
SRC Technical Note
1999 - 001
January 28, 1999

Flexible Polyvariance in Constraint-Based

Analyses

Cormac Flanagan

Systems Research Center
130 Lytton Avenue

Palo Alto, California 94301

http://www.research.digital.com/SRC/

Copyright c©Compaq Computer Corporation 1999. All rights reserved

Abstract

Existing constraint-based analyses only support a limited form of poly-
variance, based on syntactic clues such as let-polymorphism. These analyses
become imprecise when the call sites for a particular function are not syn-
tactically obvious, such as in object-oriented method invocations, or when a
function is referenced across a module boundary.

This paper describes how to extend the constraint-based approach to en-
compass a much wider range of polyvariance strategies. We achieve this by
deferring decisions about when to instantiate constraint schemas to the solu-
tion phase, where these decisions can exploit information inferred about the
program’s run-time behavior.

Our approach yields a polyvariant constraint-based analysis framework
parameterized over a strategy for controlling schema instantiation. Instantia-
tions of the framework cover a hierarchy of analyses with different cost/precision
tradeoffs. The framework combines the efficiency benefits of staged, constraint-
based analyses with the flexible polyvariance strategies of monolithic analy-
sis frameworks.

1 Introduction

MrSpidey is a static debugger for Scheme that checks the soundness of all prim-
itive operations based on a static program analysis [FFK+96]. The analysis is a
constraint-based system similar to Heintze’s set-based analysis of ML programs [Hei94].
It consists of two phases: a specification phase, which derives constraints describ-
ing the data flow relationships of the analyzed program, and a solution phase, which
solves these constraints.

To accurately large programs, which tend to re-use functions in a polymorphic
manner, the analysis is polyvariant. That is, it duplicates the constraint systems for
function definitions at appropriate points in the program, in order to avoid merging
information between unrelated calls to these functions. These polyvariance deci-
sions about to duplicate these constraint systems crucially affect both the cost and
the precision of the analysis.

Existing polyvariant constraint-based analyses make these decisions during the
specification phase [AWL94, FF97, Fla97]. Hence these crucial polyvariance deci-
sions cannot exploit information about the run-time behavior of the program com-
puted in the solution phase, and instead, must be made based on simple syntactic
criteria, such as let-polymorphism. These syntactic criteria are often sub-optimal.
In particular, if the call-sites of a function are not syntactically obvious, then the
specification phase cannot duplicate the function’s constraint system at those call
sites, and hence information is merged between these call sites. This situation often

1

occurs in object-oriented method invocations, or in large programs when a function
is referenced across a module boundary.

In an attempt to overcome this problem, MrSpidey’s specification phase in-
cludes an additional, first-order analysis designed to better identify the call sites of
particular functions. This approach suffered from two disadvantages: it was still
unable to identify all call sites where constraint duplication would be appropriate,
and it significantly complicated the analysis implementation, since the first-order
analysis duplicated much of the functionality of the overall analysis.

In direct contrast to this problem with staged, constraint-based analyses, mono-
lithic analyses based on abstract interpretation [CC77] have much more flexibility
in their choice of polyvariance strategies, because they can exploit information in-
ferred about the program’s run-time behavior to drive polyvariance decisions. This
flexibility leads to a rich hierarchy of analyses with varying cost/precision trade-
offs [Oli91, JW95b, JW95a, SZ94]. Many of these analyses cannot be expressed
in the constraint-based framework.

This paper explores how to incorporate the flexible polyvariance strategies of
monolithic analyses within the constraint-based framework. The crucial insight is
that the polyvariance decisions about when to duplicate constraint systems must
be deferred to the solution phase, when sufficient information is available to make
these decisions intelligently. The result of this approach is a polyvariant constraint-
based analysis framework. The framework is parameterized over a polyvariance
strategy, which controls when constraint systems are duplicated in the solution
phase. Possible instantiations of the framework cover a range of analyses, from a
simple monomorphic analysis at one extreme, to an extremely precise but uncom-
putable analysis at the other extreme, with a variety of intermediate analyses cov-
ering different cost/precision tradeoffs. This framework combines the efficiency
benefits of the constraint-based analyses with the flexible polyvariance strategies
of monolithic analysis frameworks.

The presentation of our results proceeds as follows. Section 2 introduces a
simple source language. Section 3 describes a monomorphic set-based analysis for
that language, and section 4 extends that analysis with let-polymorphism. Section 5
describes our polyvariant set-based analysis framework, and section 6 describes
some instantiations of that framework. Section 7 concludes with directions for
future research.

2 The Source Language

For simplicity, we present our analysis framework for a λ-calculus-like language
with constants and labeled expressions. It is straightforward to extend the analysis

2

Syntax:

M ∈ � = x | V | (M M) | Ml (Expressions)
V ∈ Value = b | (λt x .M) (Values)
x ∈ Vars = {x, y, z, . . .} (Variables)
b ∈ BasicConst (Basic constants)
t ∈ Tag (Function tags)
l ∈ Label (Expression labels)

Evaluator:
eval : �0 −→◦ Value
eval(M) = V if M �−→∗ V

Reduction Rules:

E[((λt x .M) V)] �−→ E[M[x �→ V]] (βv)

E[V l] �−→ E[V] (unlabel)

Evaluation Contexts:
E = [] | (E M) | (V E) | E l

Figure 1: The source language �: syntax and semantics

to a realistic language including assignments, recursive data structures, objects and
modules along the lines described in an earlier report [Fla97].

The syntax and semantics of the language are described in figure 1. Expres-
sions in the language are either variables, values, function applications, let-expressions,
or labeled expressions. Values include basic constants and functions. Functions
have identifying tags so that we can reconstruct a call-graph from the results of
the analysis. We use labels to identify those program expressions whose values we
wish to predict. We work with the usual conventions and terminology of the λv-
calculus when discussing syntactic issues. In particular, the substitution operation
M[x ← V] replaces all free occurrences of x within M by V , and �0 denotes the
set of closed terms, also called programs.

We specify the meaning of programs via a reduction semantics based on the
reduction rules βv and (unlabel). The βv rule is conventional, and (unlabel) rule
removes the label from an expression once its value is needed.
Notation: P to denotes the power-set constructor; Pfin to denote the finite

power-set constructor; and −→◦ denotes the partial function space constructor.

3

3 Monomorphic Set-Based Analysis

Set-based analysis consists of two phases: a specification phase and a solution
phase.1 The specification phase derives constraints on the sets of values that pro-
gram expressions may assume. These constraints describe the data flow relation-
ships of the analyzed program. The solution phase solves these constraints to yield
a conservative approximation of the set of possible values for each labeled expres-
sion in the program.

3.1 The Constraint Language

A set expression τ is either a set variable, a constant, or a function set expression:

τ ∈ SetExp = α | c | (β1→t β2)

α, β, γ ∈ SetVar ⊃ Label
c ∈ Const = BasicConst ∪ Tag

The meta-variables α, β, γ, . . . range over set variables, and we include program
labels in the collection of set variables. A function set expression (β1 →t β2)

includes the identifying tag t of the corresponding function definition, as well
as set variables describing the argument set (β1) and result set (β2) of the func-
tion. Constants include both basic constants and function tags. A set of constants
C ∈ P(Const) represents a set of run-time values (relative to a given program)
according to the relation V in C:

b in C iff b ∈ C
(λt x .M) in C iff t ∈ C

The language of constraints is:

C ∈ Constraint = [τ ≤ α]
| [α ≤ (γ1→ γ2)]

The constraint [τ ≤ α] states the the set of values described by α includes those
described by τ . The constraint [α ≤ (γ1 → γ2)] is an application constraint; it
extracts into γ1 and γ2 the argument and result sets of functions described by β. A
constraint system S is a finite collection of constraints:

S ∈ ConstraintSystem = Pfin(Constraint)

1Cousot and Cousot [CC95] showed that the results of set-based analysis can alternatively be
computed via an abstract interpretation based on chaotic iteration.

4

� ∪ {x : α}
 x : α,∅ (var)

�
 b : α, {b ≤ α} (const)

�
 M : α,S
�
 Ml : α,S ∪ {α ≤ l} (label)

� ∪ {x : β1}
 M : β2,S
�
 (λt x .M) : α,S ∪ {(β1→t β2) ≤ α}

(abs)

�
 Mi : βi ,Si
�
 (M1 M2) : α,S1 ∪ S2 ∪ {β1 ≤ (β2→ α)} (app)

Figure 2: Constraint derivation rules.

3.2 Deriving Constraint Systems

The specification phase of set-based analysis derives constraints on the sets of val-
ues that program expressions may assume. Following Aiken et al. [AWL94] and
Palsberg and O’Keefe [PO95], we formulate this derivation as a proof system.

The derivation proceeds in a syntax-directed manner according to the constraint
derivation rules presented in figure 2. Each rule infers a judgement of the form
�
 M : α,S , where the derivation context � maps the free variables of M to set
variables; α names the result set of M; and the constraint system S describes the
data flow relationships of M .

The constraint derivation rule (var) for a variable reference extracts the corre-
sponding set variable from the derivation context. The (const) rule ensures that the
value set for a constant expression includes that constant. The (label) rule records
the possible values of a labeled expression Ml in l . The (abs) rule for a function
definition records both the function’s tag and the set variables denoting its argu-
ment and result sets. The (app) rule for a function application propagates values
from the argument expression into the argument set of the function and from the
range of the function into the result of the application expression.

5

3.3 Solving Constraint Systems

We solve a constraint system by closing it under the inference rules � described in
figure 3. Intuitively, these rules infer all the data-flow paths in the program, which
are described by constraints of the form β ≤ γ (for β, γ ∈ SetVar), and propagate
values along those data-flow paths. Specifically, the rule (prop) propagates infor-
mation about constants and functions forward along data-flow paths, and the rule
(app) infers data-flow paths from argument expressions to the corresponding for-
mal parameters and from function results to the corresponding call sites. We write
S
� C if S proves C via the rules �, and use close�(S) to denote the closure of
S under �, i.e., the set {C | S
� C}.

τ ≤ α α ≤ β
τ ≤ β (prop)

(β1→t β2) ≤ α α ≤ (γ1→ γ2)

γ1 ≤ β1 β2 ≤ γ2
(app)

Figure 3: The rules � = {(prop), (app)}

MrSpidey uses a worklist algorithm to compute the closure of S under � ef-
ficiently. The worklist keeps track of all constraints in S whose consequences
under � may not be in S . The algorithm repeatedly removes a constraint from the
worklist, and for each consequences under � that is not already in S , it adds that
consequence both to S and to the worklist. The process iterates until the worklist is
empty, at which point S is closed under �. The complete algorithm can be found
in a related report [Fla97].

This closure process propagates all information concerning the constant and
function values for a labeled expression Ml into constraints of the form [c ≤ l] or
[(β1→t β2) ≤ l]. We define the set based analysis of a program as a function that
computes an analysis result from this information, where an analysis result is a
mapping from program labels to sets of possible basic constants and function tags:

R ∈ AnalysisResult = Label −→ P(Const) .
Definition 3.1 sba : �0 −→ AnalysisResult
If P ∈ �0, ∅
 P : α,S and S ′ = close�(S) then sba(P) = R where

R(l) = {b | [b ≤ l] ∈ S ′}
∪ {t | [(β1→t β2) ≤ l] ∈ S ′} .

6

The solution sba(P) conservatively approximates the value sets for each la-
beled expression in the program, as described by the following theorem.

Theorem 3.1 (Correctness of sba)
If sba(P) = R and P �−→∗ E[V l] then V in R(l).

This result follows from a subject reduction proof along the lines of Wright and
Felleisen [WF94] and Palsberg [Pal95] and is contained in a related report [Fla97].

4 Polymorphic Set-Based Analysis

The analysis described in the previous section is a monomorphic analysis. That is,
it merges information between distinct calls to the same function. This is a use-
ful approximation for small to medium sized programs, but becomes increasingly
imprecise on larger programs, because such programs tend to re-use functions in a
polymorphic fashion.

To illustrate this idea, consider the program:2

P ≡ (let (f (λt x .x)) (begin (f true)l1 (f 0)l2))
This program binds f to the identity function, and then applies f to the constants
true and 0. These two argument values get merged in the body of f , and hence
the analysis results for the two application expressions are:

sba(P)(l1) = {true, 0}
sba(P)(l2) = {true, 0}

These results are overly approximate, since the evaluation of expression l1 can
never yield 0, and the evaluation of expression l2 can never yield true.

To accurately analyze programs that use such polymorphic functions, we need
to package the constraints for those functions into constraint schemas, and dupli-
cating or instantiating these constraint schemas at different points in the program.
These decisions about when to instantiate constraint schemas are typically made
during the specification phase according to simple syntactic criteria, such as let-
polymorphism [AWL94, FF97].

To modify the monomorphic analysis in this fashion, we extend the source
language with let-expressions, which introduce polymorphic bindings, and we du-
plicate the constraints for let-bound functions at each polymorphic reference, in a
manner analogous to the let polymorphism of ML [MTH90, Tof90].

2For clarity, this example is expressed in terms of let and begin, but these constructs can be
expanded into the language � in the usual manner.

7

The syntax of the let construct is:

M ∈ � = . . . | (let (x V) M)

and its semantics is given by the reduction rule:

E[(let (x V) M)] �−→ E[M[x �→ V]] (βlet)

�
 V : β,S
α = FV (S) \ (FV [range(�)] ∪ Label)
� ∪ {x : ∀α. (β,S)}
 M : γ,SM
�
 (let (x V) M) : γ,SM

(let)

ψ is a substitution of set variables for α

� ∪ {x : ∀α. (β,S)}
 x : ψ(β),ψ(S) (inst)

Figure 4: Constraint derivation rules for polymorphism.

The new constraint derivation rules are given in figure 4. The rule (let) pro-
duces a constraint schema σ = ∀α. (β,S) for the polymorphic, let-bound val-
ues [AWL94, Tof90]. The set variable β names the result of the value; the system
of constraints S describes the data-flow relationships of the value, using β; and
the set α = {α1, . . . , αn} contains those internal set variables of the constraint sys-
tem that must be duplicated at each reference to the let-bound variable via the rule
(inst).

A derivation context � now maps program variables to either set variables or
constraint schemas:

� ∈ DerivCtxt = Var −→◦ SetVar ∪ Schema
σ ∈ Schema = ∀α. (β,S)

We use FV (S) to denote the collection of set variables in a constraint system S ,
and we use FV [range(�)] to denote the free set variables in the range of �. The
free set variables of a constraint schema ∀α. (β,S) are those in S but not in α, and
the free variables of a set variable is simply the set variable itself.

The rest of the development of the previous section can be adapted mutatis mu-
tandis. In particular, since this extension does not change the constraint language,
we can re-use the constraint solution algorithm of the previous section.

8

Since excessive constraint duplication can be costly, a better approach is to first
simplify these constraint schemas (as described in a related report [FF97]), thus
reducing the number of constraints that need to duplicated at each polymorphic
reference. On a standard set of benchmarks, this technique reduces analysis times
by a factor of 2 to 4, and makes the polyvariant analysis time comparable to, and
sometimes faster than, the monomorphic analysis [Fla97, p. 86].

5 Polyvariant Set-Based Analysis

Instantiating constraint schemas based on syntactic criteria such as let-polymorphism
is a straightforward strategy for introducing polyvariance. This strategy works well
for programs, such as the example program of the previous section, where the call
sites of polymorphic functions are syntactically obvious. However, if the call sites
of a function are not obvious, then this approach can lead to insufficient polyvari-
ance and hence imprecise analysis results. This situation often occurs in object-
oriented method invocations, or when a function is referenced across a module
boundary.

To illustrate this problem, consider what happens if we split the program P
into two modules, where we express the modular structure of the program using
function abstraction and application. The first module defines the identity function:

M1 ≡ (λt x .x)
The second module imports that function, and applies it twice:

M2 ≡ (λt2 f.(begin (f true)l1 (f 0)l2))
The complete program links these two modules together via a function application:

P ≡ (M2 M1)

In the polymorphic analysis of this modular program, the two call sites of the iden-
tity function are not syntactically obvious. Hence the constraint system for the
identity function cannot be duplicated at each call site, and so the let-polymorphic
analysis of this program yields the same imprecise results as the monomorphic
analysis, i.e.:

sba(P)(l1) = {true, 0}
sba(P)(l2) = {true, 0}

In an attempt to tackle this problem, MrSpidey’s specification phase included
an additional, first-order analysis designed to identify the call sites of certain poly-
morphic functions. This approach was partially successful, but suffers from two

9

disadvantages. First, the first-order analysis was unable to identify all call sites of
those functions, and hence the resulting analysis was still quite imprecise. Second,
the approach significantly complicated the analysis implementation, since the first-
order analysis had to duplicate much of the functionality of the overall analysis.

In contrast to this limitation of constraint-based analyses, monolithic analyses
based on abstract interpretation [CC77] have much more flexibility in their choice
of polyvariance strategies, because they can exploit information inferred about
the program’s run-time behavior to drive polyvariance decisions. This flexibility
leads to a rich hierarchy of analyses with varying cost/precision tradeoffs [Oli91,
JW95b, JW95a]. Many of these analyses cannot be expressed in the constraint-
based framework. Indeed, it is unclear if the traditional constraint-based approach
can express any of these analyses other than 0CFA. Given this context, the follow-
ing comment [JW95b, p. 16] appears justified:

. . . while efficient implementations of (constraint-based) analyses can
be built, it is unclear whether they provide the necessary precision
to perform useful run-time check optimization. Refinements of these
approaches that take into account polymorphism are possible [Hei94],
but are ad hoc and do not fit neatly within the constraint framework.

5.1 Flexible Polyvariance in Constraint-Based Analyses

The goal of this paper is to describe an approach whereby we can cleanly in-
corporate the flexible polyvariance strategies of monolithic analyses within the
constraint-based framework. The crucial insight is that we need to defer polyvari-
ance decisions about when to instantiate constraint schemas to the solution phase,
where we can make these decisions based on additional information about the pro-
gram’s run-time behavior. The remainder of this section describes how to extend
the set-based analysis of section 3 in this fashion.

5.2 The Constraint Language

In order to defer schema instantiation decisions to the solution phase, we need to
express schemas within the constraint language. Hence we extend the constraint
language as follows:

τ ∈ SetExp = α | c | σ
σ ∈ Schema = ∀α. (β1→t β2,S)
C ∈ Constraint = [τ ≤ α]

| [α ≤ (γ1→ γ2)]
S ∈ ConstraintSystem = Pfin(Constraint)

10

Wemerge function set expressions into constraint schemas in order to avoid the
complications of having two representations for function values in the constraint
language. We use FV (S) to denote the free set variables in a constraint system
S , which excludes those variables that are bound in a schema by the enclosing
universal quantifier.

5.3 Deriving Constraints

Since constraint schemas can now appear in constraints, and not just in deriva-
tion contexts, we can introduce constraint schemas for all function definition, and
not just for let-bound functions. The new constraint derivation rule for function
definitions is:

� ∪ {x : β1}
 M : β2,S
α = FV (S) \ (FV [range(�)] ∪ Label)

σ = ∀α. (β1→t β2,S)
�
 (λt x .M) : α, {σ ≤ α} (abs)

This rule creates a constraint schema for each function definition. This schema
combines the function set expression for the function with the constraint system
representing the internal data-flow paths of the function. This constraint schema is
instantiated as appropriate by the constraint solution algorithm, which is described
below.

5.4 Computing a Solution

Intuitively, solving a constraint system with schemas involves inferring all of the
data-flow paths in the program, and propagating values along those data-flow paths.
Propagating a function’s constraint schema to a corresponding call site for that
function yields the following pair of constraints:

∀α. (β1→t β2,S) ≤ δ
δ ≤ (γ1→ γ2)

To propagate values between the call site and the function definition, we need to
instantiate the constraint schema by choosing an appropriate substitution ψ for the
bound variables of the constraint schema, and then record the appropriate data-
flow paths for the argument and result values. This is achieved by the following
inference rule (inst-app):

11

∀α. (β1→t β2,S) ≤ δ
δ ≤ (γ1→ γ2)

γ1 ≤ ψ(β1)

ψ(β2) ≤ γ2
ψ(S)

where ψ is a subst. on α (inst-app)

This inference rule is parameterized by a substitution ψ on the bound vari-
ables of the schema. Different strategies for choosing ψ yield different degrees
of polyvariance in the analysis. One extreme is to always choose ψ to be the
identity substitution, which yields the monomorphic analysis of section 3. The
other extreme is to always choose substitutions that introduce fresh variables. This
approach yields an extremely precise but uncomputable analysis that instantiates
a constraint schema according each function call in the program’s execution. In
between these two extremes lie a range of analyses, with different cost/precision
tradeoffs, generated by other strategies for choosing the substitution ψ . We outline
some of these analyses in the following section. The polyvariance strategy used for
choosing the substitution ψ does not affect its correctness of the analysis.

In addition to the (inst-app) rule, we also need the (prop) for propagating val-
ues along data-flow paths. Thus the complete set of inference rules for the con-
straint language is:

� = {(prop), (inst-app)} .
We write S
� C if S proves C via the rules �, and we write S
� S ′ if S
� C
for each C ∈ S′.

Since the substitution ψ is unspecified in the rule (inst-app), do not have a
unique closed form for each constraint system. Instead, the relation close� re-
lates each constraint system to a number of different closed forms. Each closed
forms correspond to a different choice of substitutions in applications of the rule
(inst-app).

Definition 5.1 (close� ⊆ ConstraintSystem × ConstraintSystem)
The relation close�(S,S ′) holds if and only if:

1. S
� S ′,
2. S ′ is closed under the rule (prop), and
3. for all (inst-app) antecedent in S′ there exists at least one corresponding

(inst-app) consequent in S′.

12

The closure process propagates all information concerning the constant and
function values for a labeled expression Ml into constraints of the form [c ≤ l]
or [∀α. (β1 →t β2,S) ∈ l]. Hence we can compute an analysis result from each
closed form. We define set-based analysis as a relation that associates each program
with this set of analysis results.

Definition 5.2 (sba ⊆ �0 × AnalysisResult)
If P ∈ �0 and ∅
 P : α,S then sba(P, R) holds if and only if there exists S′ such
that close�(S,S ′) and

R(l) = {b | [b ≤ l] ∈ S ′}
∪ {t | [∀α. (β1→t β2,S ′′) ≤ l] ∈ S ′} .

5.5 Correctness of Polyvariant Set-Based Analysis

Any analysis result produced by sba conservatively approximates the value sets for
each labeled expression in the program, as described by the following theorem.

Theorem 5.1 (Correctness of sba)
If sba(P, R) and P �−→∗ E[V l] then V in R(l).

This result follows from a subject reduction proof along the lines of Wright and
Felleisen [WF94] and Palsberg [Pal95]. The final paper will contain an outline of
the proof.

6 Expressiveness of Polyvariant SBA

The polyvariant set-based analysis framework encompasses a hierarchy of analyses
with varying cost/precision tradeoffs. This section presents a number of instantia-
tions of the framework.

6.1 Expressing Monovariant SBA

Suppose that the substitution ψ used in each application of the (polyapp) rule is
identity substitution. Then, since ψ(S) = S , the analysis never duplicates con-
straint systems, and hence the analysis is monomorphic.

This monomorphic analysis is actually slightly more accurate than the monomor-
phic analysis of section 3 on programs that contain dead code. That is, if the ana-
lyzed program defines a function that has no call sites, then the constraint schema
for that function is never instantiated, and hence those constraints do not affect the
analysis results.

13

To illustrate this idea, consider the program:

Q ≡ (let (f (λ f x .xl)) (λgd.(f 0)))

Since the function tagged g is never called, the constraint for the application of f
to 0 does not affect the analysis results, and hence the value set of the expression
xl is correctly the empty set. In contrast, the monomorphic analysis of section 3
would yield {0} as the value set for xl .

6.2 Expressing contour-based flow analyses

There are a number of contour-based flow analysis frameworks [Oli91, SZ94,
JW95a], of which Jagannathan and Weeks’ framework appears to be the most ex-
pressive. Although space restrictions do not allow us to provide a review of their
framework, this subsection outlines instantiations of their framework can be ex-
pressed as polyvariant set-based analyses.

We associate with each application constraint C = [γ ≤ (α → β)] a label
Label(C) and an abstract contour Contour(C). We use the contour information to
choose the substitution ψ used in the each application of the (inst-app) rule. For
each contour-schema pair, we have a corresponding substitution that introduces
fresh variables. An application of the (polyapp) rule based on the antecedents
[σ ≤ α] and C = [α ≤ (γ1 → γ2)] uses the substitution corresponding to σ and
Contour(C).

We infer contour information for application constraints as follows. Each ap-
plication constraint is generated by the (app) or (inst-app) rule. An application
constraint C generated via the (app) rule corresponds to from an application expres-
sion in the analyzed program. In this case we set both Label(C) and Contour(C) to
that application expression.

For the (inst-app) case, suppose we have the (inst-app) antecedents [∀α. (β1→t

β2,S) ≤ δ] and C′ = [δ ≤ (γ1 → γ2)], and that S contains an application con-
straint C that is copied to ψ(C). In this case we set:

Label(ψ(C)) = Label(C)
Contour(ψ(C)) = Label(C′).Contour(C′)

Proposition 6.1 The above parameterization of the polyvariant set-based analysis
framework yields the same results as Jagannathan and Weeks’ framework, for any
choice of abstract contours.

14

7 Conclusions and Directions

Our polyvariant set-based analysis framework is parameterized over an algorithm
that controls the duplication of constraint systems. Different choices for this al-
gorithm yield a hierarchy of analyses with varying cost/precision tradeoffs. The
framework can express monomorphic and let-polymorphic set-based analysis, Shiv-
ers’ nCFA [Oli91], and the analyses generated by Jagannathan and Week’s frame-
work [JW95a].

We intend to experimentally explore other instantiations of the framework in
a second-generation version of MrSpidey, which we are implementing for Java.
This system will combine the flexible polyvariance framework of this paper with
the constraint simplification algorithms of [FF97, Fla97]. We expect this system to
successfully handle program of up to 100K lines of code, and we intend to use the
system to investigate how various polyvariance strategies affect the analysis cost
and precision on programs of that size. The long term goal of this research is to
develop an efficient and accurate static debugging tool for large, real-world Java
applications.

References

[AWL94] Alexander Aiken, Edward L. Wimmers, and T. K. Lakshman. Soft
typing with conditional types. In Proceedings of the Symposium on the
Principles of Programming Languages, pages 163–173, 1994.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice
model for static analyses of programs by construction or approxima-
tion of fixpoints. In Proceedings of the Symposium on the Principles of
Programming Languages, pages 238–252, 1977.

[CC95] P. Cousot and R. Cousot. Formal language, grammar, and set-
constraint-based program analysis by abstract interpretation. In Func-
tional Programming and Computer Architecture, pages 170–181, 1995.

[FF97] Cormac Flanagan and Matthias Felleisen. Componential set-based
analysis. In Proceedings of the ACM SIGPLAN ’97 Conference on
Programming Language Design and Implementation, pages 235–248,
June 1997.

[FFK+96] Cormac Flanagan, Matthew Flatt, Shriram Krishnamurthi, Stephanie
Weirich, and Matthias Felleisen. Finding bugs in the web of program

15

invariants. In Programming Language Design and Implementation,
pages 23–32, 1996.

[Fla97] Cormac Flanagan. Effective Static Debugging via Componential Set-
Based Analysis. PhD thesis, Rice University, Houston, Texas, May
1997.

[Hei94] Nevin Heintze. Set-based analysis of ML programs. In Proceedings
of the ACM Conference on Lisp and Functional Programming, pages
306–317, 1994.

[JW95a] Suresh Jagannathan and Stephen Weeks. A unified treatment of flow
analysis in higher-order languages. In 22nd ACM Symposium on Prin-
ciples of Programming Languages, pages 393–407, 1995.

[JW95b] Suresh Jagannathan and Andrew K. Wright. Effective flow analysis for
avoiding run-time checks. In 2nd International Static Analysis Sym-
posium, Lecture Notes in Computer Science, vol. 983, pages 207–224.
Springer-Verlag, September 1995.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Stan-
dard ML. MIT Press, 1990.

[Oli91] Olin Shivers. Control-flow Analysis of Higher-Order Languages, or
Taming Lambda. PhD thesis, Carnegie-Mellon University, 1991.

[Pal95] Jens Palsberg. Closure analysis in constraint form. Transactions on
Programming Languages and Systems, 17(1):47–62, 1995.

[PO95] Jens Palsberg and Patrick O’Keefe. A type system equivalent to flow
analysis. In Proceedings of the Symposium on the Principles of Pro-
gramming Languages, pages 367–378, 1995.

[SZ94] Dan Stefanescu and Yuli Zhou. An equational framework for the flow
analysis of higher order functional programs. In Proceedings of the
ACM Conference on Lisp and Functional Programming, pages 318–
327, 1994.

[Tof90] M. Tofte. Type inference for polymorphic references. Info. Comput.,
89(1):1–34, November 1990.

[WF94] A. Wright and M. Felleisen. A syntactic approach to type soundness.
Info. Comput., 115(1):38–94, 1994.

16

