
Modular and Polymorphic Set�Based Analysis�
Theory and Practice

Cormac Flanagan
Matthias Felleisen

Rice COMP TR������

November ����

Department of Computer Science
Rice University
P�O� Box ����
Houston� TX ����������

Copyright c����	 by

Cormac Flanagan and Matthias Felleisen

Modular and Polymorphic Set�Based Analysis�

Theory and Practice

�revision ����

Cormac Flanagan Matthias Felleisen

Department of Computer Science�

Rice University�

Houston� TX ����������

Contact email� cormac�cs�rice�edu

Abstract

Set�based analysis �SBA� produces good predictions about the behavior of functional
and object�oriented programs� The analysis proceeds by inferring constraints that char�
acterize the data �ow relationships of the analyzed program� Experiences with Rice�s
program development environment� which includes a static debugger based on SBA�
indicate that SBA can deal with programs of up to a couple of thousand lines of code�
However� SBA does not cope with larger programs because it generates large systems
of constraints for these programs� These constraint systems are at least linear� and
possibly quadratic� in the size of the analyzed program�

This paper presents theoretical and practical results concerning methods for reducing
the size of constraint systems� The theoretical results include a complete proof�theoretic
characterization of the observable behavior of a constraint system� which we use to es�
tablish a close connection between the observable equivalence of constraint systems and
the equivalence of regular�tree grammars� We then exploit this connection to adapt
a variety of algorithms for simplifying grammars to the practical problem of simplify�
ing constraint systems� Based on the resulting algorithms� we develop a componential

set�based analysis� a modular and polymorphic variant of SBA� Experimental results
validate the practicality of the simpli	cation algorithms and the analysis� The simpli�
	ed constraint systems are typically at least an order of magnitude smaller than the
original systems� which signi	cantly reduces both the time and space required by the
analysis�

Contents

� The E�ectiveness of Set�Based Analysis �

� The Source Language �

� Set�Based Analysis �

�� The Source Language �

���� Syntax �

���� Semantics �

�� The Constraint Language �

�
 The Meaning of Set Constraints � 	

�
�� The Semantic Domain � 	

�
�� The Semantics of Constraints �

�� Deriving Constraints �

�� Soundness of the Derived Constraints ��

�	 Solving Set Constraints ��

�	�� Computing the Least Solution �

� Constraint Simpli�cation ��

��� Conditions for Constraint Simplication ��

��� The Proof Theory of Observable Equivalence � � � � � � � � � � � � � � � � � ��

��
 Deciding Observable Equivalence ��

��� Regular Grammars ��

��� Regular Tree Grammars ��

��	 Staging ��

��� The Entailment Algorithm ��

��� Practical Constraint System Simplication �

����� Empty Constraint Simplication ��

����� Unreachable Constraint Simplication � � � � � � � � � � � � � � � � � ��

����
 Removing ��Constraints ��

����� Hopcroft�s Algorithm ��

��� Simplication Benchmarks �	

� Componential Set�Based Analysis ��

��� Componential Set�Based Analysis ��

��� Experimental Results ��

��
 User Interface for Multi�File Programs �
�

��� E�cient Polymorphic Analysis �
�

	 Competitive Work ��

� Future Work ��

A Proofs ��

A�� Subject Reduction Proof �
�
A�� Proofs for Computing Set�Based Analysis � � � � � � � � � � � � � � � � � � �
�
A�
 Proofs for Conditions for Constraint Simplication � � � � � � � � � � � � � � ��
A�� Proofs for Proof Theory of Observable Equivalence � � � � � � � � � � � � � � �

A�� Proofs for Deciding Observable Equivalence � � � � � � � � � � � � � � � � � � ��
A�	 Correctness of the Entailment Algorithm ��
A�� Correctness of the Hopcroft Algorithm ��

B Notations �	

�

Modular and Polymorphic Set�Based Analysis� Theory and Practice �

� The E�ectiveness of Set�Based Analysis

Rice�s Scheme program development environment provides a static debugger� MrSpidey�
which statically analyzes a program and� using the results of this analysis� checks the
soundness of all primitive operations ���� If an operation may fault due to a violation
of its invariant� MrSpidey highlights the program operation so that the programmer can
investigate the potential fault site before running the program� Using the graphical expla�
nation facilities of MrSpidey� the programmer can determine whether this fault will really
happen or whether the corresponding correctness proof is beyond the analysis�s capabilities�

MrSpidey�s program analysis is a constraint�based system similar to Heintze�s set�based
analysis of ML programs ����� The analysis consists of two co�mingled phases� a speci�cation
phase� during which MrSpidey derives constraints describing the data �ow relationships� and
a solution phase� during which MrSpidey solves the constraints� The solution conservatively
approximates the set of values that may result from each program expression�

In practice� MrSpidey has proven highly e�ective for pedagogic programming� which
includes programs of several hundreds to ����� lines of code� It also works reasonably well
on some programs of up to several thousand lines in length� However� it becomes less useful
for debugging large programs for two reasons�

� Set�based analysis has an O�n�� worst�case time bound� Although the constant on
the cubic element in the polynomial is small� it is noticeable for programs of several
thousand lines�

� Large programming projects tend to re�use functions in a polymorphic fashion� To
avoid merging information between unrelated calls to such functions� the analysis must
duplicate the constraints for each corresponding call site� This duplication is expensive
because the size of the constraint set is at best linear� and possibly quadratic� in the
size of the function�

A closer look at these two obstacles quickly reveals that the major limitation of set�
based analysis is the size of the constraint system describing the data �ow relationships of
a program� If we could reduce the size of constraint systems without a�ecting the solution
space that they denote� we could simplify constraint sets at intermediate stages during
the specication phase and thus reduce the analysis time� In particular� after simplifying
the constraint set of a polymorphic function� MrSpidey would duplicate a much smaller
constraint set at each polymorphic reference than the plain analysis� similarly� producing
a simplied constraint set for a module would substantially reduce the cost of solving the
combined set of constraints for a modularized program�

The simplication of constraint sets raises both interesting theoretical and practical
questions� On the theoretical side� we need to ensure that simplication preserves the
observable behavior of a constraint system� In this paper� we provide a complete charac�
terization of observable behavior and� in the course of this development� establish a close
connection between this observable equivalence of constraint systems and the equivalence
of regular tree grammars �RTGs��� Exploiting this connection� we develop a complete al�

�A number of researchers� including Reynolds ����� Jones and Muchnick ����� Heintze ����� Aiken ����
and Cousot and Cousot ��� previously exploited the relationship between RTGs and the least solution of a

� C� Flanagan� M� Felleisen

gorithm for deciding the equivalence of constraint systems� Unfortunately� the problem is
PSPACE�hard�

Fortunately� a minimized constraint set is only optimal but not necessary for practical
purposes� The practical question concerns nding approximate algorithms for simplifying
constraint sets that would make MrSpidey more useful� To answer this question� we ex�
ploit the correspondence between the minimization problem for RTGs and constraint sets
to adapt a variety of algorithms for simplifying RTG to the problem of simplifying con�
straint systems� Based on these simplication algorithms� we develop a componential �� or
component�wise� variant of set�based analysis� Experimental results verify the e�ectiveness
of these algorithms and the corresponding �avors of the analysis� The simplied constraint
systems are typically at least an order of magnitude smaller than the original constraint set�
Moreover� these reductions in size result in signicant gains in the speed of the analysis�

We expect that some of our theoretical and practical results as well as the techniques
will carry over to other constraint�based systems� such as the conditional type system of
Aiken et al� ���� Eifrig et al��s object�oriented type system ���� or Pottier�s or Smith et al��s
subtyping simplication algorithms ���� ����

The presentation of our results proceeds as follows� Section � describes an idealized
source language� Section
 describes our set�based analysis� Section � characterizes the
relationship between constraint systems and RTGs� and section � exploits this connection
to derive a number of practical constraint simplication algorithms� Sections 	 and � discuss
how these algorithms perform in a realistic program analysis system� Section � discusses
related work� and section � describes directions for future research� Appendix A contains
proof of various theorems and lemmas� Appendix B contains an index of notations used in
the paper�

� The Source Language

Syntax

M � � � x j V j �M M � j �let �x M � M � j M l �Expressions�
V � Value � b j ��tx�M � �Values�
x � Vars � fx� y� z� � � �g �Variables�
b � BasicConst �Basic Constants�
t � Tag �Function Tags�
l � Label �Expression Labels�

Figure �� The source language �

constraint system	 We present an additional result� namely a connection between RTGs and the observable
behavior
i�e�� the entire solution space� of constraint systems	

�componential a� of or pertaining to components� spec�
Ling�� designating the analysis of distinctive
sound units or grammatical elements into phonetic or semantic components
New Shorter Oxford English

Dictionary� Clarendon Press� ���

Modular and Polymorphic Set�Based Analysis� Theory and Practice

For simplicity� we present our results for a ��calculus�like language with constants and la�
beled expressions� It is straightforward to extend the analysis to a realistic language includ�
ing assignments� recursive data structures� objects and modules along the lines described
in a related report �
��

Expressions in the language are either variables� values� function applications� let�
expressions� or labeled expressions� We use labels to identify those program expressions
whose values we wish to predict� Values include basic constants and functions� Functions
have identifying tags so that MrSpidey can reconstruct a call�graph from the results of
the analysis� We use let�expressions to introduce polymorphic bindings� and hence restrict
these bindings to syntactic values ����� We work with the usual conventions and termi�
nology of the �v�calculus when discussing syntactic issues� In particular� the substitution
operation M �x� V � replaces all free occurrences of x within M by V � and �� denotes the
set of closed terms� also called programs�

We specify the meaning of programs based upon the notions of reduction �v� �let and
unlabel �

���tx�M� V � �� M �x �� V � ��v�
�let �x V � M� �� M �x �� V � ��let �

V l �� V �unlabel�

The �v and �let rules are the conventional rules for the ��calculus� The unlabel rule simply
removes the label from an expression once its value is needed�

An evaluation context E is an expression containing a hole � � in place of the next subterm
to be evaluated�

E � � � j �E M� j �V E� j �let �x E� M� j E l

For example� in the term �N M�� the next expression to be evaluated lies within N � and
thus the denition of evaluation contexts includes the clause �E M�� An evaluation context
always contains a single hole � �� and we use the notation E � M � to denote term produced
by lling the hole in E with the term M �

The standard reduction relation ��� is the compatible closure of �� with respect to
evaluation contexts�

E � M � ��� E � N � �� M �� N

The relation ���� is the re�exive� transitive closure of ���� The semantics of the language
is dened via the partial function eval on programs�

eval � �� ��p Value
eval�M� � V if M ���� V

� Set�Based Analysis

Conceptually� set�based analysis consists of two phases� a speci�cation phase and a solution
phase�� During the specication phase� the analysis tool derives constraints on the sets
of values that program expressions may assume� These constraints describe the data �ow

�Cousot and Cousot showed that set�based analysis can alternatively be formulated as an abstract inter�
pretation computed by chaotic iteration ���	

� C� Flanagan� M� Felleisen

relationships of the analyzed program� During the solution phase� the analysis produces
nite descriptions of the potentially innite sets of values that satisfy these constraints� The
result provides an approximate set of values for each labeled expression in the program�

��� The Source Language

We develop the analysis for an idealized� ��calculus�like language � with constants and
labeled expressions� This section introduces the syntax and semantics of ��

����� Syntax

Syntax

M � � � x j V j �M M � j �let �x V � M � j M l �Expressions�
V � Value � b j ��tx�M � �Values�
x � Var � fx� y� z� � � �g �Variables�
b � BasicConst �Basic Constants�
t � FnTag �Function Tags�
l � Label �Expression Labels�

Figure �� The source language �

Expressions in the language are either variables� values� applications� let�expressions� or
labeled expressions� see gure �� Values include basic constants and functions� Each func�
tion has an identifying tag so that MrSpidey can reconstruct the textual source of function
values from the results of the analysis� We use let�expressions to introduce polymorphic
bindings� and hence restrict these bindings to syntactic values ����� We use labels to identify
those program expressions whose values we wish to predict�

We work with the usual conventions and terminology of the �v�calculus when discussing
syntactic issues� In particular� the substitution operation M �x� V � replaces all free occur�
rences of x within M by V � and �� denotes the set of closed terms� also called programs�

����� Semantics

We specify the meaning of programs based upon three notions of reduction�

���tx�M� V � �� M �x �� V � ��v�
�let �x V � M� �� M �x �� V � ��let �

V l �� V �unlabel�

The �v and �let rules are the conventional rules for the ��calculus� The unlabel rule simply
removes the label from an expression once its value is needed�

An evaluation context E is an expression containing a hole � � in place of the next
sub�term to be evaluated�

E � � � j �E M� j �V E� j E l

Modular and Polymorphic Set�Based Analysis� Theory and Practice �

For example� in the term �N M�� the next expression to be evaluated lies within N � and
thus the denition of evaluation contexts includes the clause �E M�� An evaluation context
always contains a single hole � �� and we use the notation E � M � to denote term produced
by lling the hole in E with the term M �

The standard reduction relation ��� is the compatible closure of �� with respect to
evaluation contexts�

E � M � ��� E � N � i� M �� N

The relation ���� is the re�exive� transitive closure of ���� The semantics of the language
is dened via the partial function eval on programs�

eval � �� ��p Value
eval�M� � V if M ���� V

��� The Constraint Language

To simplify the later derivation of the constraint simplication algorithms �see chapter

��
we express the constraint language in terms of selectors� instead of the more usual con�
structors� Specically� a set expression � is either a set variable� a constant� or one of the
�selector� expressions dom��� or rng����

� � SetExp � � j c j dom��� j rng���
�� � � SetVar 	 Label

c � Const � BasicConst
 FnTag

By using selector expressions� we can specify each �quantum� of the program�s data�
�ow behavior independently� using constructors would combine several of these quanta
into one constraint� For example� we specify a function�s behavior via the two constraints
fdom��� � ��� �� � rng���g instead of the combined constraint f��� � ��� � �g�

The meta�variables �� �� � range over set variables� and we include program labels in
the collection of set variables� Constants include both basic constants and function tags� A
constraint C � Constraint is an inequality �� � �� relating two set expressions�

C � Constraint � �� � ��

We sometimes enclose constraints inside square brackets for clarity� ��� � ���� A constraint
system S � ConstraintSystem is a collection of constraints�

S � ConstraintSystem � P�n�Constraint�

We use SetVar�S� to denote the collection of set variables in a constraint system S� In some
cases� the relevant constraints in a constraint system are those that only mention certain
set variables� The restriction of a constraint system to a collection of set variables E is�

S jE � fC � S j C only mentions set variables in Eg

	 C� Flanagan� M� Felleisen

��� The Meaning of Set Constraints

Intuitively� each set expression � denotes a set of run�time values� and each constraint
�� � �� denotes a corresponding set containment relationship� We formalize the meaning
of set constraints by mapping syntactic set expressions onto a semantic domain� The next
subsection describes the precise structure of the semantic domain� and the second subsection
describes the mapping from set expressions to that domain�

����� The Semantic Domain

A set expression denotes a collection of values� For our sample language� the collection
consists of basic constants and functions and is therefore best represented as a triple X �
hC�D�Ri� The rst component C � P�Const�� is a set of basic constants and function
tags� The second and third components of X denote the possible arguments and results
of functions in X � respectively� Since these two components also denote value sets� the
appropriate model for set expressions is the solution of the equation�

D � P�Const��D �D

The solution D is equivalent to the set of all innite binary trees� with each node labeled
with an element of P�Const�� This set can be formally dened as the set of total functions
f � fdom� rngg� �� P�Const�� and the rest of the development can be adapted mutandis
mutatis ��	�� For clarity� we present our results using the more intuitive equational denition
instead�

We use the functions const � D �� P�Const� and dom� rng � D �� D to extract the
respective components of an element of D�

Each element of D represents a set of run�time values �relative to a given program�
according to the set of basic constants and function tags in its rst component� The set of
values represented by an element X � D is dened through the relation V in X �

b in hC�D�Ri i� b � C

��tx�M� in hC�D�Ri i� t � C

We order the elements of D according to a relation that is anti�monotonic in the domain
position�

hC�� D�� R�i v hC�� D�� R�i i� C� C�� D� v D�� R� v R�

This ordering is anti�monotonic in the domain position because information about argument
values at an application needs to �ow backward along data��ow paths to the formal param�
eter of the corresponding function denitions� To illustrate this idea� consider a program
that binds a function f to a program variable g� This behavior is described in the semantic
domain as the inequality Xf v Xg� where Xf and Xg describe the values sets for f and
g respectively� Since the possible argument set for f must contain all values to which g is

�P denotes the power�set constructor	
�We can analyze languages with additional data structures by extending D to in�nite n�ary trees� where

n is the number of selectors
e�g�	 dom� rng� corresponding to the extended language	

Modular and Polymorphic Set�Based Analysis� Theory and Practice �

applied� the inequality dom �Xg� v dom �Xf � must also hold� Thus the domain D should
satisfy the inference rule�

Xf v Xg

dom �Xg� v dom �Xf �

which is why the ordering v needs to be anti�monotonic in the domain element�
Under the dened ordering� the set D forms a complete lattice� the top and bottom

elements are the solutions to the equations�

� � hConst����i
� � h�����i

respectively� The least upper bound and greatest lower bound operations are recursively
dened as�

hC�� D�� R�i t hC�� D�� R�i � hC�
 C�� D� uD�� R� tR�i
hC�� D�� R�i u hC�� D�� R�i � hC� � C�� D� tD�� R� uR�i

����� The Semantics of Constraints

The semantics of a constraint system is dened with respect to a set environment �� which
species an element of D for each set variable in a constraint system�

� � SetEnv � SetVar �� D

The collection of set environments forms a complete lattice SetEnv under the pointwise
extension of the ordering relation v on D�

For each set environment �� we dene the following unique extension �� that species a
meaning for set expressions�

�� � SetExp �� D
����� � ����
���c� � hfcg����i

���dom���� � dom �������
���rng���� � rng �������

Where there is no confusion� we remove the asterisk and simply use � to denote ���

A set environment � satis�es a constraint C � ��� � ��� �written � j� C� if ����� v ������
Similarly� � satises S� or � is a solution of S �written � j� S� if � j� C for each C � S� The
relation j� is obviously re�exive and transitive� The solution space of a constraint system
S is�

Soln�S� � f� j � j� Sg

A constraints set S� entails S� �written S� j� S�� i� Soln�S�� Soln�S��� and S� is observably
equivalent to S� �written S� �� S�� i� S� j� S� and S� j� S��

The restriction of a solution space to a collection of set variables E is�

Soln�S� jE � f� j ��� � Soln�S� such that ���� � ����� �� � Eg

� C� Flanagan� M� Felleisen

 � fx
 �g � x
 �� � �var�

 � b
 �� fb � �g �const�

 �M
 ��S

 �M l
 ��S � f� � lg
�label�

 � fx
 ��g �M
 ���S

 � ��tx�M �
 ��S � ft � �� dom��� � ��� �� � rng���g
�abs�

 �Mi
 �i�Si
 � �M� M��
 ��S� � S� � f�� � dom����� rng���� � �g

�app�

 � V
 ��SV
A � Vars�SV � n �FV �rng��� � Label�

 � fx
 �A� ���SV �g �M
 ��S

 � �let �x V � M �
 ��S
�let�

� is a substitution of fresh vars for A

 � fx
 �A� ���SV �g � x
 ����� ��SV �
�inst�

Figure
� Constraint derivation rules�

There are actually more set environments in the restricted solution space� since these addi�
tional environments can specify arbitrary domain elements for all set variables that are not
in E�

We extend the notion of restriction to the entailment and observable equivalence of
constraint systems�

De�nition ���� �Restricted Entailment� Restricted Observable Equivalence

� If Soln�S�� jE Soln�S�� jE � then S� entails S� with respect to E �written S� j�E S���

� If S� j�E S� and S� j�E S� then that S� and S� are observably equivalent with respect
to E �written S� ��E S�� �

��� Deriving Constraints

The specication phase of set�based analysis derives constraints on the sets of values that
program expressions may assume� Following Aiken et al� ��� and Palsberg and O�Keefe ��	��
we formulate this derivation as a proof system�

The derivation proceeds in a syntax�directed manner according to the constraint deriva�
tion rules presented in gure
� Each rule infers a judgment of the form � �M � ��S�
where�

Modular and Polymorphic Set�Based Analysis� Theory and Practice �

�� the derivation context � maps the free variables of the expression M to either set
variables or constraint schemas �see below��

�� � names the value set of M � and

� the constraint system S is a simple constraint system �see below� describes the data�
�ow relationships of M � using ��

The constraint derivation rules only generates a certain subset of the constraint language�
called simple constraints� Simple constraints have the form�

C � SimpleCon �
c � � j � � �

j � � dom��� j dom��� � �

j � � rng��� j rng��� � �

S � SimpleConSystem � P�n�SimpleCon�

A collection of such simple constraints forms a simple constraint system� We use the cal�
ligraphic letters C and S as meta�variables ranging over simple constraints and simple
constraint systems� respectively�

The constraint derivation rule �var� derives appropriate constraints for a variable ref�
erence x� This rule generates the constraint � � �� where � describes the value set of x�
and � denoting the value set for this reference to x� The constraint derivation rule �const�
generates the constraint b � �� which ensures that the value set for a constant expression
contains that constant� The rule �label� records the possible values of a labeled expression
M l in the label l�

The rule �abs� for functions records the function�s tag� and also propagates values from
the function�s domain into its formal parameter and from the function�s body into its range�
The rule �app� for applications propagates values from the argument expression into the
domain of the applied function and from the range of that function into the result of the
application expression� The correctness of the rules �abs� and �app� relies on the anti�
monotonicity of the underlying ordering v in the domain position�

The rule �let� produces a constraint schema 	 � ��� ���S� for polymorphic� let�bound
values ��� ���� The set variable � names the result of the value� the simple constraint system
S describes the data��ow relationships of the value� using �� and the set � � f��� � � � � �ng
contains those internal set variables of the constraint system that must be duplicated at
each reference to the let�bound variable via the rule �inst��

The derivation context � maps program variables to either set variables or constraint
schemas�

� � DerivCtxt � Var ��p SetVar
 ConSchema
	 � ConSchema � ��� ���S�

We use FV �range���� to denote the free set variables in the range of �� The free set variables
of a constraint schema ��� ���S� are those in S but not in �� and the free variables of a set
variable is simply the set variable itself�

Many of the constraint derivation rules contain meta set variables� For example� the
rule �const��

� � b � �� fb � �g �const�

�� C� Flanagan� M� Felleisen

mentions the meta set variable �� Any time this rule is applied� we need to choose an
appropriate set variable for this meta variable� Choosing a fresh set variable not used
elsewhere in the derivation yields a more accurate analysis� A most general constraint
derivation is one that always uses fresh set variable for these meta variables� and a most
general constraint system for an expression is one produced by a most general constraint
derivation� However� the use of fresh variables is not strictly necessary for the correctness of
the analysis� As an extreme example� we could perform the entire analysis using a single set
variable� although this would yield extremely coarse results� and would be of no practical
use� But the ability to consider constraint derivations that re�use certain set variables
signicantly simplies the subject reduction proofs of the following section�

��� Soundness of the Derived Constraints

Let P be a program such that � � P � ��S� Typically� S has many solutions� Each solution
� of S correctly approximates the value sets of labeled expressions in P � That is� if � is a
solution of S and V is a possible value of some expression M l in P � then V in ��l�� We
prove this property using a subject reduction proof ���� following Wright and Felleisen ����
and Palsberg �����

Main Lemma ��� �Soundness of the Derived Constraints If � � P � ��S and � j�
S and P ���� E � V l � then V in ��l��

Proof� The Subject Reduction for ��� Lemma �
�
� shows that standard reduction steps
preserve entailment� Hence� since P ���� E � V l �� there exists some S� such that � � E � V l � �
��S� and S j� S �� The derivation of this judgment must contain a sub�derivation concluding�

� � V � ��SV

� � V l � ��SV
 f� � lg
�label�

Except for the rule �let�� each application of a constraint derivation rule can only extend
the constraint system produced by its sub�derivation� Since denition of evaluation contexts
does not contain a clause for let�expressions� there cannot be any let�expressions on the
spine from V l to E � V l �� Hence SV
 f� � lg S��

Since � j� S� S j� S �� and S� � SV
 f� � lg� we have that � j� SV
 f� � lg� Hence
V in ���� by the Value Typing Lemma
��� But ���� v ��l�� hence V in ��l�� as required�

The proof of the above result relies on the following lemma showing that standard
reduction steps preserves the entailment of the derived constraint systems�

Lemma ��� �Subject Reduction for ��� If � � M� � ��S� and M� ���M�� then � �
M� � ��S� where S� j� S��

Proof� Follows from the Subject Reduction Lemma
�� and the Replacement Lemma
���

Lemma ��� �Subject Reduction for �� If � � M� � ��S� and M� �� M�� then
� �M� � ��S� such that S� j� S��

Modular and Polymorphic Set�Based Analysis� Theory and Practice ��

Proof� See Appendix A���

Lemma ��� �Replacement If�

�� D is a deduction concluding � � E � M� � � ��S��

�� D� is a sub�deduction of D concluding �� �M� � ��S���

�� D� occurs in D in the position corresponding to the hole �� �� in E� and

�� �� �M� � ��S�� where S�� j� S���

then � � E � M� � � ��S� where S� j� S��

Proof� Follows the proof idea of Hindley and Seldin ����page �����

The Flow Lemma describes conditions under which we can replace the result set variable
returned by the constraint derivation rules�

Lemma ��	 �Flow If � �M � ��S then for all � � SetVar� � �M � ��S� with S
 f� �
�g j� S��

Proof� See Appendix A���

The Value Typing Lemma simply states that any solution to the constraint system for
a syntactic value always corresponds to a value set invariant that includes that value�

Lemma ��� �Value Typing If � � V � ��S and � j� S� then V in �����

Proof� By considering the two cases V � b and V � ��tx�M��

��� Solving Set Constraints

Every simple constraint system admits the trivial solution ��s dened by ��s��� � �s

where �s is recursively dened as �s � hConst��s��si� The domain element �s represents
the set of all run�time values� including functions that can take any value as an argument�
and return any value as a result�

Lemma ��� If S is a simple constraint system then ��s j� S�

Proof� By a case analysis showing that ��s j� C for any simple constraint C�

Since �s represents all run�time values� this solution is highly approximate and thus
utterly useless� Fortunately� simple constraint systems yield many additional solutions that
more accurately characterize the value sets of program expressions�

To illustrate this idea� consider the program P � ��tx�x�� According to the constraint
derivation rules of gure
� this program yields the constraint system�

ft � �P � dom��P � � �x� �x � �M � �M � rng��P �g

�� C� Flanagan� M� Felleisen

In addition to the trivial solution ��s � this constraint system admits a number of other
solutions� including�

�� � f�P �� hftg����i� �x �� �� �M �� �g
�� � f�P �� hftg����i� �x �� �� �M �� �g
�� � f�P �� hft� c�g� X�Xi� �x �� X��M �� Xg

where X � hfc�g����i� and c� and c� are arbitrary constants� Because we assume P to
be the entire program� the function tagged t is never applied� and hence the set of run�time
values for x is simply the empty set� The solution �� describes this �empty� set of run�time
values of x more accurately than either �� or ��� Yet these three solutions are incomparable
under the ordering v� since the ordering models the �ow of values through a program� but
does not rank set environments according to their accuracy�

Therefore we introduce an alternative ordering vs on D that ranks environments ac�
cording to their accuracy� This ordering is monotonic in the domain position�

hC�� D�� R�i vs hC�� D�� R�i i� C� C�� D� vs D�� R� vs R�

The maximal and minimal elements of D under vs are the solutions to the equations�

�s � hConst��s��si
�s � h���s��si

respectively� The least upper bound and greatest lower bound operations are recursively
dened as�

hC�� D�� R�i ts hC�� D�� R�i � hC�
 C�� D� ts D�� R� ts R�i
hC�� D�� R�i us hC�� D�� R�i � hC� � C�� D� us D�� R� us R�i

Under the ordering vs� a simple constraint system has both a maximal solution ���s

above� and a minimal solution� The minimal solution exists because the greatest lower
bound us with respect to vs of two solutions is also a solution �����

Lemma ��� �Least Solution of Simple Constraint Systems Every simple constraint
system has a solution that is least with respect to vs�

Proof� See Appendix A���

Using Lemma
��� it makes sense to dene LeastSoln�S� as the least solution of the
simple constraint system S under the ordering vs� Since this solution yields the most
accurate invariants consistent with the constraints S� we dene set�based analysis as the
function that extracts the possible values for each labeled expression from this least solution�

De�nition ����� �sba � �� �� �Label �� P�Value�� If � � P � ��S is a most general
derivation� then

sba�P ��l� � fV j V in LeastSoln�S��l�g

By Lemma
��� sba�P � correctly characterizes the possible value sets for each labeled ex�
pression�

Theorem ���� If P ���� E � V l � then V � sba�P ��l��

Proof� Follows from Lemma
���

Modular and Polymorphic Set�Based Analysis� Theory and Practice �

��	�� Computing the Least Solution

To compute sba�P �� we derive the most general constraint system for P and close that
constraint system under the rules � described in gure �� Intuitively� these rules infer all
the data��ow paths in the program� which are described by constraints of the form � � �

�for �� � � SetVar�� and propagate values along those data��ow paths� Specically� the
rules �s��� �s��� and �s�� propagate information about constants� function domains and
function ranges forward along the data��ow paths of the program� The rule �s�� constructs
the data��ow paths from actual to formal parameters for each function call� and the rule
�s�� similarly constructs data��ow paths from function bodies to corresponding call sites�
We write S �� C if S proves C via the rules �� and use ��S� to denote the closure of S
under �� i�e�� the set fC j S �� Cg� An algorithm for computing ��S� is included in the
next section�

c � � � � �

c � �
�s��

� � rng��� � � �

� � rng���
�s��

dom��� � � � � �

dom��� � �
�s��

� � rng��� rng��� � �

� � �
�s��

� � dom��� dom��� � �

� � �
�s��

Figure �� The rules � � fs�� � � � � s�g

This closure process propagates all information concerning the possible constants for
labeled expressions into constraints of the form c � l� Hence� we can infer sba�P � from
��S� according to the following theorem�

Theorem ���� If P � �� and � � P � ��S is a most general constraint derivation then�

sba�P ��l� � fb j S �� b � lg

 f��tx�M� j S �� t � lg

Proof� See Appendix A���

� Constraint Simpli�cation

The traditional set�based analysis we have just described has proven highly e�ective for
programs of up to a couple of thousand lines of code� Unfortunately� it is useless for

�� C� Flanagan� M� Felleisen

larger programs due to its nature as a whole�program analysis and due to the size of the
constraint systems it produces� which are quadratic in the size of �large� programs� Storing
and manipulating these constraint systems can be extremely expensive�

To overcome this problem� we have developed algorithms for simplifying constraint sys�
tems� A simplied version of a constraint system contains signicantly fewer constraints� yet
still preserves the essential characteristics of the original system� Applying these simplica�
tion algorithms at strategic points during the constraint derivation� e�g�� to the constraint
system for a module denition or a polymorphic function denition� signicantly reduces
both the time and space required by the overall analysis�

The following section shows that constraint simplication does not a�ect the analysis
results� provided the simplied system is observably equivalent to the original system� Sec�
tion ��� presents a proof�theoretic formulation of observable equivalence� and section ��

exploits this formulation to develop a complete algorithm for deciding the observable equiv�
alence of constraint systems� The insights provided by this theoretical development lead to
the practical constraint simplication algorithms of section ����

��� Conditions for Constraint Simpli	cation

Let us consider a program P containing a program component M � where M may be a
module denition or a polymorphic function denition� Suppose the constraint derivations
for M concludes�

� �M � ��S�

where S� is the constraint system for M � Our goal is to replace S� by a simpler constraint
system� say S�� without changing the results of the analysis�

Let the context surrounding M be C� i�e�� P � C�M �� Since the constraint derivation
process is compositional� the constraint derivation for the entire program concludes�

� � P � ��SC
 S�

where SC is the constraint system for C� The union of the sets SC and S� describes the
space of solutions for the entire program� which is the same as the intersection of the two
respective solution spaces�

Soln�SC
 S�� � Soln�SC� � Soln�S��

Hence Soln�S�� describes at least all the properties of S� relevant to the analysis� but it may
also describe solutions for set variables that are not relevant to the analysis� In particular�

� sba�P � only references the solutions for label variables� and

� an inspection of the constraint derivation rules shows that the only interactions be�
tween SC and S� are due to the set variables in f�g
 FV �range�����

In short� the only properties of S� relevant to the analysis is the solution space for its
external set variables �

E � Label
 f�g
 FV �range����

Modular and Polymorphic Set�Based Analysis� Theory and Practice ��

For our original problem� this means that we want a constraint system S� whose solution
space restricted to E is equivalent to that of S� restricted to E�

Soln�S�� jE � Soln�S�� jE

or� with the notation from section
��� S� and S� are observably equivalent on E�

S� ��E S� �

We can translate this compaction idea into an additional rule for the constraint deriva�
tion system�

� ��� M � ��S� S� ��E S� where E � Label
 FV �range����
 f�g

� ��� M � ��S�
����

This rule is admissible in that any derivation �denoted using ���� in the extended constraint
derivation system produces information that is equivalent to the information produced by
the original analysis�

Lemma ��� �Admissibility of ���� If � ��� P � ��S is a most general constraint deriva�
tion then�

sba�P ��l� � const�LeastSoln�S��l��

Proof� See Appendix A�
�

��� The Proof Theory of Observable Equivalence

Since the new derivation rule ���� involves the semantic notion of observably equivalent
constraint systems� it cannot be used in an algorithmic manner� To make this rule use�
ful� we must rst reformulate the observable equivalence relation �or some conservative
approximation thereof� as a syntactic proof system�

The key properties of the observational equivalence relation are re�ections of the re�exiv�
ity and transitivity of the ordering relation �v� and the monotonicity and anti�monotonicity
of the functions rng and dom� respectively� We can reify these properties into a syntactic
proof system via the following inference rules ��

� � � �re	ex�
�� � � � � ��

�� � ��
�trans��

� �
�

rng�
�� � rng�
��
dom�
�� � dom�
��

�compat�

The meta�variables
�
��
� range over non�constant set expressions�

�
��
� � � j dom�
� j rng�
�

This restriction avoids inferring useless tautologies� For example� without this restriction�
the constraint c � � would yield the constraint rng�c� � rng��� via �compat�� which is a
tautology since rng�c� � ��

�	 C� Flanagan� M� Felleisen

The rules �re	ex� and �trans�� capture the re�exivity and transitivity of the ordering
relation v� �compat� re�ects the monotonicity and anti�monotonicity of the functions rng
and dom� respectively� Since many of the inferred constraints lie outside of the original
language of simple constraints� we dene an extended compound constraint language that
includes all of the inferred constraints�

C � CmpdConstraint � c �
 j
 �

S � CmpdConSystem � P�n�CmpdConstraint�

We use the boldface roman letters C and S as meta�variables ranging over compound
constraints and compound constraint systems� respectively�

The proof system � completely captures the relevant properties of the ordering v and
the functions rng and dom� That is� � is both sound and complete�

Lemma ��� �Soundness and Completeness of � For a compound constraint system
S and a compound constraint C�

S �� C �� S j� C

Proof� See Appendix A���

This lemma implies that ��S� contains exactly those compound constraints that hold in
all environments in Soln�S�� Hence� if we consider a collection of external set variables E�
then ��S� jE contains all compound constraints that hold in all environments in Soln�S� jE�
Therefore the following lemma holds�

Lemma ��� For a compound constraint system S� S ��E ��S� jE�

Proof� See Appendix A���

We could use this result to dene a proof�theoretic equivalent of restricted entailment
as follows�

S� �E� S� if and only if ��S�� jE � ��S�� jE

and then show that S� �E� S� if and only if S� j�E S�� However� this denition based on the
proof system � does not lend itself to an e�cient implementation� Specically� checking if
two potential antecedents of �trans� � contain the same set expression � involves comparing
two potentially large set expressions� Hence we develop an alternative proof system that is
more suitable for an implementation� yet infers the same constraints as ��

The alternative system consists of the inference rules � described in gure �� together
with the rules � from gure �� The rules �compose������ of � replace a reference to a set
variable by an upper or lower �non�constant� bound for that variable� as appropriate� The
rules �re	ex� and �compat� of � are as described above� The rule �trans�� of � provides
a weaker characterization of transitivity than the previous rule �trans� �� but� provided
we start from with a simple constraint system� the additional rules� � and �compose�������
compensate for this weakness� That is� suitable combinations of these additional rules allow
us to infer any constraint that could be inferred by the rule �trans� ��

Modular and Polymorphic Set�Based Analysis� Theory and Practice ��

� � rng��� � � �

� � rng���
�compose��

� � rng��� � � �

� � rng���
�compose��

� � � �re�ex �

�� � ��

rng���� � rng����
dom���� � dom����

�compat �

� � dom��� � � �

� � dom���
�compose��

� � dom��� � � �

� � dom���
�compose��

�� � � � � ��

�� � ��
�trans��

Figure �� The Inference Rule System �

Lemma ��� �Equivalence of Proof Systems For a simple constraint system S�

��S� � ���S�

Proof� See Appendix A���

We could use this result to dene a proof�theoretic equivalent of restricted entailment
as follows�

S� �E	� S� if and only if ���S�� jE � ���S�� jE

and then show that S� �
E
	� S� if and only if S� j�E S�� However� this denition is needlessly

ine�cient� Because �compat� does not eliminate any variables� any �compat��consequent in
���S�� jE is subsumed by its antecedent� If we dene�

 � � n fcompatg

then this argument implies that ���S�� jE �� ��S�� jE� Hence we get the following
lemma�

Lemma ��� ���S� jE �� ��S� jE�

Proof� See Appendix A���

Together� Lemmas ��
� ��� and ��� provide the basis to introduce proof�theoretic equiv�
alents of restricted entailment and observable equivalence�

De�nition ��	� ��E	�� �
E
	�

� S� �E	� S� if and only if ���S�� jE � ��S�� jE �

� S� �E
	� S� if and only if S� �

E
	� S� and S� �

E
	� S��

�� C� Flanagan� M� Felleisen

The two relations �E	� and �
E
	� completely characterize restricted entailment and observ�

able equivalence of constraint systems�

Theorem ��� �Soundness and Completeness of �E	� and �E
	�

�� S� �E	� S� if and only if S� j�E S��

�� S� �
E
	� S� if and only if S� ��E S��

Proof� See Appendix A���

��� Deciding Observable Equivalence

While the relation �E
	� completely characterizes the model�theoretic observable equiva�

lence relation ��E � an implementation of the extended constraint derivation system needs a
decision algorithm for �E

	��

Given two simple constraint systems S� and S�� this algorithm needs to verify that
���S�� jE � ���S�� jE � If S� and S� are rst closed under �� then the algorithm only
needs to verify that ��S�� jE � ��S�� jE� The naive approach to enumerate and to compare
the two constraint systems ��S�� jE and ��S�� jE does not work� since they are typically
innite� For example� if S � f� � rng���g� then ��S� is the innite set f� � rng���� � �
rng�rng����� � � �g�

Fortunately� the innite constraint systems inferred by � exhibit a regular structure�
which we exploit to decide observable equivalence as follows�

�� We generate regular grammars describing the upper and lower bounds for each set
variable�

�� We extend these regular grammars to regular tree grammars �RTGs� describing all
constraints in �S�� jE and �S�� jE � This representation allows us to use a standard
RTG containment algorithm to decide if �S�� jE � �S�� jE�

� Based on the RTG containment algorithm� we develop an extended algorithm that
decides the more di�cult entailment question ��S�� jE � �S�� jE by allowing for
the additional �compat� inferences on S��

By checking entailment in both directions� we can decide if two constraint systems are
observably equivalent� These steps are described in more detail below�

��� Regular Grammars

Our rst step is to describe� for each set variable � in a simple constraint system S� the
following two languages of the lower and upper non�constant bounds of ��

f
 j �
 � �� � �S� and SetVar�
� Eg
f
 j �� �
� � �S� and SetVar�
� Eg

Modular and Polymorphic Set�Based Analysis� Theory and Practice ��

These languages are generated by a regular grammar� For each set variable �� the grammar
contains the non�terminals �L and �U � which generate the above lower and upper bounds
of �� respectively�

To illustrate this idea consider the program component P � ��gy����fx��� y��� where
f and g are function tags� and take E � f�P g� The constraint system SP for P �closed
under �� is described in gure 	� together with the productions in the corresponding regular
grammar� This grammar describes the upper and lower non�constant bounds for each set
variable in �SP � jE � For example� the productions�

�xL �� �rL
�rL �� dom��PU �
�PU �� �P

imply that �xL ��
� dom��P �� This lower bound for x means that the value set for x must

include all values to which the function P is applied�

Additional productions
Constraints SP Grammar Gr
SP � E� in Gt
SP � E�

f � �f R �� �f � �
f
U �

dom
�f� � �x �xL �� dom
�fU�
� � �� R �� �� � ��

U �

�� � rng
�f� ��

U �� rng
�fU�

rng
�f� � �a �aL �� rng
�fL�
�y � �r �

y

U �� �rU �rL ���
y

L

�r � dom
�f� �rU �� dom
�fL�
g � �P R �� �g � �PU �

dom
�P � � �y �
y

L �� dom
�PU�
�a � rng
�P � �aU �� rng
�PU�

�r � �x �rU �� �xU �xL ���rL
�� � �a ��

U �� �aU �aL ����

L

� � �a R �� �� � �aU �

�PL �� �P �PU ���P R �� ��L � �U � �� � SetVar
SP �

Figure 	� The constraint system� regular grammar� and regular tree grammar for P �
��gy����fx��� y��

The productions of the grammar are determined by SP and � For example� the con�
straint ��� � rng��f �� � SP implies that for each upper bound
 of �

f � the rule �compose��
infers the upper bound rng�
� of ��� Since� by induction� �f �s upper bounds are generated

by �fU � the production �
�
U �� rng��fU� generates the corresponding upper bounds of �

��
More generally� the collection of productions�

f�U �� rng��U� j �� � rng���� � Sg

describes all bounds inferred via �compose�� on a simple constraint system S� Bounds
inferred via the remaining �compose� rules can be described in a similar manner� Bounds

�� C� Flanagan� M� Felleisen

inferred via the rule �re	ex� imply the productions �U �� � and �L �� � for � � E� Finally�
consider the rule �trans��� and suppose this rule infers an upper bound � on �� This bound
must be inferred from an upper bound � on �� using the additional antecedent �� � ���
Hence the productions f�U �� �U j �� � �� � Sg generate all upper bounds inferred via
�trans��� In a similar fashion� the productions f�L �� �L j �� � �� � Sg generate all lower
bounds inferred via �trans���

De�nition ���� �Regular Grammar Gr�S� E� Let S be a simple constraint system and
E a collection of set variables� The regular grammar Gr�S� E� consists of the non�terminals
f�L� �U j � � SetVar�S�g and the following productions�

�U �� �� �L �� � � � � E

�U �� �U � �L �� �L � �� � �� � S
�U �� dom��L� � �� � dom���� � S
�U �� rng��U� � �� � rng���� � S
�L �� dom��U� � �dom��� � �� � S
�L �� rng��L� � �rng��� � �� � S

The grammar Gr�S� E� generates two languages for each set variable that describe the
upper and lower non�constant bounds for that set variable� Specically� if ���

G denotes a
derivation in the grammar G� and LG�x� denotes the language f� j x ���

G �g generated by
a non�terminal x� then the following lemma holds�

Lemma ��� Let G � Gr�S� E�� Then�

LG��L� � f
 j �
 � �� � �S� and SetVar�
� Eg
LG��U � � f
 j �� �
� � �S� and SetVar�
� Eg

Proof� See Appendix A���

��� Regular Tree Grammars

The grammar Gr�S� E� does not describe all constraints in �S� jE � In particular�

� Gr�S� E� does not describe constraints of the form �c � � �� Thus� for example� the reg�
ular grammar for the example program component P does not describe the constraint
�� � rng��P �� in �SP � jE �

� Gr�S� E� does not describe constraints inferred by the �trans�� rule that are not
bounds of the form �
 � �� or �� �
�� To illustrate this idea� consider the program
Q � ��tx�x� whose constraint system is�

SQ � ft � �Q� dom��Q� � �x� �x � rng��Q�g �

The regular grammar Gr�SQ� E� for Q describes the constraints fdom��
Q� � �x� �x �

rng��Q�g in �SQ� jE � but it does not describe the trans� consequent �dom��Q� �
rng��Q�� of those constraints� which is also in �SQ� jE �

Modular and Polymorphic Set�Based Analysis� Theory and Practice ��

For an arbitrary constraint system S� we represent the constraint system �S� jE by
extending the grammar Gr�S� E� to a regular tree grammar Gt�S� E�� The extended gram�
mar combines upper and lower bounds for set variables in the same fashion as the �trans��
rule� and also generates constraints of the form �c � � � where appropriate�

De�nition ����� �Regular Tree Grammar Gt�S� E� The regular tree grammar Gt�S� E�
extends the grammarGr�S� E� with the root non�terminal R and the additional productions�

R �� ��L � �U � � � � SetVar�S�
R �� �c � �U � � �c � �� � S

where �� � �� is viewed as a binary constructor�

The extended regular tree grammar Gt�S� E� describes all constraints in �S� jE�

Lemma ���� Let G � Gt�S� E�� Then �S� jE � LG�R��

Proof� See Appendix A���

The grammar Gt�SP � E� for the example program component P is described in gure 	�
This grammar yields all constraints in �SP � jE� For example� the productions�

R �� �� � �aU � �aU �� rng��PU� �PU �� �P

imply that R ��� �� � rng��P ��� or that the constant � is returned as a possible result of
the function P �

��� Staging

Before we can exploit the grammar representation of �S� jE� we must prove that the
closure under �

fcompatg can be performed in a staged manner� The following lemma
justies this staging of the closure algorithm� In particular� it states that does not create
any additional opportunities for rules in �� and �compat� does not create any additional
opportunities for or ��

Lemma ���� �Staging For any simple constraint system S�

���S� � ����S�� � compat� ���S���

Proof� See Appendix A���

��
 The Entailment Algorithm

We can check entailment based on lemmas ���� and ���� as follows� Given S� and S�� we
close them under � and then have�

S� �
E
	� S�

�� ���S�� jE � ��S�� jE by defn �E	�
�� ����S��� jE � ���S��� jE by lemma ����
�� ��S�� jE � �S�� jE as Si � ��Si�
�� compat� �S�� jE� � �S�� jE by lemma ����
�� compat�LG�

�R�� � LG�
�R� by lemma ����

where Gi � Gt�Si� E�

�� C� Flanagan� M� Felleisen

The Entailment Algorithm

In the following� P�n denotes the 	nite power�set constructor�
Let

G� � Gr�S�� E�
G� � Gt�S�� E�

Li � f�L j � � Vars�Si�g
Ui � f�U j � � Vars�Si�g

Assume G� and G� are pre�processed to remove 	�transitions� For C � P�n�L� � U��� de	ne

L�C� � f��L � �U � j h�L� �U i � C� �L �	G�
�L� �U �	G�

�Ug

The relationRS��S� �
�
�
�
� is de	ned as the largest relation on L��U��P�n�L��U���P�n�L��U��
such that if

RS��S� ��L� �U � C�D� �L �	G�
X �U �	G�

Y

then one of the following cases hold

�� L��X � Y �� � L�C �D��

�� X � rng���

L�� Y � rng���

U � and RS��S� ��
�

L� �
�

U � C�D
��� where

D� � fh��L�

�

Ui j h�L�
U i � C �D� �L �	G�
rng���L��
U �	G�

rng�
�U �g

�� X � dom���

U �� Y � dom���

L� and RS��S� ��
�

L� �
�

U � C�D
��� where

D� � fh
�L� �
�

Ui j h�L�
U i � C �D� �L �	G�
dom���U ��
U �	G�

dom�
�L�g

The computable entailment relation S� �Ealg S� holds if and only if �� � Vars�S��

RS��S� ��L� �U � fh�L� �U i j � � Vars�S��g� ��

Figure �� The computable entailment relation �Ealg

The containment question�
LG�

�R� � LG�
�R�

can be decided via a standard RTG containment algorithm �
�� To decide the more di�cult
question�

compat�LG�
�R�� � LG�

�R�

we extend the RTG containment algorithm to allow for constraints inferred via �compat�
on the language LG�

�R��
The extended algorithm is presented in gure �� It rst computes the largest relation

RS��S� such that RS��S� ��L� �U � C�D� holds if and only if�

L���L � �U �� compat�L�C��
 L�D�

where �L� �U describe collections of types� C� D describe collections of constraints� and
L���L � �U �� denotes the language f��L � �U � j �L ��� �L� �U ��� �Ug� The rst case

Modular and Polymorphic Set�Based Analysis� Theory and Practice �

in the denition of R uses an RTG containment algorithm to detect if L���L � �U ��
L�C�
L�D�� The two remaining cases handle constraints of the form �rng���L� � rng���U��
or �dom���U� � dom���L��� and allow for inferences via �compat�� The relation R can be
computed by starting with a maximal relation �true at every point�� and then iteratively
setting entries to false� until the largest relation satisfying the denition is reached�

Based on this relation� the algorithm then denes a computable entailment relation �Ealg
on constraint systems� This relation is equivalent to �E	�

Theorem ���� �Correctness of the Entailment Algorithm S� �E	 S� if and only if
S� �

E
alg S��

Proof� See Appendix A�	�

The entailment algorithm takes exponential time� since the size of R is exponential
in the number of set variables in S�� Although faster algorithms for the entailment may
exist� these algorithms must all be in PSPACE� because the containment problem on NFA�s�
which is PSPACE�complete ���� can be polynomially reduced to the entailment problem on
constraint systems�

By using the entailment algorithm in both directions� we can now decide if two constraint
systems are observable equivalent� Thus� given a constraint system� we can nd a minimal�
observably equivalent system by systematically generating all constraint systems in order of
increasing size� until we nd one observably equivalent to the original system� Of course� the
process of computing the minimal equivalent system with this algorithm is far too expensive
for use in practical program analysis systems�

��� Practical Constraint System Simpli	cation

Fortunately� to take advantage of the rule ���� in program analysis algorithms� we do not
need a completely minimized constraint system� Any simpli�cations in a constraint system
produces corresponding reductions in the time and space required for the overall analysis�

For this purpose� we exploit the connection between constraint systems and RTGs� By
Lemma ����� any transformation on constraint systems that preserves the language�

LGt
�
S��E��R�

also preserves the observable behavior of S with respect to E� Based on this observation�
we have transformed a variety of existing algorithms for simplifying regular tree grammars
to algorithms for simplifying constraint systems� In the following subsections� we present
the four most promising algorithms found so far� We use G to denote Gt�S� E�� and we
let X range over non�terminals and p over paths � which are sequences of the constructors
dom and rng� Each algorithm assumes that the constraint system S is closed under ��
Computing this closure corresponds to propagating data��ow information locally within a
program component� This step is relatively cheap� since program components are typically
small �less than a thousand lines of code��

�� C� Flanagan� M� Felleisen

Constraints Production Rules Non�empty Reachable

f � �f R �� �f � �
f
U �

dom
�f � � �x �xL �� dom
�fU�
� � �� R �� �� � ��

U � � � �� � � ��

�� � rng
�f� ��

U �� rng
�fU�

rng
�f � � �a �aL �� rng
�fL�
�y � �r �

y

U �� �rU �rL ���
y

L �y � �r

�r � dom
�f� �rU �� dom
�fL�
g � �P R �� �g � �PU � g � �P g � �P

dom
�P � � �y �
y

L �� dom
�PU� dom
�P � � �y

�a � rng
�P � �aU �� rng
�PU� �a � rng
�P � �a � rng
�P �

�r � �x �rU �� �xU �xL ���rL �r � �x

�� � �a ��

U �� �aU �aL ����

L �� � �a �� � �a

� � �a R �� �� � �aU � � � �a � � �a

�PL �� �P �PU ���P

Figure �� The constraint system� grammar and simplied systems for P � ��gy����fx��� y��

����� Empty Constraint Simpli�cation

A non�terminal X is empty if LG�X� � �� Similarly� a production is empty if it refers to
empty non�terminals� and a constraint is empty if it only induces empty productions� Since
empty productions have no e�ect on the language generated by G� an empty constraint in
S can be deleted without changing S�s observable behavior�

Let us illustrate this idea with the program component P � ��gy����fx��� y�� we con�
sidered earlier� Although this example is unrealistic� it illustrates the behavior of our
simplication algorithms� The solved constraint system SP for P is shown in gure �� to�
gether with the corresponding grammar Gt�SP � E� where E � f�P g� An inspection of this
grammar shows that the set of non�empty non�terminals is�

f�PL � �
P
U � �

y
L� �

a
U � �

r
L� �

�
U � �

x
L� Rg

Five of the constraints in SP are empty� and are removed by this simplication algorithm�
yielding a simplied system of eight non�empty constraints�

����� Unreachable Constraint Simpli�cation

A non�terminal X is unreachable if there is no production R �� �Y � Z� or R �� �Z � Y �
such that LG�Y � �� � and Z ��

G p�X�� Similarly� a production is unreachable if it refers to
unreachable non�terminals� and a constraint is unreachable if it only induces unreachable
productions� Unreachable productions have no e�ect on the language LG�R�� and hence
unreachable constraints in S can be deleted without changing the observable behavior of S�

In the above example� the reachable non�terminals are ��U � �
a
U and �

g
U � Three of the

constraints are unreachable� and are removed by this algorithm� yielding a simplied system
with ve reachable constraints�

Modular and Polymorphic Set�Based Analysis� Theory and Practice ��

�� Use a variant of Hopcroft�s algorithm ���� to compute an equivalence relation � on the set
variables of S that satis	es the following conditions

�a� Each set variable in E is in an equivalence class by itself�

�b� If �� � �� � S then �� � �� � � �� such that ��� � ��� � S�

�c� If �� � rng���� � S then �� � �� � � �� such that ��� � rng����� � S�

�d� If �rng��� � �� � S then �� � �� � � �� such that �rng���� � ��� � S�

�e� If �� � dom���� � S then �� � �� �� � �� such that ��� � dom����� � S�

�� Merge set variables according to their equivalence class�

Figure �� The Hopcroft algorithm

����� Removing ��Constraints

A constraint of the form �� � �� � S is an ��constraint � Suppose � �� E and the only upper
bound on � in S is the ��constraint �� � ��� i�e�� there are no other constraints of the form
� � � � rng��� � �� or � � dom��� in S� Then� for any solution � of S� the set environment
�� dened by�

����� �

�
���� if � �� �

���� if � � �

is also a solution of S� Therefore we can replace all occurrences of � in S by � while still
preserving the observable behavior Soln�S� jE� This substitution transforms the constraint
�� � �� to the tautology �� � ��� which can be deleted� Dually� if �� � �� � S with � �� E

and � having no other lower bounds� then we can replace � by �� again eliminating the
constraint �� � ���

To illustrate this idea� consider the remaining constraints for P � In this system� the
only upper bound for the set variable �� is the ��constraint ��� � �a�� Hence this algorithm
replaces all occurrences of �� by �a� which further simplies this constraint system into�

f� � �a� �a � rng��P �� g � �P g

This system is the smallest simple constraint system observably equivalent to the original
system ��S��

����� Hopcroft�s Algorithm

The previous algorithm merges set variables under certain circumstances� and only when
they are related by an ��constraint� We would like to identify more general circumstances
under which set variables can be merged� To this end� we dene a valid uni�er for S to be
an equivalence relation � on the set variables of S such that we can merge the set variables
in each equivalence class of � without changing the observable behavior of S� Using a
model�theoretic argument� we can show that an equivalence relation � is a valid unier for
S if for all solutions � � Soln�S� there exists another solution �� � Soln�S� such that ��

agrees with � on E and ����� � ����� for all � � ��

�	 C� Flanagan� M� Felleisen

A natural strategy for generating �� from � is to map each set variable to the least upper
bound of the set variables in its equivalence class�

����� �
F

����

�����

Figure � describes su�cient conditions to ensure that �� is a solution of S� and hence that
� is a valid unier for S� To produce an equivalence relation satisfying these conditions�
we use a variant of Hopcroft�s O�n lgn� time algorithm ���� for computing an equivalence
relation on states in a DFA and then merge set variables according to their equivalence
class��

The following theorem states that this simplication algorithm preserves the observable
behavior of constraint systems�

Theorem ���� �Correctness of the Hopcroft Algorithm Let S be a simple constraint
system with external variables E
 let � be an equivalence relation on the set variables in a
constraint system S satisfying conditions �a� to �e� from �gure
 let the substitution f map
each set variable to a representation element of its equivalence class
 and let S � � f�S�� i�e��
S� denotes the constraint system S with set variables merged according to their equivalence
class� Then S ��E S��

Proof� See Appendix A���

��� Simpli	cation Benchmarks

empty unreachable 	�removal Hopcroft

De	nition lines size factor time factor time factor time factor time
map � ��� � ��� � �� �� �� �� ��
reverse � ��� � ��� � �� �� �� �� ��
substring � ��� �� �� �� �� �� �� �� ��
qsort �� ���� �� ��� �� �� �� �� �� ��
unify �� ���� �� �� �� �� �� ��� �� ���
hopcroft ��� ���� �� �� �� ��� ��� ��� ��� ���
check ��� ����� � �� � ���� �� ��� ��� ���
escher�fish ��� ����� ��� �� ��� �� ��� �� ��� ��
scanner ���� ����� � ��� �� ��� �� ���� �� ����

Figure ��� Behavior of the constraint simplication algorithms�

To test the e�ectiveness of the simplication algorithms� we extended MrSpidey with the
four algorithms that we have just described� empty � unreachable� ��removal � and Hopcroft �
Each algorithm also implements the preceding simplication strategies� The rst three
algorithms are linear in the number of non�empty constraints in the system� and Hopcroft
is log�linear�

�A similar development based on the de�nition ��
�� � uf�
��� j � � ��g results in an alternative
algorithm� which is less e�ective in practice	

Modular and Polymorphic Set�Based Analysis� Theory and Practice ��

We tested the algorithms on the constraint systems for nine program components on a
�	�MHz Sparc Ultra � with
�	M of memory� using the MzScheme compiler ���� The results
are described in gure ��� The second column gives the number of lines in each program
component� and the third column gives the number of constraints in the original �unsimpli�
ed� constraint system after closing it under the rules �� The remaining columns describe
the behavior of each simplication algorithm� presenting the factor by which the number
of constraints was reduced� and the time �in milliseconds� required for this simplication�
Since MzScheme is a byte code compiler� porting the simplication algorithms to a native
code compiler could be expected to produce a speed�up of roughly a factor of ��

The results demonstrate the e�ectiveness and e�ciency of our simplication algorithms�
The resulting constraint systems are typically at least an order of magnitude smaller than
the original system� The cost of these algorithms is reasonable� particularly considering that
they were run on a byte code compiler� As expected� the more sophisticated algorithms are
more e�ective� but are also more expensive�

� Componential Set�Based Analysis

Equipped with the simplication algorithms� we can now return to our original problem
of extending set�based analysis to handle signicantly larger programs� These programs
are typically constructed as a collection of program components �e�g� modules� packages
or les�� Exploiting this component�based structure is the key to analyzing such programs
e�ciently�

The following section describes componential set�based analysis� Section ��� presents
experimental results on the e�ectiveness of the analysis� and section ��
 describes how
MrSpidey presents the analysis results for multi�component programs to the programmer�

The constraint simplication algorithms also enables an e�cient polymorphic� or context�
sensitive� analysis that only duplicates a simplied constraint system for each reference to a
polymorphic function� A description of this polymorphic analysis is presented in section

�
together with experimental results on the behavior of the analysis�

��� Componential Set�Based Analysis

Componential set�based analysis processes programs in three steps�

�� For each component in the program� the analysis derives and simplies the constraint
system for that component and saves the simplied system in a constraint �le� for
use in later runs of the analysis� The simplication is performed with respect to the
external variables of the component� excluding expression labels� in order to minimize
the size of the simplied system� Thus� the simplied system only needs to describe
how the component interacts with the rest of the program� and the simplication
algorithm can discard constraints that are only necessary to infer local value set
invariants� These discarded constraints are reconstructed later as needed�

This step can be skipped for each program component that has not changed since the
last run of the analysis� and the component�s constraint le can be used instead�

�� C� Flanagan� M� Felleisen

�� The analysis combines the simplied constraint systems of the entire program and
closes the combined collection of constraints under �� thus propagating data��ow
information between the constraint systems for the various program components�

� Finally� to reconstruct the full analysis results for the program component that the
programmer is focusing on� the analysis tool combines the constraint system from the
second step with the unsimplied constraint system for that component� It closes
the resulting system under �� which yields appropriate value set invariants for each
labeled expression in the component�

The new analysis can easily process programs that consist of many components� For its
rst step� it eliminates all those constraints that have only local relevance� thus producing
a small combined constraint system for the entire program� As a result� the analysis tool
can solve the combined system more quickly and using less space than traditional set�based
analysis ����� Finally� it recreates as much precision as traditional set�based analysis as
needed on a per�component basis�

The new analysis performs extremely well in an interactive setting because it exploits
the saved constraint les where possible and thus avoids re�processing many program com�
ponents unnecessarily�

��� Experimental Results

We implemented four variants of componential set�based analysis� Each analysis uses a
particular simplication algorithm from chapter

 to simplify the constraint systems for
the program components� We tested these analyses with ve benchmark programs� ranging
from ����� to ������ lines� For comparison purposes� we also analyzed each benchmark
with the standard set�based analysis that performs no simplication� The analyses handled
library functions in a context�sensitive� polymorphic manner according to the constraint
derivation rules �let� and �inst� to avoid merging information between unrelated calls to
these functions� The remaining functions were analyzed in a context�insensitive� monomor�
phic manner� The results are documented in gure ���

The fourth column in the gure shows the maximum size of the constraint system
generated by each analysis� and also shows this size as a percentage of the constraint system
generated by the standard analysis� The analyses based on the simplication algorithms
produce signicantly smaller constraint systems� and can also analyze more programs� such
as sba and poly� for which the standard analysis exhausted heap space�

The fth column shows the time required to analyze each program from scratch� without
using any existing constraint les� The analyses that exploit constraint simplication yield
signicant speed�ups over the standard analysis because they manipulate much smaller
constraint systems� The results indicate that� for these benchmarks� the ��removal algorithm
yields the best trade�o� between e�ciency and e�ectiveness of the simplication algorithms�
The additional simplication performed by the more expensive Hopcroft algorithm is out�
weighed by the overhead of running the algorithm� The tradeo� may change as we analyze
larger programs�

�These times exclude scanning and parsing time	

Modular and Polymorphic Set�Based Analysis� Theory and Practice ��

Num� of Analysis Re�analysis Constraint 	le
Program lines Analysis constraints time time size �bytes�
scanner ���� standard ��K ����s ���s ���K

empty ��K ����� ����s ���s ���K
unreachable ��K ����� ���s ���s ��K
	�removal ��K ����� ���s ���s ��K
Hopcroft ��K ����� ����s ���s ��K

zodiac ���� standard ���K �����s �����s ����K
empty ��K ���� ����s ���s ���K

unreachable ��K ���� ����s ���s ���K
	�removal ��K ���� ����s ���s ���K
Hopcroft ��K ���� ����s ���s ���K

nucleic ���� standard ���K ����s ����s ����K
empty ��K ����� ����s ����s ���K

unreachable ��K ����� ����s ����s ���K
	�removal ��K ����� ����s ����s ���K
Hopcroft ��K ����� ����s ����s ���K

sba ����� standard �� ��M � � �

empty ����K ������ �����s ����s ����K
unreachable ���K ����� �����s ����s ���K
	�removal ��K ����� �����s ����s ���K
Hopcroft ��K ����� �����s ����s ���K

mod�poly ����� standard �� ��M � � �

empty �� ��M � � �

unreachable ���K ����� �����s ����s ����K
	�removal ��K ����� �����s ����s ����K
Hopcroft ��K ����� �����s ����s ���K

� indicates the analysis exhausted heap space

Figure ��� Behavior of the modular analyses�

To test the responsiveness of the componential analyses in an interactive setting based
on an analyze�debug�edit cycle� we re�analyzed each benchmark after changing a randomly
chosen component in that benchmark� The re�analysis times are shown in the sixth column
of gure ��� These times show an order�of�magnitude improvement in analysis times over
the original� standard analysis� since the saved constraint les are used to avoid reanalyzing
all of the unchanged program components� For example� the analysis of zodiac� which used
to take over two minutes� now completes in under four seconds� Since practical debugging
sessions using MrSpidey typically involve repeatedly analyzing the project each time the
source code of one module is modied� e�g�� when a bug is identied and eliminated� using
separate analysis substantially improves the usability of MrSpidey�

The disk�space required to store the constraint les is shown in column seven� Even
though these les use a straight�forward� text�based representation� their size is typically
within a factor of two or three of the corresponding source le�

� C� Flanagan� M� Felleisen

copy Relative time of smart polymorphic analyses Mono�
Program lines analysis empty unreachable 	�removal Hopcroft analysis
lattice ��� ���s ��� ��� ��� ��� ���
browse ��� ���s ��� ��� ��� ��� ���
splay ��� ���s ��� ��� ��� ��� ���
check ��� ����s ��� ��� ��� ��� ���
graphs ��� ���s ��� ��� ��� ��� ���
boyer ��� ���s ��� ��� ��� ��� ���
matrix ��� ���s ��� ��� ��� ��� ���
maze ��� ���s ��� ��� ��� ��� ���
nbody ��� ����s ��� ��� ��� ��� ���
nucleic ���� � � ���s � ��s � ��s � ��s � ��s

� indicates the copy analysis exhausted heap space�
and the table contains absolute times for the other analyses

Figure ��� Times for the smart polymorphic analyses� relative to the copy analysis�

��� User Interface for Multi�File Programs

We extended MrSpidey�s user interface to cope with programs consisting of multiple source
les� or components� MrSpidey rst analyses the program� using the componential set�based
analysis described above� and then displays an annotated version of the program�s main
le with the usual static debugging mark�ups� The programmer can also view annotated
versions of any other source le by using the File�Open ��� dialog box �shown in Figure

�
to select the source le of interest�

In multi�le programs� the source �or destination� of an arrow may sometimes refer to
a program point in a separate le� In this case MrSpidey draws an arrow originating �or
terminating� in the left margin of the program� as shown in gure

� Clicking on the
arrow provides the option to zoom to and highlight the term at the other end of the arrow�
as shown in gures

 and

� These facilities are useful for following the �ow of values
through multi�le programs�

��� E�cient Polymorphic Analysis

The constraint simplication algorithms also enables an e�cient polymorphic� or context�
sensitive� analysis� To avoid merging information between unrelated calls to functions that
are used in a polymorphic fashion� a polymorphic analysis duplicates the function�s con�
straints at each call site� We extended MrSpidey with ve polymorphic analyses� The rst
analysis is copy � which duplicates the constraint system for each polymorphic reference via a
straightforward implementation of the rules �let� and �inst��� The remaining four analyses
are smart analyses that simplify the constraint system for each polymorphic denition�

We tested the analyses using a standard set of benchmarks ��
�� The results of the test
runs are documented in gure ��� The second column shows the number of lines in each

�We also implemented a polymorphic analysis that re�analyzes a de�nition at each reference� but found
its performance to be comparable to� and sometimes worse than� the copy analysis	

Modular and Polymorphic Set�Based Analysis� Theory and Practice
�

benchmark� the third column presents the time for the copy analysis� and columns four
to seven show the times for each smart polymorphic analysis� as a percentage of the copy
analysis time� For comparison purposes� the last column shows the relative time of the
original� but less accurate� monomorphic analysis�

The results again demonstrate the e�ectiveness of our constraint simplication algo�
rithms� The smart analyses that exploit constraint simplication are always signicantly
faster and can analyze more programs than the copy analysis� For example� while copy
exhausts heap space on the nucleic benchmark� all smart analyses successfully analyzed
this benchmark�

Again� it appears that the ��removal analysis yields the best trade�o� between e�ciency
and e�ectiveness of the simplication algorithms� This analysis provides the additional
accuracy of polymorphism without much additional cost over the coarse� monomorphic
analysis� With the exception of the benchmarks browse� splay and graphs� which do not
re�use many functions in a polymorphic fashion� this analysis is a factor of � to � times
faster than the copy analysis� and it is also capable of analyzing larger programs�

	 Competitive Work

A number of researchers have investigated the problem of constraint simplication in order
to derive faster and more scalable analyses and type systems�

Deutsch and Heintze �
� examine constraint simplication for set�based analysis� They
discover two simplication algorithms� which are analogous to our empty and unreachable
constraint simplication algorithms� but do not present results on the cost or e�ectiveness
of these simplication algorithms�

F!ahndrich and Aiken �	� examine constraint simplication for an analysis based on a
more complex constraint language� They develop a number of heuristic algorithms for
constraint simplication� which they test on programs of up to 	��� lines� Their fastest
approach yields a factor of
 saving in both time and space� but is slow in absolute times
compared to other program analyses�

Pottier ���� studies an ML�style language with subtyping� Performing type inference
on this language produces subtype constraints that are similar to our constraints� Pot�
tier denes an entailment relation on constraints� and presents an incomplete algorithm
for deciding entailment� In addition� he proposes some ad hoc algorithms for simplifying
constraints� He does not report any results on the cost or e�ectiveness of these algorithms�

Trifonov and Smith ���� describe a subtyping relation between constrained types� which
are similar to our constraint systems� and they present an incomplete decision algorithm
for subtyping� They do not discuss constraint simplication� Eifrig� Smith and Trifonov ���
discuss constraint simplication in the context of type inference for objects� They present
three algorithms for simplifying constraint systems� two of which which are similar to the
empty and ��removal algorithms� and the third is a special case of the Hopcroft algorithm�
They do not present results on the cost or e�ectiveness of these algorithms�

Duesterwald et al ��� describe algorithms for simplifying data �ow equations� These
algorithms are similar to the ��removal and Hopcroft algorithms� Their approach only pre�
serves the greatest solution of the equation system and assumes that the control �ow graph
is already known� Hence it cannot be used to analyze programs in a componential manner

� C� Flanagan� M� Felleisen

or to analyze programs with advanced control��ow mechanisms such as rst�class functions
and virtual methods� The paper does not present results on the cost or e�ectiveness of
these algorithms�

 Future Work

All our constraint simplication algorithms preserve the observable behavior of constraint
systems� and thus do not e�ect the accuracy of the analysis� If we were willing to tolerate
a less accurate analysis� we could choose a compressed constraint system that does not pre�
serve the observable behavior of the original� but only entails that behavior� This approach
allows the use of much smaller constraint systems� and hence yields a faster analysis�

A promising approach for deriving such approximate constraint systems is to rely on
a programmer�provided signature describing the behavior of a polymorphic function or
module� and to derive the new constraint system from that signature� After checking the
entailment condition to verify that signature�based constraints correctly approximates the
behavior of the module� we could use those constraints in the remainder of the analysis�
Since the signature�based constraints are expected to be smaller than the derived ones� this
approach could signicantly reduce analysis times for large projects� We are investigating
this approach for developing a typed module language on top of Scheme�

A Proofs

A�� Subject Reduction Proof

Lemma ��� �Subject Reduction for ���� If � � M� � ��S� and M� �� M�� then
� �M� � ��S� such that S� j� S��

Proof� The proof proceeds by case analysis according to the relation M� ��M��

� Suppose M� ��M� via ��v�� Then�

M� � ���tx�N� V �

M� � N �x �� V �

The typing derivation on M� is of the form�

�
 fx � �xg � N � �N �SN
� � ��tx�N� � �t�St

�abs� � � V � �V �SV

� �M� � ��S�
�app�

where�

St � SN
 ft � �t� dom��t� � �x� �N � rng��t�g

S� � St
 SV
 f�V � dom��t�� rng��t� � �g

By the Substitution Lemma A���

� �M� � �N �S
�
� where SN
 SV
 f�V � �xg j� S��

Modular and Polymorphic Set�Based Analysis� Theory and Practice

By the Flow Lemma
�	�

� �M� � ��S� where S��
 f�N � �g j� S�

Since S� � SN
 SV � we have that S� j� SN
 SV � Also�

S� � f�V � dom��t�� dom��t� � �xg j� f�V � �xg
S� � f�N � rng��t�� rng��t� � �g j� f�N � �g

Hence S� j� S�� as required�

� Suppose M� ��M� via ��let�� Then�

M� � �let �x V � N�

M� � N �x �� V �

The typing derivation on M� is of the form�

� � V � �V �SV
� � SetVar�SV � n �FV �range����
 Label�

�
 fx � ��� ��V �SV �g � N � ��S

� �M� � ��S
�let�

By the Subject Reduction for let Lemma A���

� �M� � ��S

as required�

� Suppose M� ��M� via �unlabel�� Then�

M� � V l

M� � V

The typing derivation on M� is of the form�

� � V � ��SV

� � V l � ��SV
 f� � l� � � �g
�label�

Hence � � V � ��SV � and by the Flow Lemma
�	� � � V � ��S� where S� j� S��

Lemma A�� �Substitution If

�
 fx � �xg � N � �N �SN
� � V � �V �SV

then
� � N �x �� V � � �N �S where SN
 SV
 f�V � �xg j� S

� C� Flanagan� M� Felleisen

Proof� The proof proceeds by induction on the number of let�expressions in N � and on
the size of N �

�
 fx � �xg � N � �N �SN

If x �� FV �N �� then N �x �� V � � N � S � SN and the lemma trivially holds�
Otherwise we proceed by case analysis on the constraint derivation rule used in the last

step in the derivation�

� �var�� Since x � FV �N �� N � x� Hence SN � f�x � �Ng� N �x �� V � � V and this
case holds via the Flow Lemma
�	�

� �const�� This case cannot occur since x � FV �N ��

� �label�� This case is straightforward�

� �abs�� In this case N � ��ty�M�� and the constraint derivation is�

�
 fx � �x� y � �yg �M � �M �SM

�
 fx � �xg � ��
ty�M� � �N �SN

�abs�

where�
SN � SM
 ft � �N � dom��N � � �y � �M � rng��N�g

Since x � FV �N �� x �� y� Hence N �x �� V � � ��ty�M �x �� V ��� By induction�

�
 fx � �x� y � �yg �M �x �� V � � �M �S�M

where�
SM
 SV
 f�V � �xg j� S�M

Hence� via �abs��
� � N �x �� V � � �N �S

where�
S � S�M
 ft � �N � dom��N � � �y � �M � rng��N�g

Since SN
 SV
 f�V � �xg j� S� the lemma holds for this case�

� �app�� In this case M � �M� M��� and the constraint derivation is�

�
 fx � �xg �Mi � �i�Si

�
 fx � �xg � �M� M�� � �N �SN
�app�

where

SN � S�
 S�
 f�� � dom����� rng���� � �Ng

By induction�

� �Mi�x �� V � � �i�S
�
i

where

Si
 SV
 f�V � �xg j� S�i

Modular and Polymorphic Set�Based Analysis� Theory and Practice
�

Hence
� �M �x �� V � � �N �S

where
S � S��
 S

�
�
 f�� � dom����� rng���� � �Ng

Obviously� SN
 SV
 f�V � �xg j� S� and the lemma holds for this case�

� �let�� In this case N � �let �y W � M�� where W � Value� Hence�

�
 fx � �xg � �let �y W � M� � �N �SN

and therefore by the following Subject Reduction for let Lemma A���

�
 fx � �xg �M �y �� W � � �N �SN

By induction�
� �M �y �� W ��x �� V � � �N �S

where SN
 SV
 f�V � �xg j� S� Since�

M �y �� W ��x �� N � �M �x �� N ��y �� W �x �� N ��

we have that�
� �M �x �� V ��y �� W �x �� V �� � �N �S

and therefore� by the Subject Reduction for let Lemma A���

� � �let �y W �x �� V �� M �x �� V �� � �N �S

or� equivalently�
� � �let �y W � M��x �� V � � �N �S

and thus the lemma holds in this case�

� �inst�� This case cannot occur since x � FV �N � and x is bound to a set variable in
the derivation context�

The constraint derivation rules uses constraint schemas to accurately analyze polymor�
phic let�expressions� The constraint system for a let�expression is actually equivalent to the
constraint system for the corresponding �let �expanded expression

�� The following lemma
demonstrates this equivalence of constraint systems�

Lemma A�� �Subject Reduction for let

� � �let �x V � N� � �N �SN

if and only if
� � N �x �� V � � �N �SN

	This equivalence contrasts with the situation for the other reduction rules� where the constraint system
for the redex only entails the constraint system for the contractum� as shown in the Subject Reduction for
�� Lemma �	�	

	 C� Flanagan� M� Felleisen

Proof� The derivation � � �let �x V � N� � �N �SN holds if and only if�

� � V � �V �SV
� � SetVar�SV � n �FV �range����
 Label�

	 � ��� ��V �SV �
�
 fx � 	g � N � �N �SN

The proof of both directions proceeds by induction on the number of let�expressions in
N � and on the size of N �

If x �� FV �N �� then N �x �� V � � N and the lemma trivially holds�
Otherwise we proceed by case analysis on the constraint derivation rule used in the last

step in the derivation�
�
 fx � 	g � N � �N �SN

� �var�� This case cannot occur since x � FV �N � implies N � x� but x is bound to a
schema in the derivation context and so the rule �inst� applies�

� �const�� This case cannot occur since x � FV �N ��

� �abs�� In this case N � ��ty�M�� and the typing derivation is�

�
 fx � 	� y � �yg �M � �M �SM

�
 fx � 	g � ��ty�M� � �N �SN
�abs�

where�
SN � SM
 ft � �N � dom��N � � �y � �M � rng��N�g

Since x � FV �N �� x �� y� Hence N �x �� V � � ��ty�M �x �� V ��� By induction�

�
 fx � 	� y � �yg �M �x �� V � � �M �SM

Hence� via �abs��
� � N �x �� V � � �N �SN

The reasoning for the converse direction is similar�

� �app�� In this case M � �M� M��� and the typing derivation is�

�
 fx � 	g �Mi � �i�Si

�
 fx � 	g � �M� M�� � �N �SN
�app�

where�
SN � S�
 S�
 f�� � dom����� rng���� � �Ng

By induction�
� �Mi�x �� V � � �i�Si

Hence
� �M �x �� V � � �N �SN

as required� The reasoning for the converse direction is similar�

Modular and Polymorphic Set�Based Analysis� Theory and Practice
�

� �label�� This case is straightforward�

� �let�� In this case N � �let �y W � M�� where W � Value� Hence�

�
 fx � 	g � �let �y W � M� � �N �SN

Since M has fewer let�expressions than N � by induction�

�
 fx � 	g �M �y �� W � � �N �SN

Since M �y �� W � has fewer let�expressions than N � by induction�

� �M �y �� W ��x �� V � � �N �SN

Since�
M �y �� W ��x �� N � �M �x �� N ��y �� W �x �� N ��

we have that�
� �M �x �� V ��y �� W �x �� V �� � �N �SN

Since M �x �� V ��y �� W �x �� V �� is smaller than N � by induction�

� � �let �y W �x �� V �� M �x �� V �� � �N �SN

or� equivalently�
� � �let �y W � M��x �� V � � �N �SN

and thus the lemma holds in this case�

� �inst�� Since x � FV �N �� N � x� and the derivation on N must be�

�
 fx � 	g � x � �N �SN

where � is a substitution of fresh variables for � and SN � ��SV �
 f���V � � �Ng�

If D is the derivation concluding

� � V � �V �SV

then ��D� is an analogous derivation concluding

� � V � ���V �� ��SV �

Now N �x �� V � � V � and by the Flow Lemma
�	�

� � V � �N �SN

as required�

Lemma ��	 �Flow�� If � � M � ��S then for all � � SetVar� � � M � ��S� with
S
 f� � �g j� S ��

Proof� By induction on the derivation � �M � ��S and by case analysis on the last step
in this derivation�

� C� Flanagan� M� Felleisen

� �var�� In this case the derivation for M � x is�

��
 fx � �g � x � ��S

where S � f� � �g� For any � � SetVar � let S� � f� � �g� and then�

��
 fx � �g � x � ��S�

with S
 f� � �g j� S�� as required�

� �const�� This case follows by reasoning similar to the �var� case�

� �label�� The derivation for M � N l must conclude�

� � N � ��SN

� � N l � ��S
�label�

where S � SN
 f� � l� � � �g� Let S� � f� � l� � � �g� and then�

� � N � ��SN

� � N l � ��S�
�label�

with S
 f� � �g j� S��

� �abs�� The derivation for M � ��tx�N� must conclude�

�
 fx � ��g � N � ���SN

� � ��tx�N� � ��S
�abs�

where S � ft � �� dom��� � ��� �� � rng���g�

Let S � ft � �� dom��� � ��� �� � rng���g� and then�

�
 fx � ��g � N � ���SN

� � ��xN�����S
�abs�

with S
 f� � �g j� S��

� �app�� This case follows by reasoning similar to the �app� case�

� �let�� This case follows by induction�

� �abs�� The derivation for M � x must be�

�
 fx � ��� ��V �SV �g � x � ��S

where S � ��SV �
 f���V � � �g� and � is a substitution of set variables for ��

Let S� � ��SV �
 f���V � � �g� Then

�
 fx � ��� ��V �SV �g � x � ��S
�

with S
 f� � �g j� S��

Modular and Polymorphic Set�Based Analysis� Theory and Practice
�

A�� Proofs for Computing Set�Based Analysis

Lemma ��� �Least Solution of Simple Constraint Systems�� Every simple constraint
system has a solution that is least with respect to vs�

Proof� Let S be a simple constraint system� and dene � � usSoln�S�� using the pointwise
extension of us to set environments� We prove that � � Soln�S� by showing that � satises
any constraint C � S� The proof proceeds by case analysis on C�

� The case where C � �� � �� follows from Lemma A�
�

� Suppose C � �c � ��� Then c � const ������� for all �� � Soln�S�� therefore c �
const ������ and � j� C�

� Suppose C � �� � rng����� Then�

���� � us
���Soln
S�

�����

v us
���Soln
S�

���rng����

by Lemma A�
� since ����� v ���rng����

� rng

�
B� us
���Soln
S�

�����

�
CA by denition of us

� rng ������
� ��rng����

Hence � j� � � rng����

The remaining cases are similar� Hence the set of environments satisfying S has a least
element usf� j � j� Sg�

The following lemma describes some properties about how the two orderings v and vs

dened on D interact�

Lemma A�� Let I be an index set� and let xi� yi � D for all i � I�

� If xi v yi for all i � I� then�

us
i�I

xi v us
i�I

yi

F
s

i�I

xi v
F
s

i�I

yi

� If xi vs yi for all i � I� then�

u
i�I

xi vs u
i�I

yi

F
i�I

xi vs

F
i�I

yi

�� C� Flanagan� M� Felleisen

Proof� The proof is based on the interpretation of D as the set of total functions

f � fdom� rngg� �� P�Const�

and proceeds by showing the appropriate relation holds between the sets of constant ele�
ments at any path in fdom� rngg��

To prove the rst relation� assume xi v yi for all i � I � and let p be a path in fdom� rngg��
If p is monotonic� then p�xi� v p�yi�� Hence�

p

�
B�us
i�I

xi

�
CA � us

i�I

p�xi�

v us
i�I

p�yi�

� p

�
B�us
i�I

yi

�
CA

Conversely� if p is anti�monotonic� then p�xi� w p�yi�� Hence�

p

�
B�us
i�I

xi

�
CA � us

i�I

p�xi�

w us
i�I

p�yi�

� p

�
B�us
i�I

yi

�
CA

Hence
us
i�I

xi v us
i�I

yi

as required�

Theorem ���� If P � �� and � � P � ��S is a most general constraint derivation then�

sba�P ��l� � fb j S �� b � lg

 f��tx�M� j S �� t � lg

Proof�

S �� c � � �� S j� c � � by lemma A��
�� �� j� S� � j� c � �

�� �� � Soln�S�� c � const������
�� c �

T
�fconst������ j � � Soln�S�g�

�� c � const�u�f���� j � � Soln�S�g��
�� c � const�u�f� j � � Soln�S�g�����
�� c � const�LeastSoln�S�����

The correctness of this theorem then follows from denition
����

Modular and Polymorphic Set�Based Analysis� Theory and Practice ��

Lemma A�� �Soundness and Completeness of � For any simple constraint system
S�

S j� c � � �� S �� c � �

Proof� The soundness of � is straightforward� To prove the completeness of �� assume
S j� c � �� Let � be any xpoint of the functional F dened as�

F � SetEnv �� SetEnv
F ������ � h fc j S �� c � �g�F

f���� j S �� � �� �� � � dom���g�F
f���� j S �� � � rng���g i

where the notation S �� � �� � means there exists some ��� � � � � �n with � � �� and �n � �

such that�

S �� f�i � �i��� j � � i ng

The asymmetry between the denition of the domain and range components F ������
arises from the rules �� These rules propagate set variables denoting the result of functions
in � forward along data��ow paths into constraints of the form � � rng���� However� the
same propagation does not occur for set variables denoting argument values to functions
in �� and hence this propagation in performed in the denition of F ������ by nding all �
such that � � dom��� and � �� ��

If � j� S� then � j� c � � and hence S �� c � � by the denition of �� as required� Thus
it just remains to prove that � j� S� We proceed by case analysis on constraints C � S�

� Suppose C � �� � ��� We need to show that the correct ordering holds between the
corresponding components of ���� and ����� For the rst component� by �s��� which
is the rst rule in ��

fc j S �� c � �g fc j S �� c � �g
��� const ������ v const ������

For the second �domain� component� by �s���

�S �� � �� �� � �S �� � �� ��
��� f���� j S �� � �� �� � � dom���g f���� j S �� � �� �� � � dom���g
���
F
f���� j S �� � �� �� � � dom���g v

F
f���� j S �� � �� �� � � dom���g

��� dom ������ v dom ������

For the third �range� component� by �s���

�S �� � � rng���� � �S �� � � rng����
��� f���� j S �� � � rng���g f���� j S �� � � rng���g
���
F
f���� j S �� � � rng���g v

F
f���� j S �� � � rng���g

��� rng ������ v rng ������

Hence ���� v �����

�� C� Flanagan� M� Felleisen

� Suppose C � �c � ���

���� w hfc j S �� c � �g����i
w hfcg����i
� ��c�

� Suppose C � �� � rng�����

f����g f���� j S �� � � rng���g
��� ���� v

F
f���� j S �� � � rng���g

� ��rng����

� Suppose C � �rng��� � ��� Then

���� w ���� �S �� � � �
��� ���� w

F
f���� j S �� � � �g

w
F
f���� j S �� � � rng���g by �s��

� ��rng����

� Suppose C � �� � dom����� Then

���� v
F
f���� j S �� � � dom���g

v
F
f���� j S �� � �� �� � � dom���g

� ��dom����

� Suppose S � �dom��� � ���

��dom���� �
F
f���� j S �� � �� �� � � dom���g by �s��

v
F
sf���� j S �� dom��� � �� � � dom���g

v
F
sf���� j S �� � � �g

v ����

Hence � j� S� and the lemma holds�

A�� Proofs for Conditions for Constraint Simpli	cation

The following lemma demonstrates that the rule ���� is admissible in that any derivation in
the extended constraint derivation system produces information equivalent to that produced
by the original analysis�

Lemma ��� �Admissibility of ������ If � ��� P � ��S is a most general constraint derivation
then�

sba�P ��l� � const�LeastSoln�S��l��

Proof� This lemma follows from the induction hypothesis�

Modular and Polymorphic Set�Based Analysis� Theory and Practice �

If � ��� M � ��S�� and E � FV �range����
 f�g
 Label� then there exists S�
such that � �M � ��S� and S� ��E S��

We prove this hypothesis by induction on the derivation � ��� M � ��S�� and by case
analysis on the last step in the derivation�

� If the last step in the derivation � ��� M � ��S� uses a derivation rule other that �����
then the lemma holds based on the induction hypothesis�

� Suppose � ��� M � ��S� via ���� because � ��� M � ��S� and S� ��E S�� By induction�
� � M � ��S� where S� ��E S�� Since ��E is an equivalence relation� S� ��E S�� and
hence the lemma holds�

A�� Proofs for Proof Theory of Observable Equivalence

The following proofs require a number of auxiliary denitions�

De�nition A��� �Paths

� A path p� q � Path is a sequence of the constructors dom and rng� We use � to denote
the empty sequence� and p�q to denote the concatenation of the paths p and q�

� The arity of a path p� denoted �p� is the number of dom�s in p� taken modulo �� If �p
is �� we say p is monotonic� otherwise p is anti�monotonic�

� For a path p� the notation p��� denotes the set expression � enclosed in the dom�s and
rng�s of p� i�e�� if p � rng�dom� then p��� � rng�dom�����

� The relations �� and �� denote � and �� respectively�

� The relations v� and v� denote v and w� respectively�

� The relations w� and w� denote w and v� respectively�

� The relations � and � denote and �� respectively�

� The operations
F
� and

F
� denote

F
and u� respectively�

� For a path p and a domain element X � D� the notation p�X� extracts the component
of X at the position p� This notation is formalized as follows�

��X� � X

�rng�p��X� � rng �p�X��
�dom�p��X� � dom �p�X��

�� C� Flanagan� M� Felleisen

� For a path p and a domain element X � D� the notation X"p is dened as follows�

�"� � D � path �� D
X"� � X

X"�dom�p� � h�� X��si"p
X"�rng�p� � h���s� Xi"p

Lemma ��� �Soundness and Completeness of ��� For a compound constraint system S

and a compound constraint C�

S �� C �� S j� C

Proof� The soundness of � is straightforward� To demonstrate the completeness of �� we
assume S j� C and prove that S �� C by case analysis on C�

� Suppose C � �c �
�� Dene � by�

�p � Path � �� � SetVar � const�p������� � fc j S �� c � p���g

We prove � j� S by a case analysis showing that � satises every constraint C� � S�

� Suppose C� � �c � q����� Then� by the denition of �� c � const���q������ and
hence � j� c � q����

� Suppose C� � �p��� � q����� We need to show that ��p���� v ��q����� We prove
this inequality by showing that for any path r�

const�r���p�������r const�r���q������

If r is monotonic� then�

const�r���p������
� const�r�p��������
� fc j S �� c � r�p����g
 fc j S �� c � r�q����g

via �trans��� since �p��� � q���� � S
and hence S �� r�p���� � r�q���� via �compat�

� const�r�q��������
� const�r���q������

The case where r is anti�monotonic follows by a similar argument�

Hence � j� S� But since S j� c �
� � j� c �
� Since
 � p��� for some p and ��
then we have that�

c � const���p�����
� const�p�������
� fc j S �� c � p���g

Hence� S �� c �
� as required�

Modular and Polymorphic Set�Based Analysis� Theory and Practice ��

� Suppose C � �
� �
��� Let c be a constant not used in S or C� let S
� � S
fc �
�g�

and let � � LeastSoln�S��� Since � j� C� we have that�

� j� fc �
��
� �
�g

Hence � j� c �
� and by the rst part of this proof� S
� �� c �
��

We now show that for any
�� S� �� c �
� if and only if S ��
� �
�� We prove this
hypothesis by induction on the derivation of S� �� c �
��

� Suppose S� �� c �
� because �c �
�� � S�� Then
� �
�� and by the rule
�re	ex�� S ��
� �
�� as required�

� If �c �
�� �� S�� then S� �� c �
� must be derived via the rule �trans� � based
on the antecedents S� �� fc �
���
�� �
�g� By induction� S ��
� �
��� Hence
S ��
� �
� via �trans��� as required�

Since S� �� c �
�� the above induction hypothesis implies that S ��
� �
�� as
required�

Lemma ��� For a compound constraint system S� S ��E ��S� jE�

Proof� We need to show that S ��E ��S� jE� i�e��

Soln�S� jE � Soln���S� jE� jE

Since the rules � are sound�

Soln�S� jE � Soln���S�� jE
 Soln���S� jE� jE

because the solution space increases as the constraints ��S� are restricted to E�

To show the containment in the other direction� assume � j� ��S� jE� Without loss of
generality� assume ���� � �s for all � �� E� We extend � to a super�environment �� that
satises S as follows�

�p � Path � �� � SetVar � const�p�������� �
�
fconst������ j S �� � � p���g

We show that �� j� S by case analysis on the constraints C � S�

� Suppose C � �c � q����� Then

const�q���� �
S
fconst������ j S �� � � q���g

� fcg

as required�

�	 C� Flanagan� M� Felleisen

� Suppose C � �p��� � q����� Then for any path r� S �� r�p���� ��r r�q����� Hence�

S
fconst������ j S �� � � r�p����g

�r

S
fconst������ j S �� � � r�q����g

Therefore�
const����r�p�������r const��

��r�q������

Hence�

���p���� v ���q����

And hence �� j� C� as required�

Thus �� j� S� It remains to show that � and �� agree on E� Let � � E and r � Path� Then�

const����r����� �
S
fconst������ j S �� � � r���g

by denition of ��

�
S
fconst������ j S �� � � r���� SetVar��� Eg

since ���� � �s for � �� E

and hence ���� � �s for SetVar��� � E

�
S
fconst������ j � � r��� � ��S� jEg

� const���r�����

since �r��� � r���� � ��S� jE by �re	ex� and �compat�� and for �� � r���� � ��S� jE�
const������ const���r������ Thus � and �� agree on E� and the lemma holds�

Lemma A�	 For any p � Path and X � D� p�X"p� � X�

Proof� By induction on the length of p� and by case analysis on the top constructor in p�

Lemma ��� �Equivalence of Proof Systems�� For a simple constraint system S�

��S� � ���S�

Proof� We show that ���S� ��S� by induction on the derivation of C � ���S�� For
the base case� if C � ���S� because C � S� then C � ��S�� Otherwise we proceed by case
analysis on the last rule used in the derivation of C � ���S��

� �compose��� In this case C � �� � rng�
�� is derived from the antecedents f� �
rng���� � �
g � ���S�� By induction� these antecedents are also in ��S�� and
hence the following derivation shows that C � ��S��

� � rng���
� �

rng��� � rng�
�
�compat�

� � rng�
�
�trans� �

Modular and Polymorphic Set�Based Analysis� Theory and Practice ��

� �compose��� �compose��� �compose��� These cases follow by similar reasoning�

� �re	ex�� �trans��� �compat�� These rules are either equivalent to or subsumed by
corresponding rules in ��

� �s��� �s��� �s��� For these cases C � ��S� via �trans� ��

� �s��� �s��� These rules are special cases of the rules �compose�� and �compose���
respectively�

There are no other possibilities for the derivation C � ���S�n��S�� and hence ���S�
��S��

We prove the converse inclusion ��S� ���S� by induction on the derivation of
C � ��S�� Again� for the base case� if C � ��S� because C � S� then C � ���S��
Otherwise we proceed by case analysis on the last rule used in the derivation of C � ��S��

� �re	ex�� �compat�� These rules are also in � and� by induction� the antecedents are
in ���S�� hence C � ���S��

� �trans� �� The last step in the derivation must be�

�� � � � � ��

�� � ��
�trans� �

We proceed by case analysis on � to show that ��� � ��� � ���S��

� The case � � c is impossible� since ��� � c� is not a compound constraint�

� If � � SetVar � then ��� � ��� � ���S� via �trans���

� Suppose � � rng�� ��� If � � � SetVar then ��� � ��� � ���S� via �s���

Otherwise �� � rng�� �� and rng�� �� � �� are not simple constraints� and we
proceed by considering the derivation of these constraints in ��S�� The last step
in the derivation of �� � rng�� �� is either via�

�� � rng���� �� � � �

�� � rng�� ��
�compose��

where �� � ��� or�
� �� � � �

rng�� ��� � rng�� ��
�compat�

where �� � rng�� ���� Similarly� the last step in the derivation of rng��
�� � �� is

either via�
� � � �� rng���� � ��

rng�� �� � ��
�compose��

where �� � ��� or�
� � � � ��

rng�� �� � rng�� ���
�compat�

where �� � rng�� ���� We consider the four possible combinations for the deriva�
tions of �� � rng�� �� and rng�� �� � ���

�� C� Flanagan� M� Felleisen

� Suppose �� � rng�� �� is inferred via �compose�� and rng�� �� � �� is inferred
via �compose��� Then f�� � � �� � � � ��g ��S�� and therefore ��� � ��� �
��S� via �trans��� By induction� ��� � ��� � ���S�� and the following
derivation then shows that ��� � ��� � ���S��

�� � rng���� �� � ��

�� � rng����
�s�� rng���� � ��

�� � ��
�s��

� Suppose �� � rng�� �� is inferred via �compose�� and rng�� �� � �� is inferred
via �compat�� Then f�� � � �� � � � � ��g ��S�� and therefore ��� � � ��� �
��S� via �trans��� By induction� ��� � � ��� � ���S�� and the following
derivation shows that ��� � ��� � ���S��

�� � rng���� �� � � ��

�� � rng�� ���
�compose��

� Suppose �� � rng�� �� is inferred via �compat� and rng�� �� � �� is inferred
via �compose��� This case holds by similar reasoning to the previous case�

� Suppose �� � rng�� �� is inferred via �compat� and rng�� �� � �� is inferred via
�compat�� Then f� �� � � �� � � � � ��g ��S�� and therefore ��

�
� � � ��� � ��S�

via �trans��� By induction� ��
�
� � � ��� � ���S�� and therefore a �compat��

inference shows that ��� � ��� � ���S��

There are no other possibilities for the derivations of �� � rng�� �� and rng�� �� �
���

� Suppose � � dom�� ��� This case holds by similar reasoning to the previous case
where � � rng�� ���

There are no other possibilities for � �

There are no other possibilities for the derivation of C � ��S�� and hence ��S� ���S��

Lemma ��� ���S� jE �� ��S� jE�

Proof� Since the rule �compat� does not create any or � opportunities� ���S� �
compat� ��S��� and hence we just need to show that�

compat� ��S�� jE �� ��S� jE

Now�
compat� ��S�� � ��S�

��� compat� ��S�� jE � ��S� jE
��� compat� ��S�� jE j� ��S� jE

To prove the converse direction� let � j� ��S� jE � If � �j� compat� ��S�� jE� then let C be
the constraint in compat� ��S�� jE with the smallest derivation such that � �j� C� Then the
last step in the derivation ofCmust be via �compat�� LetC� be the antecedent of this rule in

Modular and Polymorphic Set�Based Analysis� Theory and Practice ��

compat� ��S��� Then SetVar�C�� � SetVar�C� E� and hence C� � compat� ��S�� jE
with a smaller derivation� Therefore � j� C�� and hence since �compat� is sound� � j� C�
Thus � �j� compat� ��S�� jE � as required�

Theorem ��� �Soundness and Completeness of �E	� and �E
	��

�� S� �
E
	� S� if and only if S� j�E S��

�� S� �
E
	� S� if and only if S� ��E S��

�� Suppose S� j�E S�� Then

S� j�E ��S�� by the soundness of �
��� S� j�E ��S�� jE
��� �C � ��S�� jE� S� j� C
��� �C � ��S�� jE� S� �� C by Lemma ���
��� �C � ��S�� jE� S� �� C by Lemma ���
��� �C � ��S�� jE� S� �	� C by Lemma ���
��� �C � ��S�� jE� C � ���S�� jE
��� ���S�� jE � ��S�� jE
��� S� �E	� S�

Conversely� suppose S� �
E
	� S�� Then

���S�� jE � ��S�� jE
��� Soln����S�� jE� Soln� ��S�� jE�
��� Soln����S�� jE� jE Soln� ��S�� jE� jE
��� Soln�S�� jE Soln�S�� jE
by Lemmas ��
� ��� and ���� since Soln�Si� jE � Soln� ��Si� jE� jE

��� S� j�E S�

�� Follows from part ��

A�� Proofs for Deciding Observable Equivalence

We repeat denition ��� here� to avoid having to refer back to the original denition earlier
in the text�

De�nition ��� �Regular Grammar Gr�S� E� Let S be a simple constraint system and E
a collection of set variables� The regular grammar Gr�S� E� consists of the non�terminals
f�L� �U j � � SetVar�S�g and the following productions�

�U �� �� �L �� � � � � E

�U �� �U � �L �� �L � �� � �� � S
�U �� dom��L� � �� � dom���� � S
�U �� rng��U� � �� � rng���� � S
�L �� dom��U� � �dom��� � �� � S
�L �� rng��L� � �rng��� � �� � S

�� C� Flanagan� M� Felleisen

Lemma ��� Let G � Gr�S� E�� Then�

LG��L� � f
 j �
 � �� � �S� and SetVar�
� Eg
LG��U � � f
 j �� �
� � �S� and SetVar�
� Eg

Proof� We prove the left�to�right inclusion by induction on the derivation of the constraint
C � ��S�� and by case analysis on the last step in that derivation�

� Suppose C � ��S� because C � S� We proceed by case analysis on C�

� Suppose C � �� � ��� Then � � E� so �L �� �L and �L �� � are productions in
the grammar� Hence � � LG��L�� Similarly� � � LG��U��

The remaining cases for C follow by similar reasoning�

� Suppose C � �� � rng�
�� is inferred via �compose�� from the antecedents �� �
rng���� and �� �
�� Then �U �� rng��U�� and by induction �U ���
� Hence
�U �� rng�
�� as required�

The remaining cases follow by similar reasoning�

We prove the right�to�left inclusion by induction on the derivation �L ���
 or �U ���
�
and by case analysis on the last step in the derivation� The reasoning for each case is
straightforward�

We repeat denition ���� here� to avoid having to refer back to the original denition
earlier in the text�

De�nition ���� �Regular Tree Grammar Gt�S� E� The regular tree grammar Gt�S� E�
extends the grammarGr�S� E� with the root non�terminal R and the additional productions�

R �� ��L � �U � � � � SetVar�S�
R �� �c � �U � � �c � �� � S

where �� � �� is viewed as a binary constructor�

Lemma ���� Let G � Gt�S� E�� Then �S� jE � LG�R��

Proof� We prove the left�to�right inclusion by case analysis on C � �S� jE�

� Suppose C � �� �
�� Then by Lemma ���� �U ��
�
G
� Since SetVar�C� E� � � E�

and hence �L ��G �� Thus R ��G ��L � �U � ��
�
G �� �
�� and hence �� �
� � LG�R��

� The case where C � �
 � �� follows by similar reasoning�

Modular and Polymorphic Set�Based Analysis� Theory and Practice ��

� Suppose C � �c �
�� If C � S� then
 � �� � � E� and

R ��G �c � �U � ��G �c � ��

as required�

If C �� S� then an examination of the inference rules in shows that C can only be
inferred via �trans��� based on the antecedents �c � �� and �� �
�� By Lemma ����
�L ���

G c and �U ���
G
� Hence R �� �c �
�� and hence �c �
� � LG�R�� as required�

� Otherwise C � �
� �
��� where
��
� �� SetVar � An examination of the inference
rules in shows that C can only be inferred via �trans��� based on the antecedents
�
� � �� and �� �
��� By Lemma ���� �L ���

G
� and �U ���
G
�� Hence R �� �
� �

��� and hence �
� �
�� � LG�R�� as required�

We prove the right�to�left inclusion by case analysis on C � LG�R��

� Suppose C � �
� �
��� Then for some �� �L ���
G
� and �U ���

G
�� By Lemma ����
f
� � �� � �
�g ��S� and SetVar�
i� E� By Lemma ����� f
� � �� � �

�g �S�� Hence �
� �
�� � �S� jE� as required�

� Otherwise C � �c �
�� Then for some �� �c � �� � S and �U ���
G
� By Lemma ����

f� �
g ��S� and SetVar�
� E� By Lemma ����� f� �
g �S�� Hence
�c �
� � �S� jE � as required�

Lemma ���� �Staging For any simple constraint system S�

���S� � ����S�� � compat� ���S���

Proof� The equality ����S�� � compat� ���S��� holds since �compat� does not create
any or � opportunities�

The inclusion ���S� � ����S�� obviously holds� To prove the inclusion ���S�
����S�� holds� we suppose S �	� C� and prove ��S� �	 C by induction on the derivation
S �	� C� and by case analysis on the last step in this derivation�

� Suppose S �	� C via some rule in �� By induction� the antecedents of this rule are
in ����S��� and hence C is also in ����S���

� Suppose S �	� C via one of the rules �s��� �s�� or �s��� These rules are subsumed by
�trans��� �compose�� and �compose��� and hence this case is subsumed by the previous
case�

� Suppose S �	� C via �s��� based on the antecedents f� � rng���� rng��� � �g� By
induction� these antecedents are in ����S��� An examination of � shows that � can
only infer �� � rng���� if there exists ��� �� such that ��S� contains the constraints�

� �� �� �� � rng���� �� �� �

�� C� Flanagan� M� Felleisen

The Entailment Algorithm

In the following� P�n denotes the 	nite power�set constructor�
Let

G� � Gr�S�� E�
G� � Gt�S�� E�

Li � f�L j � � Vars�Si�g
Ui � f�U j � � Vars�Si�g

Assume G� and G� are pre�processed to remove 	�transitions� For C � P�n�L� � U��� de	ne

L�C� � f��L � �U � j h�L� �U i � C� �L �	G�
�L� �U �	G�

�Ug

The relationRS��S� �
�
�
�
� is de	ned as the largest relation on L��U��P�n�L��U���P�n�L��U��
such that if

RS��S� ��L� �U � C�D� �L �	G�
X �U �	G�

Y

then one of the following cases hold

�� L��X � Y �� � L�C �D��

�� X � rng���

L�� Y � rng���

U � and RS��S� ��
�

L� �
�

U � C�D
��� where

D� � fh��L�

�

Ui j h�L�
U i � C �D� �L �	G�
rng���L��
U �	G�

rng�
�U �g

�� X � dom���

U �� Y � dom���

L� and RS��S� ��
�

L� �
�

U � C�D
��� where

D� � fh
�L� �
�

Ui j h�L�
U i � C �D� �L �	G�
dom���U ��
U �	G�

dom�
�L�g

The computable entailment relation S� �Ealg S� holds if and only if �� � Vars�S��

RS��S� ��L� �U � fh�L� �U i j � � Vars�S��g� ��

Figure �
� The computable entailment relation �Ealg

Similarly� � can only infer �rng��� � �� if there exists ���� �� such that ��S� contains
the constraints�

� �� ��� rng����� � �� �� �� �

Hence�
S �� �� � rng����� via multiple applications of �s��
S �� �� � �� via �s��
��S� �	 � � � via multiple applications of �trans��

� The case for �s�� holds by similar reasoning�

A�� Correctness of the Entailment Algorithm

Theorem ���� �Correctness of the Entailment Algorithm�� S� �E	 S� if and only if
S� �

E
alg S��

Modular and Polymorphic Set�Based Analysis� Theory and Practice �

Proof� The denitions of the computable entailment relation and the relation R are shown
in gure �
� We prove this theorem based on the following invariant concerning the relation
RS��S� ��� �� �� ���

RS��S� ��L� �U � C�D� �� L���L � �U �� compat�L�C��
 L�D�

Assume this relation holds� and that S� �
E
	 S�� Then �S�� jE compat� �S��� jE� By

lemma ����� �Si� jE � LGi
�R�� and hence�

LG�
�R� compat�LG�

�R��

Thus� for all R ��G�
��L � �U ��

LG�
���L � �U �� compat�LG�

�R��
��� LG�

���L � �U �� compat�LG�
�fh�L� �Ui j � � SetVar�S��g��

Hence�
RS��S� ��L� �U � fh�L� �Ui j � � SetVar�S��g� ��

Also� from LG�
�R� compat�LG�

�R��� we have that for all R ��G�
�c � �U ��

LG�
��c � �U �� compat�LG�

�R��
��� LG�

��c � �U �� LG�
�R�

��� LG�
��U� LG�

�f�U j R ��G ��c � �U �g�

Hence S� �
E
alg S� holds� The proof of the converse implication that S� �

E
alg S� implies

S� �
E
	 S� proceeds by a similar argument�
It remains to show that the invariant concerning R holds� To prove the left�to�right

direction� suppose RS��S� ��L� �U � C�D� and�

�L ��G�
X ���

G�
�L

�U ��G�
Y ���

G�
�U

We prove by induction on �L that

L���L � �U �� compat�L�C��
 L�D�

One of three cases in the denition of R must hold�

�� L���L � �U �� L�C
D�� This case is trivial�

�� In this case�

X � rng���L� ��L ��
�
G�

� �L �L � rng�� �L�
Y � rng���U� ��U ��

�
G�

� �U �U � rng�� �U�

and RS��S� ��
�
L� �

�
U � C�D

��� where

D� � fh��L� �
�
Ui j h�L� �Ui � C
D� �L ��G�

rng���L�� �U ��G�
rng���U�g

By induction� �� �L � � �U � � compat�L�C��
 L�D���

�� C� Flanagan� M� Felleisen

� If �� �L � � �U � � L�D�� then there exists h��L� �Ui � D such that ��L ��
�
G�

� �L and
��U ���

G�
� �U � By the denition of D

�� there exists h�L� �Ui � C
 D such that
�L ���

G�
�L and �U ���

G�
�U � Therefore ��L � �U � � L�C
D�� as required�

� If �� �L � � �U � � compat�L�C�� then ��L � �U � � compat�L�C��� as required�

� The proof for the third case of the denition of RS��S� ��� �� �� �� is similar to that for the
second case�

To prove the right�to�left direction� suppose�

L���L � �U �� compat�L�C��
 L�D�

and that the relation RS��S� ��L� �U � C�D� does not hold� Hence there exists X� Y such that
�L ��G�

X and �U ��G�
Y and none of the three conditions in gure �
 hold� Furthermore�

since R is the largest relation satisfying the conditions in gure �
� there exists a nite
proof that none of the three conditions hold�

Of all possible such counter�examples h�L� �U � X� Y� C�Di� we pick the one with the
smallest proof that the relation RS��S� ��L� �U � C�D� does not hold� and proceed by case
analysis on the last step in this proof�

� Suppose RS��S� ��L� �U � C�D� does not hold because of condition one� Then L��X �
Y �� � L�C
D�� which contradicts the assumptions above�

� SupposeRS��S� ��L� �U � C�D� does not hold because of condition �� ThenX � rng���L�
and Y � rng���U�� Consider any pair of set expressions �L and �U such that �

�
L ��

�
G�

�L and ��U ���
G�

�U � We consider the two possibilities for �rng��L� � rng��U�� �
compat�L�C��
 L�D� separately�

� If �rng��L� � rng��U�� � L�C�
 L�D�� then there exists h�L� �Ui � C
D such
that�

�L ��G�
rng���L� ��

�
G�

rng��L�
�U ��G�

rng���U� ��
�
G�

rng��U�

Hence ��L � �U � � L�D��� where�

D� � fh��L� �
�
Ui j h�L� �Ui � C
D� �L ��G�

rng���L�� �U ��G�
rng���U�g

� Otherwise �rng��L� � rng��U�� � compat�L�C�� n L�C�� and hence ��L � �U � �
compat�L�C���

Hence
L����L � ��U �� compat�L�C��
 L�D��

The proof that RS��S� ��L� �U � C�D� does not hold cannot rely on a smaller proof that
RS��S� ��

�
L� �

�
U � C�D

�� does not hold� since that would yield a counter�example with a
smaller proof�

� The case where RS��S� ��L� �U � C�D� does not hold because of condition
 is also
impossible via similar reasoning�

Thus the invariant on R is true� and thus the lemma holds�

Modular and Polymorphic Set�Based Analysis� Theory and Practice ��

A�
 Correctness of the Hopcroft Algorithm

Theorem ���� �Correctness of the Hopcroft Algorithm�� Let S be a simple constraint
system with external variables E
 let � be an equivalence relation on the set variables in a
constraint system S satisfying conditions �a� to �e� from �gure
 let the substitution f map
each set variable to a representation element of its equivalence class
 and let S � � f�S�� i�e��
S� denotes the constraint system S with set variables merged according to their equivalence
class� Then S ��E S

��

Proof� Let � be a solution of S� Dene �� by�

����� �
F

����

�����

Obviously �� �� agree on E by condition �a� on �� We claim that �� j� C for all C � S by
case analysis on C�

� Suppose C � �� � rng����� Then for all �� such that � � �� there exists �� such that
� � �� and�

����� v ��rng�����

Hence for all � � ���
����� v

F
����

��rng�����

and therefore� F
����

����� v
F

����

��rng�����

Hence�
����� �

F
����

�����

v
F

����

��rng�����

� rng

�
B� F
����

�����

�
CA

� rng �������
� ���rng����

and thus �� j� C� as required�

� The cases where C � �� � �� and C � �rng��� � �� follow by similar reasoning�

� Suppose C � �� � dom����� Then �� � �� �� � �� such that�

����� v ��dom�����

Hence �� � ���
����� v u

����

��dom�����

�	 C� Flanagan� M� Felleisen

and therefore� F
����

����� v u
����

��dom�����

Hence�
����� �

F
����

�����

v u
����

��dom�����

� dom

�
B� F
����

�����

�
CA

� dom �������
� ���dom����

� Suppose C � �dom��� � ��� Then�

���dom���� � dom �������

� dom

�
B� F
����

�����

�
CA

� u
����

��dom �����

v ��dom ����
v ����
v

F
����

�����

� �����

� Suppose C � �c � ��� Then

����� �
F

����

�����

w ����
� c

B Notations

Symbol Meaning Section Page

M � � Terms � �
V � Value Values � �
x � Vars Variables � �
b � BasicConst Basic constants � �

Modular and Polymorphic Set�Based Analysis� Theory and Practice ��

t � Tag Function tags � �
l � Label Labels � �

�v� �let � unlabel Reduction rules
���� �
E Evaluation contexts
���� �
���� ���� Standard reduction relation
���� �
eval Evaluator
���� �

� � SetExp Set expressions
�� �
�� �� � � �� SetVar Set variables
�� �
c � Const Constants
�� �
dom� rng Type expression constructors
�� �
C Constraints
�� �
S Constraint systems
�� �
S jE Restriction of a constraint system
�� �

D�v�����t�u Domain� ordering� elements and operations
�
�� 	
P Power set constructor
�� �
in Values described by constants
�
�� 	
const� dom � rng Extract components of element of D

� � SetEnv Set environment
�
�� �
Soln�S� Solution space
�
�� �
j�� j�E Satises� or entails
�
�� �
Soln�S� jE Restriction
�
�� �
��E Observable equivalence
�� �

� Constraint derivation rules
�� �
� Set variable context
�� �
	 Constraint schema
�� �

vs��s��s�ts�us Alternative ordering on domain
�� �
sba Analysis function
��� ��
LeastSoln Least Solution
�	 ��
� � fs�� � � � � sng Inference rules
�	�� �

� Deduction
�	�� �

E External variables ��� ��
FV �rng���� Free variables in �
�� �
�� Inference rules on constraint systems ��� ��
G Grammar ��� ��
Gr Function producing regular grammar ��� ��
�L� �U Grammar non�terminals ��� ��
LG�X� Language for X in G ��� ��
Gt Function producing RTG ���� ��

�� C� Flanagan� M� Felleisen

R Root non�terminal ���� ��

p� q Paths A�� �

� Arity function A�� �

�i � or � A�� �

sel Either dom or rng A�� �

C Converts compound to simple constraints A�� �

�"� Injection function A�� �

�� Transitive closure of � A�� ��

References

��� Aho� A�� J� Hopcroft and J� Ullman� The Design and Analysis of Computer
Algorithms� Addison�Wesley� Reading� Mass�� �����

��� Aiken� A�� Wimmers� E� L�� and Lakshman� T� K� Soft typing with conditional
types� In Proceedings of the ACM Sigplan Conference on Principles of Programming
Languages ������� pp� �	
#��
�

�
� Cousot� P�� and Cousot� R� Formal language� grammar� and set�constraint�based
program analysis by abstract interpretation� In Proceedings of the �� Conference on
Functional Programming and Computer Architecture ������� pp� ���#����

��� Duesterwald� E�� Gupta� R�� and Soffa� M� L� Reducing the cost of data �ow
analysis by congruence partitioning� In International Conference on Compiler Con�
struction �April ������

��� Eifrig� J�� Smith� S�� and Trifonov� V� Sound polymorphic type inference for
objects� In Conference on Object�Oriented Programming Systems� Languages� and
Applications �������

�	� F�ahndrich� M�� and Aiken� A� Making set�constraint based program analyses scale�
Technical Report UCB$CSD��	����� University of California at Berkeley� ���	�

��� Flanagan� C�� and Felleisen� M� Set�based analysis for full Scheme and its use in
soft�typing� Technical Report TR������� Rice University� �����

��� Flanagan� C�� Flatt� M�� Krishnamurthi� S�� Weirich� S�� and Felleisen� M�

Finding bugs in the web of program invariants� In Proceedings of the ACM Conference
on Programming Language Design and Implementation ����	�� pp� �
#
��

��� Flatt� M� MzScheme Reference Manual� Rice University�

���� Heintze� N� Set�based analysis of ML programs� In Proceedings of the ACM Confer�
ence on Lisp and Functional Programming ������� pp�
�	#
���

���� Hindley� R� J�� and Seldin� J� P� Introduction to Combinators and ��Calculus�
Cambridge University Press� ���	�

Modular and Polymorphic Set�Based Analysis� Theory and Practice ��

���� Hopcroft� J� E� An n log n algorithm for minimizing the states of a nite automaton�
The Theory of Machines and Computations ������� ���#��	�

��
� Jagannathan� S�� and Wright� A� K� E�ective �ow analysis for avoiding run�time
checks� In Proc� �nd International Static Analysis Symposium� LNCS �� �September
������ Springer�Verlag� pp� ���#����

���� Jones� N�� and Muchnick� S� A �exible approach to interprocedural data �ow
analysis and programs with recursive data structures� In Conference Record of the
Ninth Annual ACM Symposium on Principles of Programming Languages �January
������ pp� 		#���

���� Palsberg� J� Closure analysis in constraint form� Transactions on Programming
Languages and Systems ��� � ������� ��#	��

��	� Palsberg� J�� and O�Keefe� P� A type system equivalent to �ow analysis� In Pro�
ceedings of the ACM SIGPLAN �� Conference on Principles of Programming Lan�
guages ������� pp�
	�#
���

���� Pottier� F� Simplifying subtyping constraints� In Proceedings of the �� ACM
SIGPLAN International Conference on Functional Programming ����	�� pp� ���#�

�

���� Reynolds� J� Automatic computation of data set dentions� Information Process�
ing��� ���	��� ��	#�	��

���� Tofte� M� Type inference for polymorphic references� Information and Computation
�� � �November ������ �#
��

���� Trifonov� V�� and Smith� S� Subtyping constrained types� In Third International
Static Analysis Symposium �LNCS ����� ����	�� pp�
��#
	��

���� Wright� A�� and Felleisen� M� A syntactic approach to type soundness� Informa�
tion and Computation ���� � �������
�#���

���� Wright� A� K� Simple imperative polymorphism� Lisp and Symbolic Computation
�� � �Dec� ������
�
#
�	�

