∞, θ), the adversary uses target (−∞, θ − 1

m3 ].

Lemma 4 For any algorithm A and any number m of examples, let plegal be the probability
that A makes a mistake in the legal experiment, and poc be the probability that A makes a
mistake in the open-closed experiment. Then plegal ≥ poc − m+1

m3 .

Proof. If none of the training or test examples falls (strictly) between θ − 1
m3 and θ, then

the training and test data are the same in both experiments. The probability that this
happens is at least 1− m+1

m3 .
Since a (C − o(1))/m lower bound for the open-closed experiment implies such a bound

for the legal experiment, we can concentrate on the open-closed experiment.
We now consider the following events.

mistake is the event that the Bayes Optimal classifier predicts incorrectly.
zero is the event that no xi ∈ S equals θ.
one is the event that exactly one xi ∈ S equals θ.
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Now, using these events,

Pr(mistake) ≥ Pr(zero) Pr(mistake | zero) + Pr(one) Pr(mistake | one). (2)

3.1. Event zero, no xi ∈ S is equal to θ.

First we lower bound the probability of zero.

Lemma 5 Pr(zero) = (1− c/m)m ≥ e−c
(

1− c2

m

)
.

Proof: The draws from Dθ,q are independent so for q = c/m we have Pr(zero) = pm =

(1 − c/m)m. Furthermore, ln ((1− c/m)m) = m ln(1 − c/m) ≥ m
(
− c
m −

c2

m2

)
= −c − c2

m

and exp(−c2/m) ≥ 1− c2/m.
Now, we lower bound the probability of a mistake, given zero. In this case, the xi’s in

S and θ are all drawn i.i.d. from the uniform distribution on (0, 1), and with probability
one the xi are all different from θ and each other. Since all permutations are equally likely,
with probability 1 − 2/(m + 1), there is an xi ∈ S smaller than θ and an xj ∈ S greater
than θ.

Let x+ be the largest xi ∈ S+ smaller than θ, and let x− be smallest xi ∈ S+ greater than
θ. (Recall that instances 0 and 1 have been added to S+ so x+ and x− are well-defined.)

Lemma 6 Assume event zero and let x+ be largest positive point in S+ and x− be the
smallest negative point in S+. After conditioning on the labeled sample L, if the test point
is sampled from Dθ,q (independent of S+) then the error probability of the Bayes Optimal
predictor is

Pr(mistake | x+, x−) =
q

2
+ p

(
x− − x+

4

)
=

c

2m
+

(m− c)(x− − x+)

4m
.

Proof: After conditioning on L and event zero, θ is uniformly distributed on (x+, x−).
The label of test point x is known whenever x ≤ x+ or x ≥ x−. Only when x+ < x < x−

can the Bayes optimal predictor make a mistake.
The Bayes optimal predictor predicts + on x if x < (x+ + x−)/2, predicts − on x if

x > (x+ + x−)/2, and predicts arbitrarily when x = (x+ + x−)/2. Therefore, for a given
value of θ, when the test point x is drawn from Dθ,q, the probability of mistake is q/2 (for

the fraction of time that x = θ) plus p ·
∣∣∣x++x−

2 − θ
∣∣∣ for the chance that x is drawn from U

and falls between θ and the midpoint of (x+, x−).

Pr(mistake | x+, x−) =

∫ x++x−
2

x+

(
q

2
+ p

(
x+ + x−

2
− θ
))

dP (θ | θ ∈ [x+, x−])

+

∫ x−

x++x−
2

(
q

2
+ p

(
θ − x+ + x−

2

))
dP (θ | θ ∈ [x+, x−])

=
q

2
+
p (x− − x+)

4

as desired.
The following lemma is due to Moran (1947).
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Lemma 7 (Moran, 1947) Assume a set {x1, . . . , xm} of m ≥ 3 points are drawn iid from
the uniform distribution on the unit interval. Relabel these points so that x1 ≤ x2 ≤ · · · ≤
xm and set x0 = 0 and xm+1=1. For the m + 1 gap lengths defined by gi = xi+1 − xi for
0 ≤ i ≤ m, we have E

(∑m
i=0 g

2
i

)
= 2

m+2 .

Note: if the set of points is drawn from a circle, then the first point can be taken as the
“endpoint”, splitting the circle into an interval. This leads to the following, which we will
find useful later.

Lemma 8 The expected sum of squared arc-lengths when the circle of circumference 1 is
partitioned by m ≥ 4 random points from the uniform distribution is 2/(m+ 1).

Coming back to our lower bound proof, we are now ready to prove a lower bound for the
zero case.

Lemma 9 For the Bayes Optimal Predictor,

Pr(mistake | zero) =
c

2m
+

1

2(m+ 2)
− c

2m(m+ 2)
.

Proof: Given the event zero, each xi in S is drawn iid from the uniform distribution on
(0, 1). We find it convenient to relabel the xi ∈ S in sorted order so that x1 ≤ x2 · · · ≤ xm.
Note that x0 = 0 and xm+1 = 1 in S+ are defined consistently with this sorted order. To
simplify the notation, we leave the conditioning on event zero implicit in the remainder of
the proof.

Pr(mistake) =

∫ ∫
Pr(mistake | S, θ) dθ dP (S) (3)

=

∫ m∑
i=0

Pr(θ ∈ (xi, xi+1) | S) Pr(mistake | θ ∈ (xi, xi+1), S) dP (S) (4)

Since the threshold θ is drawn from U on (0, 1), Pr(θ ∈ (xi, xi+1) | S) = xi+1 − xi. With
an application of Lemma 6 we get:

m∑
i=0

Pr(θ ∈ (xi, xi+1) | S) Pr(mistake | θ ∈ (xi, xi+1), S)

=
m∑
i=0

(xi+1 − xi)
(
q

2
+
p(xi+1 − xi)

4

)
=
q

2
+
p

4

m∑
i=0

(xi+1 − xi)2.

Substituting this into (4),

Pr(mistake) =

∫ (
q

2
+
p

4

m∑
i=0

(xi+1 − xi)2
)
dP (S) (5)

=
q

2
+
p

4
· ES∼Um

[
m∑
i=0

(xi+1 − xi)2
]

(6)

=
q

2
+

p

2(m+ 2)
(7)

using Lemma 7 to evaluate the expectation in (6). Replacing q by c/m and p by 1 − c/m
gives the desired result.
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3.2. Event one, exactly one xi ∈ S is equal to θ.

We lower bound the second term on the RHS of (2) by bounding Pr(one) and Pr(mistake |
one).

Lemma 10 Pr(one) = mq(1− q)m−1 ≥ ce−c
(

1 + c−c2
m − c3

m2

)
Proof:

Pr(one) = mq(1− q)m−1 =
c(1− c/m)m

1− c/m
≥ ce−c(1− c2/m)

1− c/m
≥ ce−c

(
1 +

c− c2

m
− c3

m2

)
,

where Lemma 5 was used to bound (1 − c/m)m and the last inequality used the fact that
1/(1− z) ≥ 1 + z for all z ∈ [0, 1).

Lemma 11 Pr(mistake | one) ≥ 1
2m ·

m−1
m+1 = 1

2m −O(1/m2).

Proof: Since θ is drawn from the uniform distribution, after conditioning on the event
one, the xi in S are i.i.d. from the uniform distribution on [0, 1]. Again consider the points
relabeled in ascending order. Each of the xi ∈ S is equally likely to be θ, and the xi = θ
is equally likely to be labeled + or −, giving 2m equally likely possibilities. As before,
define x+ and x− to be the largest xi ∈ S+ labeled + and the smallest xi ∈ S+ labeled
− respectively. We proceed assuming the Bayes Optimal Algorithm “knows” that one of
the xi = θ, i.e. that event one occurred. (This can only reduce its error probability.) To
simplify the notation, we leave the conditioning on event one implicit in the remainder of
the proof.

If there are both positive and negative examples, so that there is a greatest positive
example x+ and a least negative examples x−, there are two possibilities: either the target
is (−∞, x+] or it is (−∞, x−). In either case, the entire open interval between x+ and x−
shares the same label, and since the two cases are equally likely that label is equally likely
to either + or −. Therefore:

Pr(mistake) ≥
∫ m−1∑

i=1

Pr(xi = x+ | S) Pr(mistake | S, x+ = xi) dPr(S) (8)

=

∫ m−1∑
i=1

Pr(xi = x+ | S)

(
xi+1 − xi

2

)
dPr(S). (9)

We consider the sum in more detail. Note that xi can be x+ when either xi = θ and is
labeled + or xi+1 = θ and is labeled −.

m−1∑
i=1

Pr(xi = x+ | S)

(
xi+1 − xi

2

)
=

m−1∑
i=1

1

m

(
xi+1 − xi

2

)
=

1

2m
(xm − x1).

Plugging it into (9) gives: Pr(mistake) = 1
2mES∼Um [xm − x1] = 1

2m ·
m−1
m+1 since the

expected length of each missing end-interval is 1/(m+ 1).
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3.3. Putting it together

Combining Lemma 5, Lemma 9, Lemma 10, and Lemma 11 we get that Pr(mistake |
zero) Pr(zero) + Pr(mistake | one) Pr(one) is at least(

c

2m
+

1

2(m+ 2)
− c

2m(m+ 2)

)
e−c

(
1− c2

m

)
+

m− 1

2m(m+ 1)
ce−c

(
1 +

c− c2

m
− c3

m2

)
=

1 + 2c

2m
e−c −O(1/m2).

Setting c = 1/2, the maximizer of (1 + 2c)e−c, the bound becomes 1/(m
√
e) − O(1/m2),

completing the proof of Theorem 1.

4. Proof of Theorem 2

Here we show that knowledge of D can be exploited by a maximum-margin-in-probability
algorithm to achieve prediction error probability at most (1/2 + o(1))/m. The marginal
distribution D and target threshold θ are chosen adversarially, but the algorithm is given
distribution D as well as the training sample.

The first step is to show that we can assume without loss of generality that D is the
uniform distribution U over (0, 1). [D: I assume there is no problem changing [0, 1] to
(0, 1) above] This is a slight generalization of the “rescaling trick” of Ben-David et al.
(2008). [D: replaced ”modification” with ”generalization” – is that OK?]

Lemma 12 optD(m) ≤ optU (m).

Proof Our proof is through a prediction-preserving reduction (Pitt and Warmuth, 1990).
This consists of a (possibly randomized) instance transformation φ and a target transfor-
mation ψ. In this proof φ maps R into [0, 1], and ψ maps a threshold in R to a new
threshold in [0, 1]. Implicit in the analysis of Pitt and Warmuth (1990) is the observation
that, if φ(x) ≤ ψ(θ) ⇔ x ≤ θ for all training and test examples x, then an algorithm At
with prediction error bound bt for the transformed problem can be used to solve the original
problem. By feeding At the training data φ(x1), ..., φ(xm) and the test point φ(x), and using
At’s prediction (of whether φ(x) ≤ ψ(θ) or not) one gets an algorithm with prediction error
bound bt for the original problem.

When D has a density, φ(x) = Prz∼D(z ≤ x) and ψ(θ) = Prz∼D(z ≤ θ). In this case
the distribution φ(x) is uniform over (0, 1), and since φ and ψ are identical and monotone,
φ(x) ≤ ψ(θ)⇔ x ≤ θ.

If D has a one or more accumulation points, then, for each accumulation point xa, we
choose φ(x) uniformly from the interval (Prz∼D(z < xa),Prz∼D(z ≤ xa)]. We still set
ψ(θ) = Prz∼D(z ≤ θ) everywhere. For this transformation, the probability distribution
over φ(x) is still uniform over (0, 1), and, as before, if x 6= θ, or if x is not an accumulation
point, then φ(x) ≤ ψ(θ)⇔ x ≤ θ. When xa = θ for an accumulation point xa, φ(xa) ≤ ψ(θ),
since ψ(θ) is set to be the right endpoint of (Prz∼D(z < xa),Prz∼D(z ≤ xa)]. Thus, overall,
φ(x) ≤ ψ(θ)⇔ x ≤ θ, and the probability of a mistake in the original problem is bounded
by the mistake probability with respect to the transformed problem.
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So now we are faced with the subproblem of learning initial intervals in the case that D
is the uniform distribution U over (0, 1). The algorithm that we analyze for this problem is
the following maximum margin algorithm AMM: if the training data includes both positive
and negative examples, it predicts using a threshold halfway between the greatest positive
example and the least negative example. If all of the examples are negative, it uses a
threshold halfway between the least negative example and 0, and if all of the examples are
positive, AMM uses a threshold halfway between the greatest positive example and 1.

The basic idea exploits the fact that the uniform distribution is invariant to horizontal
shifts to average over random shifts. We define x ⊕ s ≡ x + s − bx+ sc to be addition
modulo 1, so that, intuitively, x⊕ s is obtained by starting at x, and walking s units to the
right while wrapping around to 0 whenever 1 is reached. We extend the ⊕ notation to sets
in the natural way: if T ⊆ [0, 1) then T ⊕ s = {t⊕ s : t ∈ T}.

Fix an arbitrary target threshold θ ∈ (0, 1) and also fix (for now) an arbitrary set S =
{x1, . . . , xm} of m training points (whose labels are determined by θ). Renumber the points
in S so that x1 ≤ x2 ≤ · · · ≤ xm. To simplify some expressions, we use both x1 and
xm+1 to refer to x1. For each x, s ∈ [0, 1], let error(s, x) be the {0, 1}-valued indicator for
whether AMM makes a mistake when trained with S ⊕ s and tested with x. Let error(s) =
Ex∼U (error(s, x)), and let error = Es∼U (error(s)).

For 1 ≤ i < m, let Gi = [xi, xi+1) be the points in the interval between xi and xi+1, and let
Gm = [xm, 1)∪[0, x1), so theGi partition [0, 1). Let Ri = {s ∈ [0, 1) : θ ∈ Gi ⊕ s} and notice
that the Ri also partition [0, 1). We have error =

∫ 1
0 error(s)ds =

∑
i

∫
s∈Ri error(s)ds.

We now consider
∫
s∈Ri error(s)ds in more detail. This integral corresponds to the situa-

tion where the shifted sample causes θ to fall in the “gap” between xi and xi+1. Depending
on the location of θ and the length of the gap, the shifted interval might extend past either
0 or 1 while containing θ, and thus “wrap around” to the other side of the unit interval.

Let the gap length gi be xi+1−xi (or 1−xm +x1 if i = m), and let ri be the shift taking
xi+1 to θ, so xi+1 ⊕ ri = θ. Note that a shift of ri + gi takes xi to θ even though ri + gi
might be greater than one, which happens when θ ∈ [xi, xi+1).

We will now give a “proof-by-plot” that
∫
s∈Ri error(s)ds ≤ g

2
i /4. For an algebraic proof,

see Appendix A. [D: Case c does not yet have an algebraic proof.] We begin by assuming
θ ≤ 1/2 since the situation with θ > 1/2 is symmetrical. The cases we consider depend on
the relationship between gi and θ: case (A) gi ≤ θ, case (B) θ < gi ≤ 1 − θ, and case (C)
1− θ < gi. Cases (B) and (C) have two sub-cases depending on whether or not θ ≤ gi/2.

The figure for each case shows several shiftings of the interval, and plots error(s) as a
function of s. The predictions of AMM on the shifted interval are indicated, and the region
where AMM makes a prediction error is shaded. The top shifting in each case is actually
for s = ri plus some small ε (so that θ < xi+1 ⊕ s), although it is labeled as s = ri for
simplicity.

Note that in each case, the plot of error(s) lies within two triangles with height gi/2.
Therefore the integrals

∫ r1+gi
ri

error(s)ds are at most g2i /4.
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Case (A): gi ≤ θ. The [xi, xi+1)⊕ s interval intersects θ only when s+ xi ≤ θ < s+ xi+1.

error(s)

gi/2
xi ⊕ ri

s = ri + −
xi+1 ⊕ ri

0s = ri + gi/2 + −
gi/2s = ri + gi + −

θ

gi/2

ri ri + gi
s

0

error(s)

Case (B), subcase (1): gi + θ ≤ 1 and θ < gi/2. Note that the dashed part of the interval
is actually shifted to the right-edge of [0, 1).

θ0

error(s)
s = ri +− θ/2

s = ri + θ + − 0

s = ri + gi − θ + − gi/2− θ
s = ri + gi + − gi/2

error(s)

gi/2

θ/2
0

ri ri + θ ri + gi
s

Case (B), subcase (2): gi + θ ≤ 1 and gi/2 < θ < gi. Again, the dashed part of the
interval is actually shifted to right-edge of [0, 1).

θ0

error(s)

θ/2s = ri + −
s = ri + gi − θ + − θ − gi/2
s = ri + gi/2 + − 0

s = ri + gi + − gi/2

gi/2

ri ri + gi
s

0

θ/2

error(s)

Case (C), subcase (1): θ < gi/2, and θ+gi > 1. On the left: shifting the interval between
xi and xi+1 to intersect θ. In this case not only can part of the interval be shifted to
right-edge of [0, 1), but part of the interval can also extend beyond 1 (and be shifted to the
left-edge of [0, 1)) while the shifted interval contains θ.

θ0 1

error(s)
s = ri +− θ/2

s = ri + θ + − 0

s = ri + gi − θ + − gi/2− θ

s = ri + 1− θ + − 1− θ − gi
2

s = ri + gi + − (1− θ)/2

error(s)

gi/2

θ/2
0

ri ri + θ ri + gi
s

The correctness of the plot relies on the “bump” in
the plot at s = ri+1−θ never rising outside of the tri-
angle. We have redrawn the triangle in more detail to
the right (dropping the subscripts), and relabeled the
x-axis (in blue). This shows us that at the “bump”,
the dotted line of the triangle is at height g

2 ·
1−2θ
g−θ

while the bump is at height 1− θ − g/2.

g/2

r + θ r + g
r + 1− θ

1− θ − g/2
g
2 ·

1−2θ
g−θ

0 g − θ︷ ︸︸ ︷
1 − 2θ

10
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Solving g
2 ·

1−2θ
g−θ = 1− θ − g/2 for g yields g = 2θ and g = 1− θ, exactly the boundaries

of this case. Therefore the difference g
2 ·

1−2θ
g−θ − 1− θ − g/2 (which is the amount by which

the boundary of the triangle lies above the bump) does not change sign. When g = 5/6
and θ = 2/6 the difference is 1/36, so the difference remains non-negative for all gi and θ
in this case.

Case (C), subcase (2): θ > gi/2, and θ+gi > 1. On the left: shifting the interval between
xi and xi+1 to intersect θ. Again, parts of the interval can be shifted across 0 and across 1
while the shifted interval contains θ.

θ0 1

error(s)

θ/2s = ri + −
s = ri + gi − θ + − θ − gi/2
s = ri + gi/2 + − 0

s = ri + 1− θ + − 1− θ − gi
2

s = ri + gi + − (1− θ)/2

gi/2

ri ri + gi
s

0

θ/2

error(s)

We now have, for any θ ∈ [0, 1],

Pr
S∼Um,x∼U

(AMM incorrect) = ES∼UmEs∼U,x∼U (AMM(S ⊕ s, x) 6= 1≤θ(x))

≤ ES∼Um
m∑
i=1

g2i /4 ≤
1

2m+ 2

where the last inequality uses Lemma 8. This completes the proof of Theorem 2.

5. Proof of Theorem 3

In this section we show that any maximum margin algorithm can be forced to have an error
probability (1 − o(1))/m when it is not given knowledge of D (i.e. without transforming
the input as in the previous section). This is a factor of 2 worse than our upper bound for
an algorithm that uses knowledge D to maximize a probability-weighted margin.

Let c be a positive even integer (by choosing a large constant value for c, our lower
bound will get arbitrarily close to 1

m). For a given training set size m, consider the set
T =

{
3−cm, . . . , 3−2, 3−1

}
containing the first cm powers of 1/3.

Fix distribution D to be the uniform distribution over T . Fix the target threshold to be
θ = 3−cm/2−1, so that half the points in T are labeled positively (recall that all points less
than or equal to the threshold are labeled positively).

Maximum margin algorithms can make different predictions only when all the examples
have the same label. For this choice of a distribution D and a target θ, the probability
that all the examples have the same label is 2 × 2−m. Thus for large enough m, the
difference between maximum margin algorithms is negligible. From here on, let us consider
the algorithm AMM, defined earlier, that adds two artificial examples, (0,+) and (1,−),
and predicts using the maximum margin classifier on the resulting input.

For 1 ≤ i ≤ cm/2, let Ti be the i points in T just above the threshold: if ` = −cm/2−1 =
log3 θ then Ti =

{
3`+1, 3`+2, . . . , 3`+i

}
. Let event Missi be the event that none of the m

11
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training points are in Ti. For i < cm/2, let event Exacti be the event that both (a)
none of the m training points are in Ti, and (b) some training point is in Ti+1 (i.e. some
training point is 3`+i+1). Let Exactcm/2 be the event that no training point is labeled “−”.
Therefore the Exacti events are disjoint and Missi =

⋃
j≥iExactj .

Note that if Exacti occurs, then the smallest negative example is 3`+i+1. Furthermore,
all points in Ti are less then half this value and the maximum margin algorithm predicts
incorrectly on exactly the i points in Ti, so Pr(error|Exacti) = i/(cm). Thus, for m > 2c,
we have

Pr(error) =

cm/2∑
i=1

Pr(error|Exacti) Pr(Exacti) =

cm/2∑
i=1

i

cm
Pr(Exacti)

=
1

cm

cm/2∑
i=1

Pr(Missi) =
1

cm

cm/2∑
i=1

(
cm− i
cm

)m
≥ 1

cm

c2∑
i=1

(
1− i/c

m

)m
.

For i ≤ c2, in the limit as m → ∞,
(

1− i/c
m

)m
→ exp(−i/c), so for large enough m (large

relative to the constant c) we can continue as follows.

Pr(error) ≥ 1

cm

c2∑
i=1

(1− ε) exp(−i/c) =
1− ε
cm

c2∑
i=1

exp(−1/c)i

=
1− ε
cm

exp(−1/c)
1− exp(−1/c)c

2

1− exp(−1/c)
=

1− ε
cm

exp(−1/c)
1− exp(−c)

1− exp(−1/c)

=
(1− ε)(1− ε2)

cm

exp(−1/c)

1− exp(−1/c)

where ε2 = e−c. Now, replacing 1/c by a we get: Pr(error) ≥ (1−ε)(1−ε2)
m

a exp(−a)
1−exp(−a) Using

L’Hopitals rule, we see that the limit of the second fraction as a → 0 is 1. So for large
enough c, the second fraction is at least 1 − ε3 and Pr(error) ≥ (1−ε)(1−ε2)(1−ε3)

m . Thus,
by making the constant c large enough, and choosing m large enough compared to c, the
expected error of the maximum margin algorithm can be made arbitrarily close to 1/m.

6. Conclusion

Algorithms that know the underlying marginal distribution D over the instances can learn
significantly more accurately than algorithms that do not. Since knowledge of D has been
proposed as a proxy for a large number of unlabeled examples, our results indicate a ben-
efit for semi-supervised learning. It is particularly intriguing that our analysis shows the
benefit of semi-supervised learning when the distribution is nearly uniform, but slightly
concentrated near the decision boundary. This is in sharp contrast to previous analyses
showing the benefits of semi-supervised learning, which typically rely on a “cluster assump-
tion” postulating that examples are sparse along the decision boundary.

12
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Appendix A. Algebraic completion of the proof of Theorem 2

Here we give an algebraic proof that
∫
s∈Ri error(s)ds ≤ g

2
i /4, whose proof was sketched using

plots in Section 4. This integral corresponds to the situation where the shifted sample causes
θ to fall in the “gap” between xi and xi+1. We again assume that θ ≤ 1/2 (the other case
is symmetrical) and proceed using the same cases. As before, let ri be the shift taking xi+1

to θ and gi be the length of the xi, xi+1 gap. Thus xi+1 ⊕ ri = θ and a shift of ri + gi takes
xi to θ even though ri + gi might be greater than one.

Case (A): gi ≤ θ. In this case, θ falls in the gap only for shifts s where xi⊕s ≤ θ < xi+1⊕s.
The maximum margin algorithm makes a mistake on a randomly drawn test point exactly
when the test point is between the middle of the (shifted) gap and θ. Therefore,∫ ri+gi

ri

error(s)ds =

∫ ri+gi

ri

∣∣∣∣(xi + xi+1

2

)
⊕ s− θ

∣∣∣∣ ds = 2

∫ gi/2

0
z dz =

g2i
4
.

Case (B): θ ≤ gi ≤ 1 − θ. In this case, as before, the integral goes from ri to ri + gi.
However, the expected error is slightly more complicated: while s ∈ [ri, ri+gi−θ], all of the

examples are negative, and the expected error is
∣∣∣xi+1⊕s

2 − θ
∣∣∣, and when s ∈ [ri+gi−θ, ri+gi]

the expected error is
∣∣∣xi+1+xi

2 ⊕ s− θ
∣∣∣, see the Case B plots in Section 4. Thus:∫ ri+gi

ri

error(s)ds =

∫ ri+gi−θ

ri

∣∣∣∣xi+1 ⊕ s
2

− θ
∣∣∣∣ ds+

∫ ri+gi

ri+gi−θ

∣∣∣∣xi+1 ⊕ s+ xi ⊕ s
2

− θ
∣∣∣∣ ds.

Using a change of variables (t = s− ri), we get∫ ri+gi

ri

error(s)ds =

∫ gi−θ

0

∣∣∣∣θ + t

2
− θ
∣∣∣∣ dt+

∫ gi

gi−θ

∣∣∣∣θ + t+ θ − gi + t

2
− θ
∣∣∣∣ dt

=

∫ gi−θ

0

∣∣∣∣ t− θ2

∣∣∣∣ dt+

∫ gi

gi−θ

∣∣∣t− gi
2

∣∣∣ dt. (10)

Subcase (B1): gi ≥ 2θ. Continuing from Equation (10),∫ ri+gi

ri

error(s)ds =

∫ θ

0

θ − t
2

dt+

∫ gi−θ

θ

t− θ
2

dt+

∫ gi

gi−θ

gi
2
− t dt

=
θ2

2
− θ2

4
− θ(gi − 2θ)

2
+

(gi − θ)2

4
− θ2

4
+
θgi
2
− g2i

2
+

(gi − θ)2

2

=
g2i
4

+
7θ2

4
− 3giθ

2
< g2i /4.

Subcase (B2): θ < gi < 2θ. Again continuing from Equation (10),∫ ri+gi

ri

error(s)ds =

∫ gi−θ

0

θ − t
2

dt+

∫ gi/2

gi−θ

gi
2
− t dt+

∫ gi

gi/2
t− gi

2
dt

=
θ(gi − θ)

2
− (gi − θ)2

4
+ (θ − gi

2
)
gi
2
− g2i

8
+

(gi − θ)2

2
− g2i

4
+
g2i
2
− g2i

8

=
2θgi − θ2

4
<
g2i
4
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since 2θgi − θ2, as a function of θ, is nondecreasing on the interval (gi/2, gi), and therefore
at most g2i over that interval.

Case (C): gi ≥ 1 − θ. When s ∈ [ri, ri + gi − θ], all of the examples are negative (as in
case (B)) and when s ∈ (ri + 1 − θ, ri + gi) all the examples are positive. This partitions
the shifts in (ri, ri + gi) into three parts (see the plots in Section 4). Initially θ falls in the
gap between 0 and the shifted xi+1. Then xi shifts in and the θ is in the gap between the
shifted xi and xi+1. Finally, xi+1 wraps around and θ is in the gap between the shifted xi
and 1.

Thus
∫ ri+gi
ri

error(s) ds equals∫ ri+gi−θ

ri

∣∣∣∣xi+1 ⊕ s
2

− θ
∣∣∣∣ ds+

∫ ri+1−θ

ri+gi−θ

∣∣∣∣xi+1 ⊕ s+ xi ⊕ s
2

− θ
∣∣∣∣ ds+

∫ ri+gi

ri+1−θ

∣∣∣∣xi ⊕ s+ 1

2
− θ
∣∣∣∣ ds

Using the substitution t = s− ri and following case B this becomes∫ ri+gi

ri

error(s) ds =

∫ gi−θ

0

∣∣∣∣ t− θ2

∣∣∣∣ dt+∫ 1−θ

gi−θ

∣∣∣t− gi
2

∣∣∣ dt+∫ gi

1−θ

∣∣∣∣θ − gi + t+ 1

2
− θ
∣∣∣∣ dt (11)

Subcase (C1): gi ≥ 2θ, so 1 − gi ≤ θ ≤ gi/2. Continuing from (11),
∫ ri+gi
ri

error(s) ds
equals

∫ θ

0

θ − t
2

dt+

∫ gi−θ

θ

t− θ
2

dt+

∫ 1−θ

gi−θ
t− gi

2
dt+

∫ gi

1−θ

t+ 1− gi − θ
2

dt

=
θ2

4
+

(gi − 2θ)2

4
+

(1− gi)(1− 2θ)

2
+

4gi(1− θ)− g2i − 3(1− θ)2

4

=
g + θ2 + θ

2
− gθ − 1/4.

Note that the second derivative w.r.t. θ is positive, so the r.h.s. is maximized when θ = 1−gi
or θ = gi/2. In both cases, it is easily verified that the value is at most g2i /4.

Subcase (C2): gi ≤ 2θ. Continuing from (11) and following the logic of case B2,∫ ri+gi
ri

error(s)ds equals

∫ gi−θ

0

θ − t
2

dt+

∫ gi/2

gi−θ

gi
2
− t dt+

∫ 1−θ

gi/2
t− gi

2
dt+

∫ gi

1−θ

t+ 1− gi − θ
2

dt

=
(3θ − gi)(gi − θ)

4
+

(2θ − gi)2

8
+

(2− gi − 2θ)2

8
+

(gi + θ − 1)(3− gi − 3θ)

4

=
2gi + 2θ − 1− g2i − 2θ2

4
.

This is increasing in θ, and thus maximized when θ = 1/2 where it becomes gi/2−g2i /4−1/8.
We want to show that this bound is at most g2i /4, i.e. that f(gi) = gi/2− g2i /2− 1/8 ≤ 0.
Combining the facts that gi ≥ 1/2 in Case C, f(1/2) = 0, and f ′(gi) ≤ 0 when gi ≥ 1/2,
gives the desired inequality.
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