
All-Moves-As-First Heuristics in Monte-Carlo Go

David P. Helmbold and Aleatha Parker-Wood
Department of Computer Science, University of California, Santa Cruz, California, USA

Abstract— We present and explore the effectiveness of sev-
eral variations on the All-Moves-As-First (AMAF) heuristic
in Monte-Carlo Go. Our results show that:
• Random play-outs provide more information about the

goodness of moves made earlier in the play-out.
• AMAF updates are not just a way to quickly initialize

counts, they are useful after every play-out.
• Updates even more aggressive than AMAF can be even

more beneficial.

In Proceedings of the 2009 International Conference on Artificial Intelligence, ICAI’09/ISBN 1-60132-108-2,
Editors: Arabnia, de la Fuente, Olivas, pp. 605-610, Los Vegas, USA, 2009.

Keywords: Heuristic search, Computer Go, Monte-Carlo Tree
Search, All-Moves-As-First, UCT

1. Introduction
Go is an ancient game, dating back to before the 5th cen-

tury BC. It is very popular in China, Korea, and Japan with
active professional organizations and big money tournaments
in all three countries. Although the rules of Go are relatively
simple, the combinatorial complexity of Go is very high,
much greater than that of chess, and Computer Go has been
identified as a grand challenge problem for AI [CW07].

Go is played by two players (black and white) on a
rectangular grid. Each player has a supply of circular pieces,
called stones, and players alternate placing stones on the
intersections. Orthogonally adjacent stones of the same color
are in the same group, and groups are captured (removed) if
all the adjacent intersections are occupied by enemy stones.
The goal of the game is to control the majority of the
board’s intersections either by occupying or surrounding
them. Although most human games are played on 19 × 19
boards, 9× 9 and 13× 13 boards are also used, with many
computer Go efforts concentrating on the smaller 9×9 board
size. Even on this smaller board size, the combinatorial
complexity and subtle strategy possibilities are such that
computer Go programs rarely challenge experienced ama-
teurs. However, some of the newer Monte-Carlo programs
have done surprisingly well against human professionals in
high-handicap 19× 19 games.

In this paper we examine the effectiveness of the All-
Moves-As-First (AMAF) heuristic in Monte-Carlo Go. In
Monte-Carlo Go a large number of simulated play-outs
are used to estimate the goodness of moves and positions.
Assume that black is to move in some position. If the
simulated play-outs starting with a particular move by black
tend to results in wins for black, then the simulated play-
outs provide some evidence that the move is a good one. The

AMAF heuristic uses the play-out as some evidence that the
other simulated moves made by black in a winning play-out
are also good moves, and increases their estimated value.

In addition to a direct quantitative comparison of several
AMAF variants, our results show that:

• Random play-outs provide more evidence about the
goodness of moves made earlier in the play-out than
moves made later.

• AMAF updates are not just a way to quickly initialize
counts, they are useful after every play-out.

• Updates even more aggressive than AMAF can be even
more beneficial.

• Combining heuristics can be more powerful than indi-
vidual heuristics.

The next section introduces Monte-Carlo Go and the UCT
algorithm. Section 3 describes the basic AMAF heuristic
and the five parameterized variations for which we ran
experiments. Section 4 presents our experimental results and
concluding remarks are given in Section 5.

2. Monte-Carlo Tree Search
Many of today’s strongest Go programs use Monte-Carlo

techniques with one or more extensions. In its simplest form,
Monte-Carlo Go programs evaluate positions by doing a
large number of simulated play-outs. Each simulated play-
out starts at the current game position and uses random play
to generate moves until the play-out’s winner can be deter-
mined. The goodness of a position for a particular player
can be estimated by that player’s win rate in the random
play-outs. Similarly, those moves that tend to start winning
random play-outs can be considered the good moves in the
current game position. The accuracies of these estimates
depend on the number of random play-outs and how well
the two side’s bad random plays tend to even out.

A popular and effective extension to this algorithm is
Monte-Carlo tree search, which combines the Monte-Carlo
random play-outs with a small dynamically built search tree
(partial game tree) from the current game position. The UCT
algorithm [KS06] for Monte-Carlo tree search uses an upper
confidence bound exploration/exploitation technique. This
upper confidence bound technique converges to the opti-
mum solution for multi-armed bandit problems [ACBF02].
Related Monte-Carlo tree search techniques represent the
current state-of-the-art in computer Go. We use Łucasz
Lew’s Library of Effective Go Routines (libEGO) [Lew09]



implementation of the UCT algorithm to manage the search
tree.

Each simulated play-out from the current game position
now has two parts: a navigation through the current search
tree, followed by random moves to finish the game. The
root of the UCT tree represents the current game position
and each node in the tree represents a board position that
can be reached from the current position in a few moves.
Associated with each node are counts of how many winning
and losing play-outs have gone through the node. These
counts determine how the play-outs traverse the tree, how
the tree grows, and eventually which single move is selected
for play in the game.

Since examining the entire search space from most posi-
tions is prohibitively expensive, the partial search tree is kept
relatively small. It is dynamically grown by expanding those
moves which have proved promising during the previous
Monte-Carlo play-outs. In particular, if a sufficiently large
number of random play-outs have started from the same leaf
in the tree, then that leaf’s children are added to the partial
search tree and start accumulating counts of their own.

The UCT tree assigns a value to each node based on
the counts at the node. In particular, the value of a node
is the win rate plus a variance term. The variance term is
designed so that the current win-rate plus variance gives a
high-confidence upper bound on the long-term win-rate of
the position represented by the node. A play-out traverses the
UCT tree by going to the child with the highest value. Using
these upper bounds to traverse the tree provides a solution
to the exploration/exploitation dilemma because nodes with
high upper bounds have high variance (due to relatively few
visits) and/or good win rates .

After reaching a leaf in the UCT tree, the play-out
continues with a Monte-Carlo simulation. When the winner
of the play-out is determined, the counts in the UCT tree
nodes traversed by the play-out are updated. We call this the
standard update for a play-out. The standard UCT algorithm
combines UCT management of the Monte-Carlo search tree
with standard updates after each simulated play-out.

In the example of Figure 1, the two tree nodes in bold
(black C2 and white A1) are the only ones updated by
the standard update for the indicated play-out. The various
AMAF algorithms make additional updates and/or keep
additional counts.

In addition to keeping a search tree, some programs guide
the random parts of the play-outs to reduce blunders. Rather
than using a uniform distribution over the legal moves, the
program uses a distribution created by an agent with some
Go knowledge. For example, the very successful MoGo
[CCF+] program directs its random play-outs using a hand-
crafted hierarchy of priorities and heuristics.

Increasing the “smarts" in random play-outs is usually
helpful, and minimal constraints (like not filling in one’s
own eyes) appear essential for play-out termination. The

libEGO routines implement this minimal functionality. Sur-
prisingly, increasing the bias in the random play-outs can
occasionally weaken the strength of a program using the
UCT algorithm even when the bias is correlated with Go
playing strength. One instance of this was reported by Gelly
and Silver [GS07], and our group observed a drop in strength
when the random play-outs were encouraged to form pat-
terns commonly occurring in computer Go games [Fly08].

3. All Moves As First (AMAF)
Brügmann [Brü93] gives the first description of the

AMAF heuristic in Monte-Carlo computer Go and Gelly and
Silver [GS07] describe the first effort to combine the AMAF
heuristic with UCT that we are aware of. This heuristic
increases the knowledge extracted from a play-out at the cost
of including knowledge that may be biased or less relevant.

In the context of Monte-Carlo tree search, the AMAF
update (see Figure 1) updates not only the counts at nodes
through which the play-out passes, but also many siblings
of those nodes. Assume a simulated play-out has a player
making move m that goes from some parent node to a child
c in the tree. For each other move m′ made by the same
player later in the play-out, the sibling of c corresponding
to move m′ could also be updated with the result of the
play-out. The AMAF update does this additional sibling
updating for each node c traversed by the play-out. Since
play-outs tend to end with each player occupying almost
half the intersections, many siblings tend to have their counts
updated by the AMAF update.

The basic AMAF algorithm combines UCT with the
AMAF update after each play-out. This algorithm rapidly
grows the counts at the nodes in the UCT tree, and thus
increases the algorithm’s confidence in the win rates. On the
other hand, the counts at nodes are increased not because the
move was made in the position represented by the parent, but
because it was made in a (perhaps very) different context.
This use of information from other contexts makes the counts
from the AMAF update immediately suspect.

There is an argument that counts from the AMAF updates
are relevant when strict Monte-Carlo play-outs are used. If
moves are made uniformly at random from the legal plays
and there are no captures, then either player’s moves in the
play-out can be permuted to create another play-out reaching
the same final position. Furthermore, both the original and
permuted play-outs have roughly the same probability of
being generated1 by the Monte-Carlo process. Therefore it
is reasonable to update the counts at nodes traversed by
(player-preserving) permutations of the play-out as well as
the counts at the nodes traversed by the original simulated
play-out. Our experiments show that this extended version,

1Because self-capture possibilities may arise and disappear, moves may
be sampled from slightly different sets in the original and permuted play-out
leading to slightly different probabilities.



A B C

1

2

3

C2A1 C3 *C1B1*

A3 C3 C3 A1 A3*

Play-out Path:

Black C2 (UCT)
White A1 (UCT)

Black B1
White A3
Black C3

Win for blackA2

A3

B1

Fig. 1: An artificial example illustrating a play-out, the standard update, and the AMAF update. The current game position
on a 3 × 3 board is given at the left and is represented by the root of the Monte-Carlo search tree. After a number of
play-outs the Monte-Carlo tree has grown and part of it is shown in the middle of the figure. Each non-root node is labeled
with the move made to enter it from its parent. The next simulated play-out is shown at the right. The tree part of this
play-out goes through nodes Black C2 and White A1 (in bold), and the standard update uses the result of the play-out to
update the counts at those two nodes (only). In the AMAF update, if the play-out passes through a node, then that node’s
siblings that are labeled with moves made later in the play-out are also updated. For this play-out, the additional nodes
updated by the AMAF update are: Black B1, Black C3, and White A3, and these nodes are indicated by asterisks (∗) in the
figure.

which we call Permutation-AMAF, can be beneficial (see
Section 4).

On the other hand, this argument breaks down when
specialized Go knowledge is used to direct the random play-
outs.

Recall that the standard update adjusts the counts only in
those UCT nodes traversed by the original simulated play-
out while the AMAF update adjusts the counts at those
UCT nodes as well as all siblings of those nodes that
correspond to a move made by the same player later in
the play-out (see Figure 1). In the UCT method, each kind
of count is combined with a variance term to provide an
optimistic estimate on the value or goodness of the node. In
this paper we consider the following algorithms which are
parameterized variants of the AMAF heuristic.

The α-AMAF algorithm blends the value estimates from the
standard updates and the AMAF updates. It keeps two sets of
counts at each node, one updated with the standard update
and the other updated with the AMAF update. α-AMAF
estimates the value of a node as α times the estimate from
the AMAF updated counts plus (1 − α) times the estimate
from the standard update counts (recall that each estimate
includes a different variance term). Thus α = 0 corresponds
to the standard UCT algorithm and α = 1 corresponds to
the basic AMAF algorithm.

The Some-First algorithm uses a more restrictive version of
the AMAF update that updates fewer nodes. Once the result
of a simulated play-out has been determined, the play-out is
truncated by deleting moves made after the first m random
moves, and then the AMAF update is applied with respect to
the moves in the truncated play-out. When m is larger than
the play-out length, this has the same effect as the AMAF
update. When m = 0, the only nodes that get their counts
updated are those that are labeled by moves occurring within
the UCT tree part of the play-out.

The Cutoff algorithm initially uses the AMAF update to
“warm up" the counts in the tree and then switches over to
the (presumably) more precise standard update to refine the
estimates. It uses a single set of counts at the nodes, but the
counts are updated with the AMAF update for the first k
play-outs (out of 100,000) and updated using the standard
update for the remaining play-outs. When k = 100, 000 this
is the basic AMAF algorithm, and when k = 0 this becomes
the standard UCT algorithm.

RAVE stands for “Rapid Action Value Estimation" and is
another way to help warm-up the tree that is used by the
successful MoGo program [GS07]. The RAVE algorithm is
like α-AMAF except that each node has its own α value that
starts at 1 and decreases as simulated play-outs go through
the node. There is a parameter that controls this decrease;



the α value used for a node is
parameterVal − (play-outs through node)

parameterVal

or 0 if this expression is negative.

The Permutation-AMAF algorithm keeps two sets of
counts, one using the standard update and a second using
an update even more aggressive than the AMAF update.
The AMAF update modifies the counts at nodes that can be
reached using a prefix of the simulated play-out followed by
a single move made later in the play-out. The permutation
update modifies the counts at every node that can be reached
by permuting the moves in the play-out while preserving
stone colors and player alternation. In the example of Fig-
ure 1, Permutation-AMAF would not only update the bold
and starred nodes updated by the AMAF update, but also
the White A3 and Black B1 nodes under the starred Black
C3 node since there is a color-preserving permutation of
the play-out’s moves that starts: Black C3, White A3, Black
B1. Permutation-AMAF’s updates are more expensive than
the AMAF update because it requires a (partial) recursive
tree traversal while the AMAF update need only examine
the nodes traversed by the simulated play-out and their
children. Like α-AMAF, this algorithm has an α-parameter
that combines the UCT values from the standard update
counts and the aggressively updated ones.

4. Experiments
We implemented the 5 variants of AMAF described in the

previous section using Łukasz Lew’s libEGO [Lew09]2 im-
plementation of the UCT algorithm. Since the additional cost
of performing the AMAF updates and associated bookkeep-
ing is modest3 almost all variants were set to make 100,000
play-outs per game move. The exception was the more
expensive Permutation-AMAF which used 50,000 play-outs
to make its time used roughly comparable to that of the other
variants. In general, the AMAF variants performed much
better than UCT without the AMAF heuristic.

The twogtp program was used to play matches between
the AMAF variants and two baseline programs: the standard
UCT algorithm and the basic AMAF algorithm. Matches
were 1,000 games (500 with each color) and used Chinese
scoring with a komi of 5.5 points. The error bars in the
plots indicate 95% confidence intervals using the normal
approximation.

Figure 2 shows α-AMAF’s win rate against standard
UCT and the basic AMAF algorithm. α-AMAF does best
against basic AMAF when the α parameter is 0.4. α-AMAF
does slightly better against standard UCT when α is 0.1,

2Version 0.110, with explore rate set to 0.2
3In our experiments the AMAF variants usually take from 0% to 35%

more time than the standard UCT algorithm (as reported by twogtp) with
20% being typical. Our implementation of the RAVE variant was a little
slower, usually taking around 50% more time than standard UCT.

0 0.2 0.4 0.6 0.8 1

Alpha-AMAF: Alpha Parameter
0

0.2

0.4

0.6

0.8

1

W
in

 R
at

e

Alpha-AMAF vs UCT
Alpha-AMAF vs AMAF

Fig. 2: α-AMAF algorithm versus benchmarks

0 20 40 60 80

Some-First: # Monte-Carlo moves used
0

0.2

0.4

0.6

0.8

1

W
in

 R
at

e

SomeFirst vs UCT
SomeFirst vs AMAF

Fig. 3: SomeFirst algorithm versus benchmarks

0.2, and 0.3, but the differences are slight. Note that α-
AMAF’s performance against both benchmarks decreases as
α approaches the extreme values 0 (equivalent to standard
UCT) and 1 (equivalent to basic AMAF). This indicates that
combining the two benchmark methods is better than either
method alone.

Figure 3 shows the results for the Some-First algorithm
(which maintains only a single set of counts at each node).
The moves=0 parameter setting means only those moves
selected within the UCT tree part of the play-out are used
to make AMAF updates. Comparing with the α-AMAF
results we see that much of the improvement of AMAF
updating comes from those moves made within the tree.
Using the first few randomly selected moves for the AMAF
updates increases playing strength against the benchmarks,
but with diminishing returns. Using more than 2-5 moves
against UCT or more than 20 moves against AMAF starts
diminishing performance. These results indicate that winning
(or losing) a Monte-Carlo play-out provides more evidence
about the goodness (or badness) of random moves made
early in the play-out than those made later in the play-out.

The Cutoff algorithm uses the AMAF update only after



0 20000 40000 60000 80000 100000

Cutoff: # playouts using AMAF update
0

0.2

0.4

0.6

0.8

1
W

in
 R

at
e

Cutoff vs UCT
Cutoff vs AMAF

Fig. 4: Cutoff algorithm versus benchmarks

10 100 1000 10000 100000

RAVE: Monte-Carlo moves before AMAF weight=0

0.2

0.4

0.6

0.8

1

W
in

 R
at

e

RAVE vs UCT
RAVE vs AMAF

Fig. 5: RAVE algorithm versus benchmarks, unlike the other
plots, the RAVE parameter is plotted on a log-scale.

the initial play-outs and then reverts to the standard update.
The results for this method are in Figure 4. We expected the
AMAF updates to rapidly initialize a UCT with reasonable
values that would be refined by the later standard updates.
The plot indicates that it is better to use AMAF updates
throughout (although performance decreases slightly at the
end against standard UCT, it continues to improve against
basic AMAF).

The RAVE variation’s performance is plotted in Figure 5
(this plot uses log-scale for the X-axis to accommodate
the large range of parameter values tested). Our initial tests
with smaller parameter values seemed to indicate that its
performance characteristics were are similar to the Cutoff
algorithm, and converged (from below) to the AMAF al-
gorithm’s performance. This was somewhat surprising since
some of MoGo’s success is attributed to the RAVE updates
[GS07]. They use a hierarchy of hand-crafted rules to help
direct the Monte-Carlo play-outs (as opposed to our more
random play) and suggested RAVE values on the order of
1,000.

However, in further tests we found that even larger RAVE

0 0.2 0.4 0.6 0.8 1

Permutation-AMAF: alpha parameter
0

0.2

0.4

0.6

0.8

1

W
in

 R
at

e

Perm-AMAF vs UCT
Perm-AMAF vs AMAF

Fig. 6: Permutation-AMAF algorithm versus benchmarks

parameters were much more effective. When using a param-
eter between 5,000 and 100,000 the win rate against against
the AMAF benchmark remains above 60%. The best win rate
in our tests was 65.4% at parameter value 30,000. Although
not quite as good as the 70% win rate for the α = 0.4
AMAF version, this is still a very significant improvement
over the (α = 1) AMAF benchmark.

Our experiments do 100, 000 play-outs to determine which
move to make, and only a few nodes in the tree get more
than 10, 000 play-outs passing through them. The RAVE
algorithm with a parameter value around 30, 000 essentially
relies on values from the AMAF updates at the lower levels
of the tree while blending in values from UCT updates
at the most promising (and thus most explored) nodes
at the top. As the parameter values increased further (to
150,000+) the performance decreases, and as the parameter
approaches infinity the RAVE algorithm converges to the
AMAF benchmark (assuming the number of play-outs is
held constant).

It is peculiar that the RAVE variation with a small pa-
rameter value worked so poorly, far worse than the standard
UCT baseline. Although we do not yet fully understand
this, one possible explanation is that adequate moves can
starve better alternatives for the current game situation. If
the AMAF value estimate of the adequate move is initially
higher than the AMAF value estimate of the better one then
the play-outs will tend to pass through the adequate move.
When the parameter value is small, this causes the evaluation
function to quickly switch over over to the standard UCT
one, and the smaller sample size gives it a larger variance
term. Meanwhile the better alternative is still getting a large
number of low-quality AMAF updates keeping its value
(win rate plus variance term) below that of the adequate
alternative.

The plot in Figure 6 shows Permutation-AMAF’s perfor-
mance against the baselines. Although Permutation-AMAF
uses fewer play-outs to generate each move, each play-out
updates many more nodes in the tree. Like α-AMAF, we



Algorithm α-AMAF Cutoff RAVE SomeFirst Permutation
Parameter 0.0 0.4 1.0 1 80k 10 100 1000 0 20 0.5 1.0
Wins vs Gnu Go 254 374 293 245 306 51 277 367 374 332 416 315
Rank vs Gnu Go 10 2(t) 8 11 7 12 9 4 2(t) 5 1 6
Wins vs AMAF 204 701 500 204 478 4 345 488 422 583 706 426
Rank vs AMAF 10(t) 2 4 10(t) 6 12 9 5 8 3 1 7

Fig. 7: Number of wins and rank (best to worst) for selected variants against AMAF and Gnu Go.

use an α parameter to combine the AMAF values with the
standard UCT values. With α = 0.5 we get some of the best
performances against the baseline. On the other hand, when
α = 1 we get worse performance than basic AMAF. An
interesting aspect of these Permutation-AMAF experiments
is that they indicate the potential benefit of extracting even
more information from a play-out than is done by the AMAF
updates.

Using related computer programs to estimate each other’s
playing strength has the drawback that a version that exploits
common weaknesses of the group can appear to be much
stronger than it really is. We validated our results by running
1000 game matches between selected versions and Gnu
Go (version 3.7 at level 10), a relatively strong program
implemented with entirely different techniques. The table in
Figure 7 shows that comparing against Gnu Go gives nearly
the same strength ordering as our AMAF baseline. The major
differences are that α-AMAF with α = 1 drops from 4th to
8th, and SomeFirst with parameter 0 moves up from 8th into
a tie for second.

5. Conclusions and Further Work
The AMAF heuristic has the potential of multiplying

the information gained by a Monte-Carlo play-out but it
also makes the potentially dangerous assumption that moves
occurring later in a play-out could equally well occur earlier.
Our results show that AMAF updates greatly increase the
strength of UCT Monte-Carlo methods when the play-outs
are random. We observed that although moves early in the
play-out provide much of this benefit, using AMAF updates
for all play-outs is still better than using AMAF updates
simply to “warm-up" the tree.

As mentioned in Section 2, biasing the random play-outs
with Go knowledge can lead to counter-intuitive results.
Although we anticipate similar results when Mogo-like
heuristics such as “save stones in atari” and “rarely play
on the edge” are used in the random play-outs, that remains
to be verified.

Although AMAF updates are superior to the standard
UCT updates, combining the two creates an even stronger
player. The benefit of this combining is even greater for the
more aggressive Permutation-AMAF update. We are starting
to explore other combinations of the heuristics. For example,
adding an α-parameter like that in the α-AMAF algorithm
to the SomeFirst algorithm looks like a promising way to
get additional improvement.

Acknowledgements
We thank Łucasz Lew for making his libEGO system

available and for helpful comments on an early draft of
the paper; Charlie McDowell, David Doshay, and the UCSC
SlugGo group for many helpful discussions; and the Hier-
archical Systems Research Foundation for the use of their
server.

References
[ACBF02] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time

analysis of the multiarmed bandit problem. Mach. Learn., 47(2-
3):235–256, 2002.

[Brü93] Bernd Brügmann. Monte carlo go, October 1993.
[CCF+] Guillaume Chaslot, Louis Chatriot, C. Fiter, Sylvain Gelly,

Jean-Baptiste Hoock, Julien Perez, Arpad Rimmel, and Olivier
Teytaud. Combining expert, offline, transient and online
knowledge in monte-carlo exploration. http://www.lri.fr/ tey-
taud/eg.pdf.

[CW07] Xindi Cai and Donald C. Wunsch II. Computer Go: A
Grand Challenge to AI, volume 63 of Studies in Computational
Intelligence (SCI), pages 443–465. Springer, 2007.

[Fly08] Jennifer Flynn. Independent study quarterly reports.
http://users.soe.ucsc.edu/˜charlie/projects/SlugGo/, 2008.

[GS07] Sylvain Gelly and David Silver. Combining online and offline
knowledge in uct. In ICML ’07: Proceedings of the 24th
Internatinoal Conference on Machine Learning, pages 273–280.
ACM, 2007.

[KS06] L. Kocsis and Cs. Szepesvári. Bandit based monte-carlo
planning. In Machine Learning: ECML 2006, number 4212
in LNCS, pages 282–293. Springer, 2006.

[Lew09] Łukasz Lew. Library of effective go routines (libEGO).
http://www.mimuw.edu.pl/˜lew/, 2009.


