Part Il: Atomicity for
Software Model Checking

Class Account {
int balance;
static int MIN = 0, MAX = 100;
Account a = new Account();
bool synchronized deposit(int n) { Account b = new Account();
intt = balance + n; async a.deposit(5);
if (t > MAX) return false; async b.withdraw(10);
balance =t;
assert(MIN < balance < MAX);
return true;

}

bool synchronized withdraw(int n) {
int t = balance —n;
if (t < MIN) return false;
balance = t;
assert(MIN < balance < MAX);
return true;

At e
Zing
* Model checker for concurrent software
— assertions, deadlocks
Rich input language

— Procedures, dynamic object creation, dynamic
thread creation

— Shared-memory (via globals and channels)
— Message-passing (via channels)

Joint work with Tony Andrews, Jakob
Rehof, and Sriram Rajamani

« http://www.research.microsoft.com/zing

Analysis of concurrent programs
is difficult (1)

* Finite-data single-procedure program
—n lines
—m states for global data variables
* 1 thread
—n* m states
» K threads
—(n)K * m states

The theory of movers (Lipton 75)

=R: right movers
—lock acquire
e : left movers
—lock release
* B: both right + left movers
—variable access holding lock
*N: non-movers
—access unprotected variable

Transaction

Lipton: any sequence (R|B)*; [N] ; (L|B)* is a transaction

Pre-commit Post-commit
R* X N Y L*
Sp—. 2. — . — . — §
RN 7
x R* N L*

y
Sp— . —. = . = = 5,

Other threads need not be scheduled in the middle
of a transaction

Algorithm:
1. Schedule all threads in the initial state.
2. For each state s discovered by executing a thread t:

« If sis inside a transaction, schedule only thread t from s.

« Otherwise, schedule all threads from s.

Instrumented state:

Algorithm:

1. Schedule all threads in the initial state.

2. For each state s discovered by executing a thread t:
« If sis inside a transaction, schedule only thread t from s.
« Otherwise, schedule all threads from s.

Instrumented state:

Algorithm:
1. Schedule all threads in the initial state.
2. For each state s discovered by executing a thread t:

« If sis inside a transaction, schedule only thread t from s.

« Otherwise, schedule all threads from s.

Instrumented state:

| Sor = - 'R_1|B" sy, pre, 1 ﬁbl S,, pre, 1 |

Algorithm:

1. Schedule all threads in the initial state.

2. For each state s discovered by executing a thread t:
« If sis inside a transaction, schedule only thread t from s.
* Otherwise, schedule all threads from s.

Instrumented state:

| Spr - - W s, pre, 1 |N_TL’| S,, post, 1 |

Algorithm:
1. Schedule all threads in the initial state.
2. For each state s discovered by executing a thread t:

« If sis inside a transaction, schedule only thread t from s.

« Otherwise, schedule all threads from s.

Instrumented state: | State, Phase, Tid

| So. - - |R—1|B>| s, pre, 1 'N_1|L’| S,, post, 1 W S, post, 1

Algorithm:

1. Schedule all threads in the initial state.

2. For each state s discovered by executing a thread t:
« If sisinside a transaction, schedule only thread t from s.
« Otherwise, schedule all threads from s.

Instrumented state: | State, Phase, Tid

| Sou -\ - ﬁ’l s, pre, 1 'N_Tl.’l S, post, 1 ﬁ’l S5, post, 1 |

1]LlB

Algorithm:
1. Schedule all threads in the initial state.
2. For each state s discovered by executing a thread t:

« If sis inside a transaction, schedule only thread t from s.

« Otherwise, schedule all threads from s.

Instrumented state:

[N RN 11]
|su,-,-|R|B|sl,pre,1|N|L|sz,post,1|L|B|ss,-,-|

1|R

Algorithm:

1. Schedule all threads in the initial state.

2. For each state s discovered by executing a thread t:
« If sis inside a transaction, schedule only thread t from s.
« Otherwise, schedule all threads from s.

Instrumented state:

L1, 11, 11
|so,-,-|R|B|sl,pre,l|N|L|sz,post,l|L|B|53,.,.

Schedule thread 2

Algorithm:

1. Schedule all threads in the initial state.

2. For each state s discovered by executing a thread t:
« If sis inside a transaction, schedule only thread t from s.
« Otherwise, schedule all threads from s.

Instrumented state:

1 T 1, 1
|so.-.-|R|B|Sl,pre,1|N|L|Sz,post.1|L|B|S3,-,-|

2[R

Class Account {
int balance;
static int MIN = 0, MAX = 100;
Account a = new Account();
bool synchronized deposit(int n) { Account b = new Account();
intt = balance + n; async a.deposit(5);
if (t > MAX) return false; async b.withdraw(10);
balance = t;
assert(MIN < balance < MAX);
return true;

} Execution of a.deposit(5) is a transaction.

bool synchronized withdraw(intn) { Execution of b.withdraw(10) is a transaction.
intt = balance — n;
if (t < MIN) return false;
balance =t;
assert(MIN < balance < MAX);
return true;

ZING explores two interleavings only!

Unsoundness problem

What if a transaction does not terminate?

Initially g == 0;
T1 T2
g=1; assert(g == 0);
while (true)

skip;

Thread 2 never gets scheduled here!

ZING: Work in progress

Algorithm for sound transaction-based
model checking

« Inferring mover information for accesses to
the heap and globals

Related work

Partial-order reduction

— stubborn sets (Valmari 91), ample sets (Peled 96),
sleep sets (Godefroid 96)

— used mostly for message-passing systems (no shared
memory)

« Bogor model checker (Dwyer et al. 04)

— applied classic partial-order reduction to shared-
memory Java programs

« Transaction-based reduction (Stoller-Cohen 03)

Analysis of concurrent programs
is difficult (2)

* Finite-data program with procedures
—nlines
—m states for global data variables
1 thread
— Infinite number of states
— Can still decide assertions in O(n * m3)
— SLAM, ESP, BLAST implement this algorithm
* K> 2 threads
— Undecidable!

Transaction

Lipton: any sequence (R+B)*; (N+¢) ; (L+B)* is a transaction

R* X N Y L*
Sp— 2 —— . =, — §
G 7

X R* N L* Y
Sp—— . ——. . .= 5

Other threads need not be scheduled in the middle
of a transaction

= Transactions may be summarized

Summarization for sequential
programs

» Procedure summarization (Sharir-Pnueli
81, Reps-Horwitz-Sagiv 95) is the key to

efficiency
int x; void main() {
void incr_by_2() { x=0;
X++; incr_by_2();
X+
} x=0;

incr_by_2();
e
e Bebop, ESP, Moped, MC, Prefix, ...

Assertion checking for
sequential programs

» Boolean program with:
— g = number of global vars
—m = max. number of local vars in any scope
—k = size of the CFG of the program
T O(g+m) . .

Complexity is O(k x 2), linear in
the size of CFG
* Summarization enables termination in the

presence of recursion

Assertion checking for
concurrent programs

Ramalingam 00:

There is no algorithm for assertion checking
of concurrent boolean programs, even with
only two threads.

Our contribution

* Precise semi-algorithm for verifying
properties of concurrent programs
— based on model checking
— procedure summarization for efficiency

What is a summary in sequential
programs?
e Summary of a procedure P = Set of all

(pre-state - post-state) pairs obtained by
invocations of P

int x; void main() { X > X
» Termination for a large class of concurrent void incr_by_20 { oo o > 2
programs with recursion and shared Xt incr_by_2(; 153
variables o X=0;
L .. incr_by_2();
« Generalization of precise interprocedural nerby-20
dataflow analysis for sequential programs e by, 20:
-
What is a summary in concurrent
o Attempt 1
programs?
. Unarticulated so far cal P. s »::)\:rl;:ge: summary computable as in a sequential
* Nalve e>.(tenS|on Of summaries fOI‘ Disadvantage: summary not usable for executions with
Sequentlal programs do not work interference from other threads
L]
. L]
Call P Return P
Return P
s
A 5 If a procedure body is a single transaction,
ttempt summarize as in a sequential program
oS "
callp Advantage: Captures all executions g;:uotleivnawl‘lable[N];
Choose N =2
int g_etResource() {
Disadvantage: s and s’ must comprise full program state Lo: '";C'q:uﬁ;e(m)_ Summaries:
« summaries are complicated X ile (i< N A , »
« do not offer much reuse 'é vvi?l(lz\/(;ilaslg])((m, @0l,a[1)) -> (i, m', (aor.a[ll))
: L e T (0.0.0) > (2,0,00)
L5: return i; (0,(0,1)) > (1,0,(00))
} (0,(1,00) > (0,0,(0,0))
Return P L6:) L (0,(1,1)) > (0,0,(01))
s’ L7: release(m);

L8: returni;

}

Transactional procedures

* In the Atomizer benchmarks (Flanagan-
Freund 04), a majority of procedures are
transactional

What if a procedure body comprises multiple
transactions?

bool available[N];

mutex m(N]; Choose N =2

. Summaries:

nt getResource() { Cpe.i,(mi0}m{1]),(2[0],al1))) > { pe',(iO},m[1]).(afo al1]))
LO: while (Ii<N){

L1: acquire(mli); (L0,0,(0%,(0%) > (L1,1,(0,(0%)

L2: if (available[i) { (L0,0,(0),(1%) > (L5,0,(0%,(0%))

L3: available[i] = false;
L4: release(ml[i]);

L5: returni; (L1, 1,(*0), (*0)) > (L8, 2 (*0), (*0))
}else { (L1,1,(%0), (1)) > (L5,1,(*0),(*0))
L6: release(ml[i]);
}
L7: i+
L8: returni;

}

What if a transaction
1.starts in caller and ends in callee?
2.starts in callee and ends in caller?

intx;
mutex m;
void foo() { void bar() {
acquire(m);
X++;
release(m);
bar();

2 acquire(m);
X '_’
release(m); }

}

What if a transaction
1.starts in caller and ends in callee?
2.starts in callee and ends in caller?

intx;
mutex m;
void foo() { void bar() {
acquire(m);
X+, L _2A___

l release(m);

bar();
2 l acquire(m);
P
release(m); l‘ }
}
Solution:

1. Split the summary into pieces
2. Annotate each piece to indicate whether
transaction continues past it

Two-level model checking

» Top level performs state exploration
» Bottom level performs summarization
* Top level uses summaries to explore
reduced set of interleavings
— Maintains a stack for each thread
— Pushes a stack frame if annotated summary
edge ends in a call
— Pops a stack frame if annotated summary
edge ends in a return

Termination

¢ Theorem:

— If all recursive functions are transactional,
then our algorithm terminates.

— The algorithm reports an error iff there is an
error in the program.

Concurrency + recursion Sequential programs

intg=0;
mutex m; » For a sequential program, the whole
id foo(int r) { void main() { Summaries for foo: . . R
1o o=y g (permg) > (permg’) execution is a transaction
B et v oo O (10100) 3 (15101) « Algorithm behaves exactly like classic
L2 acquire(m); wt: acqureqr) - (K0H0) > (19102) interprocedural dataflow analysis
L3 g++ M2: assert(g >= 1);
L4: release(m); M3: release(m);
M4: return;

L5: return;

}

Prog = main() || main()

Related work

* Summarizing sequential programs
— Sharir-Pnueli 81, Reps-Horwitz-Sagiv 95,
Ball-Rajamani 00, Esparza-Schwoon 01
» Concurrency+Procedures

— Duesterwald-Soffa 91, Dwyer-Clarke 94, Alur-
Grosu 00, Esparza-Podelski 00, Bouajjani-
Esparza-Touili 02

