
1

Part II: Atomicity for
Software Model Checking

Class Account {
int balance;
static int MIN = 0, MAX = 100;

bool synchronized deposit(int n) {
int t = balance + n;
if (t > MAX) return false;
balance = t;
assert(MIN ≤ balance ≤ MAX);
return true;

}

bool synchronized withdraw(int n) {
int t = balance – n;
if (t < MIN) return false;
balance = t;
assert(MIN ≤ balance ≤ MAX);
return true;

}
}

Account a = new Account();
Account b = new Account();
async a.deposit(5);
async b.withdraw(10);

• Model checker for concurrent software
– assertions, deadlocks

• Rich input language
– Procedures, dynamic object creation, dynamic

thread creation
– Shared-memory (via globals and channels)
– Message-passing (via channels)

• Joint work with Tony Andrews, Jakob
Rehof, and Sriram Rajamani

• http://www.research.microsoft.com/zing

Analysis of concurrent programs
is difficult (1)

• Finite-data single-procedure program
– n lines
– m states for global data variables

• 1 thread
– n * m states

• K threads
– (n)K * m states

B: both right + left movers
– variable access holding lock

N: non-movers
– access unprotected variable

The theory of movers (Lipton 75)

•R: right movers
– lock acquire

L: left movers
– lock release

Transaction

S0 . S5
R* N L*x Y. . .

S0 . S5
R* N L*x Y. . .

Other threads need not be scheduled in the middle
of a transaction

Lipton: any sequence (R|B)*; [N] ; (L|B)* is a transaction

Pre-commit Post-commit

2

Algorithm:
1. Schedule all threads in the initial state.
2. For each state s discovered by executing a thread t:

• If s is inside a transaction, schedule only thread t from s.
• Otherwise, schedule all threads from s.

s0, -, -

State, Phase, TidInstrumented state:

Algorithm:
1. Schedule all threads in the initial state.
2. For each state s discovered by executing a thread t:

• If s is inside a transaction, schedule only thread t from s.
• Otherwise, schedule all threads from s.

s0, -, -

State, Phase, Tid

s1, pre, 1

Instrumented state:

1
R | B

Algorithm:
1. Schedule all threads in the initial state.
2. For each state s discovered by executing a thread t:

• If s is inside a transaction, schedule only thread t from s.
• Otherwise, schedule all threads from s.

s0, -, -

State, Phase, Tid

s1, pre, 1 s2, pre, 1

Instrumented state:

1
R | B

1
R | B

Algorithm:
1. Schedule all threads in the initial state.
2. For each state s discovered by executing a thread t:

• If s is inside a transaction, schedule only thread t from s.
• Otherwise, schedule all threads from s.

s0, -, -

State, Phase, Tid

s1, pre, 1 s2, post, 1

Instrumented state:

1
R | B

1
N | L

Algorithm:
1. Schedule all threads in the initial state.
2. For each state s discovered by executing a thread t:

• If s is inside a transaction, schedule only thread t from s.
• Otherwise, schedule all threads from s.

s0, -, -

State, Phase, Tid

s1, pre, 1 s2, post, 1

Instrumented state:

s3, post, 11
R | B

1
N | L

1
L | B

Algorithm:
1. Schedule all threads in the initial state.
2. For each state s discovered by executing a thread t:

• If s is inside a transaction, schedule only thread t from s.
• Otherwise, schedule all threads from s.

s0, -, -

State, Phase, Tid

s1, pre, 1 s2, post, 1

Instrumented state:

s3, post, 1

s4, post, 1

1
R | B

1
N | L

1
L | B

1 L | B

3

Algorithm:
1. Schedule all threads in the initial state.
2. For each state s discovered by executing a thread t:

• If s is inside a transaction, schedule only thread t from s.
• Otherwise, schedule all threads from s.

s0, -, -

State, Phase, Tid

s1, pre, 1 s2, post, 1

Instrumented state:

s3, -, -

s4, pre, 1

1
R | B

1
N | L

1
L | B

1 R

Algorithm:
1. Schedule all threads in the initial state.
2. For each state s discovered by executing a thread t:

• If s is inside a transaction, schedule only thread t from s.
• Otherwise, schedule all threads from s.

s0, -, -

State, Phase, Tid

s1, pre, 1 s2, post, 1

Instrumented state:

s3, -, -
1

R | B
1

N | L
1

L | B

Schedule thread 2

Algorithm:
1. Schedule all threads in the initial state.
2. For each state s discovered by executing a thread t:

• If s is inside a transaction, schedule only thread t from s.
• Otherwise, schedule all threads from s.

s0, -, -

State, Phase, Tid

s1, pre, 1 s2, post, 1

Instrumented state:

s3, -, -

s4, pre, 2

1
R | B

1
N | L

1
L | B

2 R

Class Account {
int balance;
static int MIN = 0, MAX = 100;

bool synchronized deposit(int n) {
int t = balance + n;
if (t > MAX) return false;
balance = t;
assert(MIN ≤ balance ≤ MAX);
return true;

}

bool synchronized withdraw(int n) {
int t = balance – n;
if (t < MIN) return false;
balance = t;
assert(MIN ≤ balance ≤ MAX);
return true;

}
}

Account a = new Account();
Account b = new Account();
async a.deposit(5);
async b.withdraw(10);

Execution of a.deposit(5) is a transaction.

Execution of b.withdraw(10) is a transaction.

ZING explores two interleavings only!

Unsoundness problem
What if a transaction does not terminate?

T1

g = 1;
while (true)

skip;

T2

assert(g == 0);

Initially g == 0;

Thread 2 never gets scheduled here!

ZING: Work in progress

• Algorithm for sound transaction-based
model checking

• Inferring mover information for accesses to
the heap and globals

4

Related work

• Partial-order reduction
– stubborn sets (Valmari 91), ample sets (Peled 96),

sleep sets (Godefroid 96)
– used mostly for message-passing systems (no shared

memory)
• Bogor model checker (Dwyer et al. 04)

– applied classic partial-order reduction to shared-
memory Java programs

• Transaction-based reduction (Stoller-Cohen 03)

Analysis of concurrent programs
is difficult (2)

• Finite-data program with procedures
– n lines
– m states for global data variables

• 1 thread
– Infinite number of states
– Can still decide assertions in O(n * m3)
– SLAM, ESP, BLAST implement this algorithm

• K ≥ 2 threads
– Undecidable!

Transaction

S0 . S5
R* N L*x Y. . .

S0 . S5
R* N L*x Y. . .

Other threads need not be scheduled in the middle
of a transaction
⇒ Transactions may be summarized

Lipton: any sequence (R+B)*; (N+ε) ; (L+B)* is a transaction

Summarization for sequential
programs

• Procedure summarization (Sharir-Pnueli
81, Reps-Horwitz-Sagiv 95) is the key to
efficiency

int x;

void incr_by_2() {
x++;
x++;

}

void main() {
…
x = 0;
incr_by_2();
…
x = 0;
incr_by_2();
…

}

• Bebop, ESP, Moped, MC, Prefix, …

Assertion checking for
sequential programs

• Boolean program with:
– g = number of global vars
– m = max. number of local vars in any scope
– k = size of the CFG of the program

• Complexity is O(k × 2
O(g+m)

), linear in
the size of CFG

• Summarization enables termination in the
presence of recursion

Assertion checking for
concurrent programs

Ramalingam 00:
There is no algorithm for assertion checking
of concurrent boolean programs, even with
only two threads.

5

Our contribution

• Precise semi-algorithm for verifying
properties of concurrent programs
– based on model checking
– procedure summarization for efficiency

• Termination for a large class of concurrent
programs with recursion and shared
variables

• Generalization of precise interprocedural
dataflow analysis for sequential programs

What is a summary in sequential
programs?

• Summary of a procedure P = Set of all
(pre-state post-state) pairs obtained by
invocations of P

int x;

void incr_by_2() {
x++;
x++;

}

void main() {
…
x = 0;
incr_by_2();
…
x = 0;
incr_by_2();
…
x = 1;
incr_by_2();
…

}

x x’

0 2
1 3

What is a summary in concurrent
programs?

• Unarticulated so far
• Naïve extension of summaries for

sequential programs do not work

Call P Return P

Call P

Return P

s

s’

Disadvantage: summary not usable for executions with
interference from other threads

Attempt 1
Advantage: summary computable as in a sequential
program

Attempt 2

Call P

Return P

s

s’

Advantage: Captures all executions

Disadvantage: s and s’ must comprise full program state
• summaries are complicated
• do not offer much reuse

Choose N = 2

Summaries:
〈 m, (a[0],a[1]) 〉 〈 i’, m’, (a[0]’,a[1]’) 〉

〈 0, (0, 0) 〉 〈 2, 0, (0,0) 〉
〈 0, (0, 1) 〉 〈 1, 0, (0,0) 〉
〈 0, (1, 0) 〉 〈 0, 0, (0,0) 〉
〈 0, (1, 1) 〉 〈 0, 0, (0,1) 〉

If a procedure body is a single transaction,
summarize as in a sequential program
bool available[N];
mutex m;

int getResource() {
int i = 0;

L0: acquire(m);
L1: while (i < N) {
L2: if (available[i]) {
L3: available[i] = false;
L4: release(m);
L5: return i;

}
L6: i++;

}
L7: release(m);
L8: return i;
}

6

Transactional procedures

• In the Atomizer benchmarks (Flanagan-
Freund 04), a majority of procedures are
transactional

Choose N = 2

Summaries:
〈 pc,i,(m[0],m[1]),(a[0],a[1]) 〉 〈 pc’,i’,(m[0]’,m[1]’),(a[0]’,a[1]’) 〉

〈 L0, 0, (0,*), (0,*) 〉 〈 L1, 1, (0,*), (0,*) 〉
〈 L0, 0, (0,*), (1,*) 〉 〈 L5, 0, (0,*), (0,*) 〉

〈 L1, 1, (*,0), (*,0) 〉 〈 L8, 2, (*,0), (*,0) 〉
〈 L1, 1, (*,0), (*,1) 〉 〈 L5, 1, (*,0), (*,0) 〉

What if a procedure body comprises multiple
transactions?

bool available[N];
mutex m[N];

int getResource() {
int i = 0;

L0: while (i < N) {
L1: acquire(m[i]);
L2: if (available[i]) {
L3: available[i] = false;
L4: release(m[i]);
L5: return i;

} else {
L6: release(m[i]);

}
L7: i++;

}
L8: return i;
}

What if a transaction
1.starts in caller and ends in callee?
2.starts in callee and ends in caller?

void foo() {
acquire(m);
x++;

bar();

x--;
release(m);

}

void bar() {

release(m);

acquire(m);

}

int x;
mutex m;

2

1

What if a transaction
1.starts in caller and ends in callee?
2.starts in callee and ends in caller?

void foo() {
acquire(m);
x++;

bar();

x--;
release(m);

}

void bar() {

release(m);

acquire(m);

}

int x;
mutex m;

Solution:
1.Split the summary into pieces
2.Annotate each piece to indicate whether

transaction continues past it

2

1

Two-level model checking

• Top level performs state exploration
• Bottom level performs summarization
• Top level uses summaries to explore

reduced set of interleavings
– Maintains a stack for each thread
– Pushes a stack frame if annotated summary

edge ends in a call
– Pops a stack frame if annotated summary

edge ends in a return

Termination

• Theorem:
– If all recursive functions are transactional,

then our algorithm terminates.
– The algorithm reports an error iff there is an

error in the program.

7

Concurrency + recursion

Summaries for foo:
〈 pc,r,m,g 〉 〈 pc’,r’,m’,g’ 〉

〈 L0,1,0,0 〉 〈 L5,1,0,1 〉
〈 L0,1,0,1 〉 〈 L5,1,0,2 〉

void main() {
int q =
choose({0,1});

M0: foo(q);
M1: acquire(m)
M2: assert(g >= 1);
M3: release(m);
M4: return;
}

Prog = main() || main()

int g = 0;
mutex m;

void foo(int r) {
L0: if (r == 0) {
L1: foo(r);

} else {
L2: acquire(m);
L3: g++;
L4: release(m);

}
L5: return;
}

Sequential programs

• For a sequential program, the whole
execution is a transaction

• Algorithm behaves exactly like classic
interprocedural dataflow analysis

Related work

• Summarizing sequential programs
– Sharir-Pnueli 81, Reps-Horwitz-Sagiv 95,

Ball-Rajamani 00, Esparza-Schwoon 01
• Concurrency+Procedures

– Duesterwald-Soffa 91, Dwyer-Clarke 94, Alur-
Grosu 00, Esparza-Podelski 00, Bouajjani-
Esparza-Touili 02

