Modular and Polymorphic Set-Based Analysis:
Theory and Practice

Cormac Flanagan
Matthias Felleisen

Rice COMP TR96-266
November 1996

Department of Computer Science
Rice University

P.O. Box 1892

Houston, TX 77251-1892

Copyright (©1996 by

Cormac Flanagan and Matthias Felleisen

Modular and Polymorphic Set-Based Analysis:
Theory and Practice

(revision 1.4)

Cormac Flanagan Matthias Felleisen

Department of Computer Science,
Rice University,

Houston, TX 77251-1892

Contact email: cormac@cs.rice.edu

Abstract

Set-based analysis (SBA) produces good predictions about the behavior of functional
and object-oriented programs. The analysis proceeds by inferring constraints that char-
acterize the data flow relationships of the analyzed program. Experiences with Rice’s
program development environment, which includes a static debugger based on SBA,
indicate that SBA can deal with programs of up to a couple of thousand lines of code.
However, SBA does not cope with larger programs because it generates large systems
of constraints for these programs. These constraint systems are at least linear, and
possibly quadratic, in the size of the analyzed program.

This paper presents theoretical and practical results concerning methods for reducing
the size of constraint systems. The theoretical results include a complete proof-theoretic
characterization of the observable behavior of a constraint system, which we use to es-
tablish a close connection between the observable equivalence of constraint systems and
the equivalence of regular-tree grammars. We then exploit this connection to adapt
a variety of algorithms for simplifying grammars to the practical problem of simplify-
ing constraint systems. Based on the resulting algorithms, we develop a componential
set-based analysis, a modular and polymorphic variant of SBA. Experimental results
validate the practicality of the simplification algorithms and the analysis. The simpli-
fied constraint systems are typically at least an order of magnitude smaller than the
original systems, which significantly reduces both the time and space required by the
analysis.

Contents

1

2

3

The Effectiveness of Set-Based Analysis 1
The Source Language 2
Set-Based Analysis 3
3.1 The Source Language e 4

311 Syntaxo e e e e e 4

3.1.2 Semantics Lo e e e 4
3.2 The Constraint Language L. 5
3.3 The Meaning of Set Constraints 6

3.3.1 The Semantic Domain oo 6

3.3.2 The Semantics of Constraints 7
3.4 Deriving Constraints L o e 8
3.5 Soundness of the Derived Constraints 10
3.6 Solving Set Constraints e 11

3.6.1 Computing the Least Solution 13
Constraint Simplification 13
4.1 Conditions for Constraint Simplification 14
4.2 The Proof Theory of Observable Equivalence 15
4.3 Deciding Observable Equivalence 18
4.4 Regular Grammarso e e e e e e 18
4.5 Regular Tree Grammars oot vttt e 20
4.6 Stagingo e e e e 21
4.7 The Entailment Algorithm oo 21
4.8 Practical Constraint System Simplification 23

4.8.1 Empty Constraint Simplification 24

4.8.2 Unreachable Constraint Simplification 24

4.8.3 Removing e-Constraints L 0oL 25

4.8.4 Hopcroft’s Algorithm L oo 25
4.9 Simplification Benchmarks 000000 26
Componential Set-Based Analysis 27
5.1 Componential Set-Based Analysis 0L 27
5.2 Experimental Results o 28
5.3 User Interface for Multi-File Programs 30
5.4 Efficient Polymorphic Analysis 0oL 30
Competitive Work 31

Future Work 32

A Proofs 32

A.1 Subject Reduction Proof oo o 32
A.2 Proofs for Computing Set-Based Analysis 39
A.3 Proofs for Conditions for Constraint Simplification 42
A4 Proofs for Proof Theory of Observable Equivalence 43
A.5 Proofs for Deciding Observable Equivalence 49
A.6 Correctness of the Entailment Algorithm 52
A.7 Correctness of the Hopcroft Algorithm 55
B Notations 56

Modular and Polymorphic Set-Based Analysis: Theory and Practice 1

1 The Effectiveness of Set-Based Analysis

Rice’s Scheme program development environment provides a static debugger, MrSpidey,
which statically analyzes a program and, using the results of this analysis, checks the
soundness of all primitive operations [8]. If an operation may fault due to a violation
of its invariant, MrSpidey highlights the program operation so that the programmer can
investigate the potential fault site before running the program. Using the graphical expla-
nation facilities of MrSpidey, the programmer can determine whether this fault will really
happen or whether the corresponding correctness proof is beyond the analysis’s capabilities.

MrSpidey’s program analysis is a constraint-based system similar to Heintze’s set-based
analysis of ML, programs [10]. The analysis consists of two co-mingled phases: a specification
phase, during which MrSpidey derives constraints describing the data flow relationships, and
a solution phase, during which MrSpidey solves the constraints. The solution conservatively
approximates the set of values that may result from each program expression.

In practice, MrSpidey has proven highly effective for pedagogic programming, which
includes programs of several hundreds to 2,000 lines of code. It also works reasonably well
on some programs of up to several thousand lines in length. However, it becomes less useful
for debugging large programs for two reasons:

e Set-based analysis has an O(n>) worst-case time bound. Although the constant on
the cubic element in the polynomial is small, it is noticeable for programs of several
thousand lines.

e Large programming projects tend to re-use functions in a polymorphic fashion. To
avoid merging information between unrelated calls to such functions, the analysis must
duplicate the constraints for each corresponding call site. This duplication is expensive
because the size of the constraint set is at best linear, and possibly quadratic, in the
size of the function.

A closer look at these two obstacles quickly reveals that the major limitation of set-
based analysis is the size of the constraint system describing the data flow relationships of
a program. If we could reduce the size of constraint systems without affecting the solution
space that they denote, we could simplify constraint sets at intermediate stages during
the specification phase and thus reduce the analysis time. In particular, after simplifying
the constraint set of a polymorphic function, MrSpidey would duplicate a much smaller
constraint set at each polymorphic reference than the plain analysis; similarly, producing
a simplified constraint set for a module would substantially reduce the cost of solving the
combined set of constraints for a modularized program.

The simplification of constraint sets raises both interesting theoretical and practical
questions. On the theoretical side, we need to ensure that simplification preserves the
observable behavior of a constraint system. In this paper, we provide a complete charac-
terization of observable behavior and, in the course of this development, establish a close
connection between this observable equivalence of constraint systems and the equivalence
of regular tree grammars (RTGs).! Exploiting this connection, we develop a complete al-

YA number of researchers, including Reynolds [18], Jones and Muchnick [14], Heintze [10], Aiken [2],
and Cousot and Cousot [3] previously exploited the relationship between RTGs and the least solution of a

2 C. Flanagan, M. Felleisen

gorithm for deciding the equivalence of constraint systems. Unfortunately, the problem is

PSPACE-hard.

Fortunately, a minimized constraint set is only optimal but not necessary for practical
purposes. The practical question concerns finding approximate algorithms for simplifying
constraint sets that would make MrSpidey more useful. To answer this question, we ex-
ploit the correspondence between the minimization problem for RTGs and constraint sets
to adapt a variety of algorithms for simplifying RTG to the problem of simplifying con-
straint systems. Based on these simplification algorithms, we develop a componential,? or
component-wise, variant of set-based analysis. Experimental results verify the effectiveness
of these algorithms and the corresponding flavors of the analysis. The simplified constraint
systems are typically at least an order of magnitude smaller than the original constraint set.
Moreover, these reductions in size result in significant gains in the speed of the analysis.

We expect that some of our theoretical and practical results as well as the techniques
will carry over to other constraint-based systems, such as the conditional type system of
Aiken et al. [2], Eifrig et al.’s object-oriented type system [5], or Pottier’s or Smith et al.’s
subtyping simplification algorithms [17, 20].

The presentation of our results proceeds as follows. Section 2 describes an idealized
source language. Section 3 describes our set-based analysis. Section 4 characterizes the
relationship between constraint systems and RTGs, and section 5 exploits this connection
to derive a number of practical constraint simplification algorithms. Sections 6 and 7 discuss
how these algorithms perform in a realistic program analysis system. Section 8 discusses
related work, and section 9 describes directions for future research. Appendix A contains
proof of various theorems and lemmas. Appendix B contains an index of notations used in
the paper.

2 The Source Language

Syntax:
M € A = z|VI|(MM)]| (et (z M) M) | M (Expressions)
Ve Value = b| (Ne.M) (Values)
r € Vars = {z,y,2,...} (Variables)
b € BasicConst (Basic Constants)
t € Tag (Function Tags)
[€ Label (Expression Labels)

Figure 1: The source language A

constraint system. We present an additional result, namely a connection between RT'Gs and the observable
behavior (i.e., the entire solution space) of constraint systems.

2componential a. of or pertaining to components; spec. (Ling.) designating the analysis of distinctive
sound units or grammatical elements into phonetic or semantic components (New Shorter Oxzford English
Dictionary, Clarendon Press, 1993)

Modular and Polymorphic Set-Based Analysis: Theory and Practice 3

For simplicity, we present our results for a A-calculus-like language with constants and la-
beled expressions. It is straightforward to extend the analysis to a realistic language includ-
ing assignments, recursive data structures, objects and modules along the lines described
in a related report [?].

Expressions in the language are either variables, values, function applications, let-
expressions, or labeled expressions. We use labels to identify those program expressions
whose values we wish to predict. Values include basic constants and functions. Functions
have identifying tags so that MrSpidey can reconstruct a call-graph from the results of
the analysis. We use let-expressions to introduce polymorphic bindings, and hence restrict
these bindings to syntactic values [22]. We work with the usual conventions and termi-
nology of the A,-calculus when discussing syntactic issues. In particular, the substitution
operation M[z + V] replaces all free occurrences of x within M by V, and A° denotes the
set of closed terms, also called programs.

We specify the meaning of programs based upon the notions of reduction 3,, 3;,; and
unlabel:

(AMa.M)V) — Mz~ V] (Bv)
(let (z V) M) — Mz~ V] (Blet)
vl — v (unlabel)

The 3, and §j,; rules are the conventional rules for the A-calculus. The unlabel rule simply
removes the label from an expression once its value is needed.

An evaluation context £ is an expression containing a hole [] in place of the next subterm
to be evaluated:

E=[T1(EM) | (VE] (let (x &) M) | &

For example, in the term (N M), the next expression to be evaluated lies within N, and
thus the definition of evaluation contexts includes the clause (€ M). An evaluation context
always contains a single hole [], and we use the notation £[M] to denote term produced
by filling the hole in & with the term M.

The standard reduction relation — is the compatible closure of — with respect to
evaluation contexts:

gM]—EN] <= M-—N

The relation —* is the reflexive, transitive closure of —. The semantics of the language
is defined via the partial function eval on programs:

eval : A° —, Value

eval(M) =V if M—>*V

3 Set-Based Analysis

Conceptually, set-based analysis consists of two phases: a specification phase and a solution
phase.® During the specification phase, the analysis tool derives constraints on the sets
of values that program expressions may assume. These constraints describe the data flow

®Cousot and Cousot showed that set-based analysis can alternatively be formulated as an abstract inter-
pretation computed by chaotic iteration [3].

4 C. Flanagan, M. Felleisen

relationships of the analyzed program. During the solution phase, the analysis produces
finite descriptions of the potentially infinite sets of values that satisfy these constraints. The
result provides an approximate set of values for each labeled expression in the program.

3.1 The Source Language

We develop the analysis for an idealized, A-calculus-like language A with constants and
labeled expressions. This section introduces the syntax and semantics of A.

3.1.1 Syntax

Syntax:
M € A = 2|V | (MM)]|Qet(zV)M)| M (Expressions)
Ve Value = b| (Nz.M) (Values)
r € Var = {z,y,7z,...} (Variables)
b € BasicConst (Basic Constants)
t € FnTag (Function Tags)
[€ Label (Expression Labels)

Figure 2: The source language A

Expressions in the language are either variables, values, applications, let-expressions, or
labeled expressions: see figure 2. Values include basic constants and functions. Each func-
tion has an identifying tag so that MrSpidey can reconstruct the textual source of function
values from the results of the analysis. We use let-expressions to introduce polymorphic
bindings, and hence restrict these bindings to syntactic values [22]. We use labels to identify
those program expressions whose values we wish to predict.

We work with the usual conventions and terminology of the A,-calculus when discussing
syntactic issues. In particular, the substitution operation M[z + V] replaces all free occur-
rences of z within M by V, and A® denotes the set of closed terms, also called programs.

3.1.2 Semantics

We specify the meaning of programs based upon three notions of reduction:

(Mz. M) V) — Mz~ V] (By)
(let (z V) M) — Mz~ V] (Blet)
vl — v (unlabel)

The 3, and)., rules are the conventional rules for the A-calculus. The unlabel rule simply
removes the label from an expression once its value is needed.

An evaluation context £ is an expression containing a hole [] in place of the next
sub-term to be evaluated:

E=[11(EM|(VE]E

Modular and Polymorphic Set-Based Analysis: Theory and Practice 5

For example, in the term (N M), the next expression to be evaluated lies within N, and
thus the definition of evaluation contexts includes the clause (€ M). An evaluation context
always contains a single hole [], and we use the notation £[M] to denote term produced
by filling the hole in & with the term M.

The standard reduction relation — is the compatible closure of — with respect to
evaluation contexts:

ElM]—&N] iff M-—N

The relation —* is the reflexive, transitive closure of —. The semantics of the language
is defined via the partial function eval on programs:

eval : A° —, Value
eval(M) =V if M—>*V

3.2 The Constraint Language

To simplify the later derivation of the constraint simplification algorithms (see chapter ??),
we express the constraint language in terms of selectors, instead of the more usual con-
structors. Specifically, a set expression 7 is either a set variable; a constant; or one of the
“selector” expressions dom(T) or rng(T):

T € SetExp = o« c|dom(T) | rng(T)
o, 0 € SetVar DO Label
¢ € Const = BasicConstU Fnlag

By using selector expressions, we can specify each “quantum” of the program’s data-
flow behavior independently; using constructors would combine several of these quanta
into one constraint. For example, we specify a function’s behavior via the two constraints
{dom(a) < a1, g < rng(a)} instead of the combined constraint {(a; — ag) < a}.

The meta-variables a, 3, range over set variables, and we include program labels in
the collection of set variables. Constants include both basic constants and function tags. A
constraint C € Constraint is an inequality 7y < 75 relating two set expressions.

C € Constraint = 11 <1y

We sometimes enclose constraints inside square brackets for clarity: [y < 7. A constraint
system S € ConstraintSystem is a collection of constraints.

S € ConstraintSystem = Pg,(Constraint)
We use SetVar(S) to denote the collection of set variables in a constraint system S. In some
cases, the relevant constraints in a constraint system are those that only mention certain

set variables. The restriction of a constraint system to a collection of set variables F is:

S|g = {Ce€S|Conly mentions set variables in F'}

6 C. Flanagan, M. Felleisen

3.3 The Meaning of Set Constraints

Intuitively, each set expression 7 denotes a set of run-time values, and each constraint
71 < 73 denotes a corresponding set containment relationship. We formalize the meaning
of set constraints by mapping syntactic set expressions onto a semantic domain. The next
subsection describes the precise structure of the semantic domain, and the second subsection
describes the mapping from set expressions to that domain.

3.3.1 The Semantic Domain

A set expression denotes a collection of values. For our sample language, the collection
consists of basic constants and functions and is therefore best represented as a triple X =
(C, D, R). The first component C' € P(Const)* is a set of basic constants and function
tags. The second and third components of X denote the possible arguments and results
of functions in X, respectively. Since these two components also denote value sets, the
appropriate model for set expressions is the solution of the equation:

D =P(Const) x D xD

The solution D is equivalent to the set of all infinite binary trees® with each node labeled
with an element of P(Const). This set can be formally defined as the set of total functions
f : {dom,rng}* — P(Const), and the rest of the development can be adapted mutandis
mutatis [16]. For clarity, we present our results using the more intuitive equational definition
instead.

We use the functions const : D — P(Const) and dom, rng : D — D to extract the
respective components of an element of D.

Each element of D represents a set of run-time values (relative to a given program)
according to the set of basic constants and function tags in its first component. The set of
values represented by an element X € D is defined through the relation V in X:

bin (C,D,R) iff beC
(Az.M) in (C,D,R) iff teC

We order the elements of D according to a relation that is anti-monotonic in the domain
position:

(C1,D1,R1) C(Cy, Dy, Ryy iff Cy CCo DyC Dy, R C Ry

This ordering is anti-monotonic in the domain position because information about argument
values at an application needs to flow backward along data-flow paths to the formal param-
eter of the corresponding function definitions. To illustrate this idea, consider a program
that binds a function f to a program variable g. This behavior is described in the semantic
domain as the inequality Xy C X,, where X; and X, describe the values sets for f and
g respectively. Since the possible argument set for f must contain all values to which g is

1P denotes the power-set constructor.
5We can analyze languages with additional data structures by extending D to infinite n-ary trees, where
n is the number of selectors (e.g.. dom, rng) corresponding to the extended language.

Modular and Polymorphic Set-Based Analysis: Theory and Practice 7

applied, the inequality dom (X,) C dom (X;) must also hold. Thus the domain D should

satisfy the inference rule:
X;C X,

dom (X,) C dom (Xy)

which is why the ordering C needs to be anti-monotonic in the domain element.
Under the defined ordering, the set D forms a complete lattice; the top and bottom
elements are the solutions to the equations:

T = (Const, L, T)
1L = (B,T,L)

respectively. The least upper bound and greatest lower bound operations are recursively

defined as:
(C1, D1, Ri)U (Ca, Dy, Ry)y = (C1UC% DiMN Dy, Ry U Ry)
(C1, D1, Ri) N (Ca, Dy, Ry)y = (C1NCy Dy U Dy, RN Ry)
3.3.2 The Semantics of Constraints

The semantics of a constraint system is defined with respect to a set environment p, which
specifies an element of D for each set variable in a constraint system:

p € Setbknv = SetVar — D

The collection of set environments forms a complete lattice SetEnv under the pointwise
extension of the ordering relation C on D.

For each set environment p, we define the following unique extension p* that specifies a
meaning for set expressions:

p* i Setliegp — D

prla) = pla)

prle) = (e} T, L)
p*(dom(r)) = dom (p*(7))
p (rng(r)) = rag(p™(7))

Where there is no confusion, we remove the asterisk and simply use p to denote p*.

A set environment p satisfies a constraint C = [ry < 7] (written p |= C) if p(71) C p(72).
Similarly, p satisfies S, or p is a solution of S (written p = S) if p = C for each C € S. The
relation |= is obviously reflexive and transitive. The solution space of a constraint system
S is:

Soln(S) ={p | p E S}

A constraints set Sy entails Sy (written Sy = Sg) iff Soln(S1) C Soln(Sz), and Sy is observably
equivalent to Sy (written S; 2 Sy) iff S; E Sy and Sz = Sy

The restriction of a solution space to a collection of set variables F is:

Soln(S) | = {p| 3p’ € Soln(S) such that p(a) = p'(v) Vo € E}

8 C. Flanagan, M. Felleisen

ru{s:altz:ab (var)
b {b<al (const)
'-M:a 8

Mo, SU{a<l}) ({abel)

TUu{z:ai}FM: a8
It (MeM):a,SU{t<a, dom(a) < aj, as <rng(a)}

(abs)

F " Mi . ﬁZ,SZ
TE (M Ms):a,S$1US U {2 <dom(fy), rng(f1) < a}

(app)

FEV:a Sy
A= Vars(Sv) \ (FV[rng(T')] U Label)
Fru{z VA (o,Sv)}F M : 5,8
Tk(let (x V) M): 5,8

(let)

¥ 1s a substitution of fresh vars for A

Tu{z VA (o,Sv)} F o ¢(a), v(Sv)

(inst)

Figure 3: Constraint derivation rules.

There are actually more set environments in the restricted solution space, since these addi-
tional environments can specify arbitrary domain elements for all set variables that are not
in .

We extend the notion of restriction to the entailment and observable equivalence of
constraint systems.

Definition 3.1. (Restricted Entailment, Restricted Observable Fquivalence)
o If Soln(S1) |g C Soln(Ss2) |E, then Sy entails Sy with respect to E (written S1 =g Sa).

e IfS; =5 Sy and Sy =g Sy then that Sy and Sy are observably equivalent with respect
to E' (written Sq 2 Sg) .

3.4 Deriving Constraints

The specification phase of set-based analysis derives constraints on the sets of values that
program expressions may assume. Following Aiken et al. [2] and Palsberg and O’Keefe [16],
we formulate this derivation as a proof system.

The derivation proceeds in a syntax-directed manner according to the constraint deriva-
tion rules presented in figure 3. KEach rule infers a judgment of the form I' - M : «, S,
where:

Modular and Polymorphic Set-Based Analysis: Theory and Practice 9

1. the derivation context I' maps the free variables of the expression M to either set
variables or constraint schemas (see below);

2. a names the value set of M; and

3. the constraint system S is a simple constraint system (see below) describes the data-
flow relationships of M, using «a.

The constraint derivation rules only generates a certain subset of the constraint language,
called simple constraints. Simple constraints have the form:

c < p | a < 3
C ¢ SimpleCon = | a < dom(f) | dom(er) < S8
| o < mg(f) | male) < B

S € SimpleConSystem = Py, (SimpleCon)

A collection of such simple constraints forms a simple constraint system. We use the cal-
ligraphic letters C and & as meta-variables ranging over simple constraints and simple
constraint systems, respectively.

The constraint derivation rule (var) derives appropriate constraints for a variable ref-
erence x. This rule generates the constraint 3 < «, where 3 describes the value set of z,
and « denoting the value set for this reference to z. The constraint derivation rule (const)
generates the constraint b < «, which ensures that the value set for a constant expression
contains that constant. The rule (label) records the possible values of a labeled expression
M in the label I.

The rule (abs) for functions records the function’s tag, and also propagates values from
the function’s domain into its formal parameter and from the function’s body into its range.
The rule (app) for applications propagates values from the argument expression into the
domain of the applied function and from the range of that function into the result of the
application expression. The correctness of the rules (abs) and (app) relies on the anti-
monotonicity of the underlying ordering C in the domain position.

The rule (let) produces a constraint schema o = Va. (3,S) for polymorphic, let-bound
values [2, 19]. The set variable 3 names the result of the value; the simple constraint system
S describes the data-flow relationships of the value, using f; and the set @ = {ay,...,a,}
contains those internal set variables of the constraint system that must be duplicated at
each reference to the let-bound variable via the rule (inst).

The derivation context I' maps program variables to either set variables or constraint

schemas:
I e DerivCtat = Var —, SetVar U ConSchema

o € ConSchema = Va.(3,S)

We use F'V[range(I')] to denote the free set variables in the range of I'. The free set variables
of a constraint schema Va. (3, 8) are those in S but not in @, and the free variables of a set
variable is simply the set variable itself.

Many of the constraint derivation rules contain meta set variables. For example, the
rule (const):

I'Fb:a{b<a} (const)

10 C. Flanagan, M. Felleisen

mentions the meta set variable a. Any time this rule is applied, we need to choose an
appropriate set variable for this meta variable. Choosing a fresh set variable not used
elsewhere in the derivation yields a more accurate analysis. A most general constraint
derivation is one that always uses fresh set variable for these meta variables, and a most
general constraint system for an expression is one produced by a most general constraint
derivation. However, the use of fresh variables is not strictly necessary for the correctness of
the analysis. As an extreme example, we could perform the entire analysis using a single set
variable, although this would yield extremely coarse results, and would be of no practical
use. But the ability to consider constraint derivations that re-use certain set variables
significantly simplifies the subject reduction proofs of the following section.

3.5 Soundness of the Derived Constraints

Let P be a program such that § = P : a, S. Typically, S has many solutions. Each solution
p of § correctly approximates the value sets of labeled expressions in P. That is, if p is a
solution of S and V is a possible value of some expression M' in P, then V in p(l). We
prove this property using a subject reduction proof [7], following Wright and Felleisen [21]
and Palsberg [15].

Main Lemma 3.2 (Soundness of the Derived Constraints) If0 - P :«,S and p =
S and P——*E[V'] then V in p(l).

Proof: The Subject Reduction for — Lemma (3.3) shows that standard reduction steps

preserve entailment. Hence, since P+—*E[V!], there exists some S’ such that § - E[V!]:

a,8"and § = §'. The derivation of this judgment must contain a sub-derivation concluding;:
rev:.p,8y

PEVEB.Syu{B<l}

(label)

Except for the rule (let), each application of a constraint derivation rule can only extend
the constraint system produced by its sub-derivation. Since definition of evaluation contexts
does not contain a clause for let-expressions, there cannot be any let-expressions on the
spine from V! to &[V!]. Hence Sy U{p <1} C &'

Since p S, S E &', and & O Sy U{p < [}, we have that p E Sy U {8 < [}. Hence
V in p(B) by the Value Typing Lemma 3.7. But p(8) C p(l), hence V in p(l), as required.
[

The proof of the above result relies on the following lemma showing that standard
reduction steps preserves the entailment of the derived constraint systems.

Lemma 3.3 (Subject Reduction for —) IfI' - M, : o, Sy and My — My, then ' F
My : o, Sy where §; E Ss.

Proof: Follows from the Subject Reduction Lemma 3.4 and the Replacement Lemma 3.5.
[

Lemma 3.4 (Subject Reduction for —) If I' v My : o, 8, and My — M, then
I'F M;: a8 such that Sy = Ss.

Modular and Polymorphic Set-Based Analysis: Theory and Practice 11

Proof: See Appendix A.1. 1

Lemma 3.5 (Replacement) If:
1. D is a deduction concluding I't E[My | : o, Sy,
2. Dy is a sub-deduction of D concluding I+ M, : 3,57,
3. Dy occurs in D in the position corresponding to the hole ([]) in £, and
4. "= My : 3,8 where S = S,
then I' = E[My | : o, So where §; E Ss.

Proof: Follows the proof idea of Hindley and Seldin [11:page 181]. =

The Flow Lemma describes conditions under which we can replace the result set variable
returned by the constraint derivation rules.

Lemma 3.6 (Flow) IfT'F M : «,S then for all v € SetVar, T M : v, 8" with SU{a <
S
Proof: See Appendix A.1. 1

The Value Typing Lemma simply states that any solution to the constraint system for
a syntactic value always corresponds to a value set invariant that includes that value.

Lemma 3.7 (Value Typing) IfI'FV :a,8 and p E S, then V in p(a).

Proof: By considering the two cases V =b and V = (A'z.M). »

3.6 Solving Set Constraints

Every simple constraint system admits the trivial solution p'¢ defined by p':(a) = T,
where T is recursively defined as T, = (Const, T, T,). The domain element T represents
the set of all run-time values, including functions that can take any value as an argument,
and return any value as a result.

Lemma 3.8 If S is a simple constraint system then p'¢ = S.

Proof: By a case analysis showing that p'¢ |= C for any simple constraint C. u

Since T, represents all run-time values, this solution is highly approximate and thus
utterly useless. Fortunately, simple constraint systems yield many additional solutions that
more accurately characterize the value sets of program expressions.

To illustrate this idea, consider the program P = (A'z.z). According to the constraint
derivation rules of figure 3, this program yields the constraint system:

{t < 04P7d0m(OéP) < Ogy Oy < Qpfy A < rng(aP)}

12 C. Flanagan, M. Felleisen

In addition to the trivial solution pT¢, this constraint system admits a number of other
solutions, including;:

pL = {aP = <{t}7 J—v J—>704x — J_,OéM — J—}
P2 = {aP = <{t}7 T7 T>7ax — T,OéM — T}
p3 = {OéP'—><{t701},X7X>704xl—>X704M|—>X}

where X = ({co}, L, L), and ¢; and ¢y are arbitrary constants. Because we assume P to
be the entire program, the function tagged ¢ is never applied, and hence the set of run-time
values for z is simply the empty set. The solution p; describes this (empty) set of run-time
values of z more accurately than either p; or p3. Yet these three solutions are incomparable
under the ordering C, since the ordering models the flow of values through a program, but
does not rank set environments according to their accuracy.
Therefore we introduce an alternative ordering T, on D that ranks environments ac-
cording to their accuracy. This ordering is monotonic in the domain position:
(C1, Dy, Ry) B (Coy Do, Ry) iff Cy CCy, Dy B Doy By B Ry
The maximal and minimal elements of D under C; are the solutions to the equations:
Ts = (Const, T, Ty)
1, = <®7 J—sv J_5>
respectively. The least upper bound and greatest lower bound operations are recursively
defined as:
(C1, Dy, Ry) U (C2, Dy Rg) = (C1UCa, Dy Us Do, Ry Us Ra)
(C1, Dy, Ry) Ny (C2, Doy Ry) = (C1NCay Dy N Do, Ry N Ra)
Under the ordering C,, a simple constraint system has both a maximal solution (ps

above) and a minimal solution. The minimal solution exists because the greatest lower
bound My with respect to C; of two solutions is also a solution [10].

Lemma 3.9 (Least Solution of Simple Constraint Systems) Fvery simple constraint
system has a solution that is least with respect to C.

Proof: See Appendix A.2. n

Using Lemma 3.9, it makes sense to define LeastSoln(S) as the least solution of the
simple constraint system S under the ordering C,. Since this solution yields the most
accurate invariants consistent with the constraints &, we define set-based analysis as the
function that extracts the possible values for each labeled expression from this least solution.

Definition 3.10. (sba : A® — (Label — P(Value))) O F P:«a,S is a most general
derivation, then

sba(P)(l) ={V | V in LeastSoln(S)(l)}

By Lemma 3.2, sba(P) correctly characterizes the possible value sets for each labeled ex-
pression.

Theorem 3.11 If P> [V'] then V € sba(P)(l).

Proof: Follows from Lemma 3.2. 1

Modular and Polymorphic Set-Based Analysis: Theory and Practice 13

3.6.1 Computing the Least Solution

To compute sba(P), we derive the most general constraint system for P and close that
constraint system under the rules © described in figure 4. Intuitively, these rules infer all
the data-flow paths in the program, which are described by constraints of the form g < «
(for 3,v € SetVar), and propagate values along those data-flow paths. Specifically, the
rules (s1), (sz), and (s3) propagate information about constants, function domains and
function ranges forward along the data-flow paths of the program. The rule (s4) constructs
the data-flow paths from actual to formal parameters for each function call, and the rule
(s5) similarly constructs data-flow paths from function bodies to corresponding call sites.
We write S Fg C if § proves C via the rules ©, and use ©(S) to denote the closure of S
under O, i.e., the set {C | S Fo C}. An algorithm for computing ©(S) is included in the
next section.

a <rng(f) rng(P) <~y
o<y

a < dom(f3) dom(f) < v

a <y

Figure 4: The rules © = {s1,...,s5}

This closure process propagates all information concerning the possible constants for
labeled expressions into constraints of the form ¢ < [. Hence, we can infer sba(P) from
O(S) according to the following theorem.

Theorem 3.12 If P c A° and O = P : o, S is a most general constraint derivation then:

sba(P)()= {b|Steb<i}
U {(\NeM) | Stet <}

Proof: See Appendix A.2. n

4 Constraint Simplification

The traditional set-based analysis we have just described has proven highly effective for
programs of up to a couple of thousand lines of code. Unfortunately, it is useless for

14 C. Flanagan, M. Felleisen

larger programs due to its nature as a whole-program analysis and due to the size of the
constraint systems it produces, which are quadratic in the size of (large) programs. Storing
and manipulating these constraint systems can be extremely expensive.

To overcome this problem, we have developed algorithms for simplifying constraint sys-
tems. A simplified version of a constraint system contains significantly fewer constraints, yet
still preserves the essential characteristics of the original system. Applying these simplifica-
tion algorithms at strategic points during the constraint derivation, e.g., to the constraint
system for a module definition or a polymorphic function definition, significantly reduces
both the time and space required by the overall analysis.

The following section shows that constraint simplification does not affect the analysis
results, provided the simplified system is observably equivalent to the original system. Sec-
tion 4.2 presents a proof-theoretic formulation of observable equivalence, and section 4.3
exploits this formulation to develop a complete algorithm for deciding the observable equiv-
alence of constraint systems. The insights provided by this theoretical development lead to
the practical constraint simplification algorithms of section 4.8.

4.1 Conditions for Constraint Simplification

Let us consider a program P containing a program component M, where M may be a
module definition or a polymorphic function definition. Suppose the constraint derivations
for M concludes:

FEM:a,8

where & is the constraint system for M. Our goal is to replace &7 by a simpler constraint
system, say Sz, without changing the results of the analysis.

Let the context surrounding M be C, i.e., P = C[M]. Since the constraint derivation
process is compositional, the constraint derivation for the entire program concludes:

(Z)I—P:ﬁ,ScUSl

where S¢ is the constraint system for /. The union of the sets S¢ and &; describes the
space of solutions for the entire program, which is the same as the intersection of the two
respective solution spaces:

Soln(Sc U S1) = Soln(Sc) N Soln(Sy)

Hence Soln(S;) describes at least all the properties of S relevant to the analysis, but it may
also describe solutions for set variables that are not relevant to the analysis. In particular:

e sba(P) only references the solutions for label variables; and

e an inspection of the constraint derivation rules shows that the only interactions be-
tween S¢ and &y are due to the set variables in {a} U F'V[range(I)].

In short, the only properties of &1 relevant to the analysis is the solution space for its
external set variables:

FE = Label U {a'} U F'V[range(I')]

Modular and Polymorphic Set-Based Analysis: Theory and Practice 15
For our original problem, this means that we want a constraint system Sy whose solution
space restricted to F is equivalent to that of &y restricted to E:
Soln(81) | = Soln(S2) |k
or, with the notation from section 3.2, §; and &3 are observably equivalent on F:
SISy .

We can translate this compaction idea into an additional rule for the constraint deriva-
tion system:

Pk M : o, 8 S§1 Zg S where F = Label U F'V [range(I')] U {a}
r |—g M : 04782

This rule is admissible in that any derivation (denoted using =) in the extended constraint
derivation system produces information that is equivalent to the information produced by
the original analysis.

Lemma 4.1 (Admissibility of (2)) If0 bt~ P: «,S is a most general constraint deriva-
tion then:

sba(P)(l) = const(LeastSoln(S) (1))

Proof: See Appendix A.3. 1

4.2 The Proof Theory of Observable Equivalence

~

Since the new derivation rule (=) involves the semantic notion of observably equivalent
constraint systems, it cannot be used in an algorithmic manner. To make this rule use-
ful, we must first reformulate the observable equivalence relation (or some conservative
approximation thereof) as a syntactic proof system.

The key properties of the observational equivalence relation are reflections of the reflexiv-
ity and transitivity of the ordering relation (C) and the monotonicity and anti-monotonicity
of the functions rng and dom, respectively. We can reify these properties into a syntactic
proof system via the following inference rules A:

(compat)

The meta-variables k, k1, ko range over non-constant set expressions:
K, K1,k = a | dom(k) | rng(k)

This restriction avoids inferring useless tautologies. For example, without this restriction,
the constraint ¢ < a would yield the constraint rng(c) < rng(a) via (compat), which is a
tautology since rng(c) = L.

16 C. Flanagan, M. Felleisen

The rules (reflex) and (trans,) capture the reflexivity and transitivity of the ordering
relation C; (compat) reflects the monotonicity and anti-monotonicity of the functions rng
and dom, respectively. Since many of the inferred constraints lie outside of the original
language of simple constraints, we define an extended compound constraint language that
includes all of the inferred constraints:

C € CmpdConstraint = c¢<k|r<EK
S € CmpdConSystem = Pgu,(CmpdConstraint)

We use the boldface roman letters C and S as meta-variables ranging over compound
constraints and compound constraint systems, respectively.
The proof system A completely captures the relevant properties of the ordering C and
the functions rng and dom. That is, A is both sound and complete.

Lemma 4.2 (Soundness and Completeness of A) For a compound constraint system
S and a compound constraint C:

SFAC «— SEC

Proof: See Appendix A.4. 1

This lemma implies that A(S) contains exactly those compound constraints that hold in
all environments in Soln(S). Hence, if we consider a collection of external set variables F,
then A(S) |g contains all compound constraints that hold in all environments in Soln(S) |g.
Therefore the following lemma holds.

Lemma 4.3 For a compound constraint system S, S 25 A(S) |g.

Proof: See Appendix A.4. 1

We could use this result to define a proof-theoretic equivalent of restricted entailment
as follows:

Sy I—g Sy if and only if A(S1) |g 2 A(S2) |&

and then show that & I—g S, if and only if 8§ =g S2. However, this definition based on the
proof system A does not lend itself to an efficient implementation. Specifically, checking if
two potential antecedents of (trans;) contain the same set expression 7 involves comparing
two potentially large set expressions. Hence we develop an alternative proof system that is
more suitable for an implementation, yet infers the same constraints as A.

The alternative system consists of the inference rules ¥ described in figure 5, together
with the rules © from figure 4. The rules (compose;) of ¥ replace a reference to a set
variable by an upper or lower (non-constant) bound for that variable, as appropriate. The
rules (reflex) and (compat) of W are as described above. The rule (trans,) of ¥ provides
a weaker characterization of transitivity than the previous rule (#rans;), but, provided
we start from with a simple constraint system, the additional rules, ©® and (compose; 4),
compensate for this weakness. That is, suitable combinations of these additional rules allow
us to infer any constraint that could be inferred by the rule (frans.).

Modular and Polymorphic Set-Based Analysis: Theory and Practice 17

a < rng(3) B <k a < dom(f3) 8>k
(compose) (compose,)
« < rng(k) a < dom(k)
« > rng(f3) 8>k « > dom(f3) B <k
o > og(n) (composes) > don(n) (compose,)
a<a (reflex) n<a a <
— — (transy)
T STy
<
o1 (compat)

rng(r1) < rng(k2)
dom(kg) < dom(ky)

Figure 5: The Inference Rule System ¥

Lemma 4.4 (Equivalence of Proof Systems) For a simple constraint system S:
A(S) =T0O(S)

Proof: See Appendix A.4. 1

We could use this result to define a proof-theoretic equivalent of restricted entailment
as follows:

S1 Fig Sz if and only if YO(S)) |5 2 ¥O(S:) |&

and then show that &; I—gg S, if and only if §; =g Se. However, this definition is needlessly
inefficient. Because (compat) does not eliminate any variables, any (compat)-consequent in
VO (S;) |g is subsumed by its antecedent. If we define:

IT =W\ {compat }

then this argument implies that YO(S;) | = [1O(S;) |g. Hence we get the following
lemma.

Lemma 4.5 VO(S) |g 2 11O(S) |g.

Proof: See Appendix A.4. 1

Together, Lemmas 4.3, 4.4 and 4.5 provide the basis to introduce proof-theoretic equiv-
alents of restricted entailment and observable equivalence.

Definition 4.6. (Ffo, =5o)
e S FEg Sy if and only if ¥O(Sy) |g 2 1O(Ss) |k,

o S =Fo Sy if and only if $ Fig S; and Sy HEg Si.

18 C. Flanagan, M. Felleisen

The two relations I—gg and :59 completely characterize restricted entailment and observ-
able equivalence of constraint systems.

Theorem 4.7 (Soundness and Completeness of F, and =)
1. & I—gg Sy if and only if S1 Er Ss.
2. & 259 Sy if and only if S1 =g Ss.

Proof: See Appendix A.4. 1

4.3 Deciding Observable Equivalence

While the relation :59 completely characterizes the model-theoretic observable equiva-
lence relation =g, an implementation of the extended constraint derivation system needs a
decision algorithm for = .

Given two simple constraint systems &y and 8o, this algorithm needs to verify that
VO(S)) | = ¥O(S,3) |g. If &1 and Sy are first closed under ©, then the algorithm only
needs to verify that U(S1) |g = ¥(S2) |g. The naive approach to enumerate and to compare
the two constraint systems VU(S;) |g and ¥(S;3) |z does not work, since they are typically
infinite. For example, if & = {a < rng(a)}, then W(S) is the infinite set {a < rng(a), a <
rng(rng(a)), ...}

Fortunately, the infinite constraint systems inferred by W exhibit a regular structure,
which we exploit to decide observable equivalence as follows:

1. We generate regular grammars describing the upper and lower bounds for each set
variable.

2. We extend these regular grammars to regular tree grammars (RTGs) describing all
constraints in [1(Sy) | and II(S2) |g. This representation allows us to use a standard
RTG containment algorithm to decide if I1(Sy) |z 2 11(S3) |&.

3. Based on the RTG containment algorithm, we develop an extended algorithm that
decides the more difficult entailment question W(S1) |g 2 11(S3) |z by allowing for
the additional (compat) inferences on Sy.

By checking entailment in both directions, we can decide if two constraint systems are
observably equivalent. These steps are described in more detail below.

4.4 Regular Grammars

Our first step is to describe, for each set variable v in a simple constraint system &, the
following two languages of the lower and upper non-constant bounds of a:

{k|[r <a] €ll(S) and SetVar(x) C E'}
{k | [a < k] € II(S) and SetVar(x) C E'}

Modular and Polymorphic Set-Based Analysis: Theory and Practice 19

These languages are generated by a regular grammar. For each set variable o, the grammar
contains the non-terminals oy, and oy, which generate the above lower and upper bounds
of «, respectively.

To illustrate this idea consider the program component P = (AMy.((A2.1) y)), where
f and g are function tags, and take F' = {af’}. The constraint system Sp for P (closed
under ©) is described in figure 6, together with the productions in the corresponding regular
grammar. This grammar describes the upper and lower non-constant bounds for each set
variable in 1I(Sp) |g. For example, the productions:

T r

o)~ dom(af})
off = af

imply that af —* dom(ap). This lower bound for z means that the value set for # must
include all values to which the function P is applied.

Additional productions
Constraints Sp Grammar G, (Sp, E) in G¢(8p, E)
fo< of R [f <al]
dom(af) < a” a? + dom(al)
1 < o R [1 <ayp]
a' < rglal) | ay — rnglaf)
mg(a®) < a® | a% o mglal)
o < a” a¥, = ay ap—al
o < d(})m(ozf) ay — dom(ozé)
g < «a R 9 <ag]
dom(a®) < ¥ a¥ + dom(af)
o < mglaf) |af > mglal)
o < a” ap — ap af—al
al < a® ay — af af —aj
1 < a R [1<af]
af — aof ab—af | R [ar < ay] Va € SetVar(Sp)

Figure 6: The constraint system, regular grammar, and regular tree grammar for P =

(My.((Ma.1))

The productions of the grammar are determined by Sp and II. For example, the con-
straint [a! < rng(af)] € Sp implies that for each upper bound & of o/, the rule (compose;)
infers the upper bound rng(k) of a'. Since, by induction, af’s upper bounds are generated
by 04{], the production af; — rng(oe{]) generates the corresponding upper bounds of a'.

More generally, the collection of productions:

{av = rng(fu) | [< rng(F)] € S}

describes all bounds inferred via (compose;) on a simple constraint system S. Bounds
inferred via the remaining (compose) rules can be described in a similar manner. Bounds

20 C. Flanagan, M. Felleisen

inferred via the rule (reflex) imply the productions ayr — « and ay, — « for a € E. Finally,
consider the rule (trans,), and suppose this rule infers an upper bound 7 on a. This bound
must be inferred from an upper bound 7 on 3, using the additional antecedent [< fj].
Hence the productions {ay — S | [a <] € S} generate all upper bounds inferred via
(trans,). In a similar fashion, the productions {51, — ay, | [a <] € §} generate all lower
bounds inferred via (trans,).

Definition 4.8. (Regular Grammar G,(S,FE)) Let S be a simple constraint system and
E a collection of set variables. The regular grammar G, (S, I) consists of the non-terminals
{ap,ay | a € SetVar(S)} and the following productions:

oy o, af o YVaceFl

ay = Bu, Br = ag, Vi< p]e
ay — dom(fr) V [ar < dom(
ayr — rog(fy)
Br, — dom(aqr)
Br, — rng(ayr,)

The grammar G,.(S, F) generates two languages for each set variable that describe the
upper and lower non-constant bounds for that set variable. Specifically, if —¢, denotes a
derivation in the grammar (7, and L (z) denotes the language {7 | 2 —¢ 7} generated by
a non-terminal z, then the following lemma holds.

Lemma 4.9 Let G = G (S, E). Then:

La(ar) = {k][k <a] €ll(S) and SetVar(k) C E}
Lalay) = {k|]a<k] €ll(S) and SetVar(k) C E'}

Proof: See Appendix A.5. 1

4.5 Regular Tree Grammars

The grammar G, (S, E) does not describe all constraints in II(S) |g. In particular:

e (. (8, F) does not describe constraints of the form [¢ < 7]. Thus, for example, the reg-
ular grammar for the example program component P does not describe the constraint
[1 < rng(a®)]in 11(Sp) |&.

o ((S,F) does not describe constraints inferred by the (trans,) rule that are not
bounds of the form [k < a] or [a < k]. To illustrate this idea, consider the program
Q = (Mx.z) whose constraint system is:

Sg = {t < a¥,dom(a?) < %, a* < rng(a®)} .

xr

The regular grammar G, (Sg, F) for () describes the constraints {dom(a?) < a®, «
rng(a?)} in 11(Sg) |g, but it does not describe the trans, consequent [dom(a®)
rng(a?)] of those constraints, which is also in 11(Sg) |-

IANIA

Modular and Polymorphic Set-Based Analysis: Theory and Practice 21

For an arbitrary constraint system S, we represent the constraint system I1(S) |g by
extending the grammar G, (S, F) to a regular tree grammar G¢(S, E'). The extended gram-
mar combines upper and lower bounds for set variables in the same fashion as the (trans,)
rule, and also generates constraints of the form [¢ < 7] where appropriate.

Definition 4.10. (Regular Tree Grammar G+(S,E)) The regular tree grammar G¢(S, F)
extends the grammar G, (S, F) with the root non-terminal R and the additional productions:

R~ [ar < ay] YV a € SetVar(S)
R [c < ay] Vie<aleS
where [- <] is viewed as a binary constructor. a
The extended regular tree grammar G4(S, E') describes all constraints in II(S) |g.
Lemma 4.11 Let G = G(S, E). Then l1(S) |g = La(R).
Proof: See Appendix A.5. 1

The grammar G4(Sp, ') for the example program component P is described in figure 6.
This grammar yields all constraints in 1I(Sp) |g. For example, the productions:

R—[1 < afy] agr rng(oeg) 045 — ot

imply that R —* [1 < rng(a’)], or that the constant 1 is returned as a possible result of
the function P.

4.6 Staging

Before we can exploit the grammar representation of II(S) |z, we must prove that the
closure under @UITU{compat } can be performed in a staged manner. The following lemma
justifies this staging of the closure algorithm. In particular, it states that Il does not create
any additional opportunities for rules in O, and (compat) does not create any additional
opportunities for Il or ©.

Lemma 4.12 (Staging) For any simple constraint system S:
VO(S) = ¥(O(S)) = compat (11(O(S)))
Proof: See Appendix A.5. 1

4.7 The Entailment Algorithm

We can check entailment based on lemmas 4.11 and 4.12 as follows. Given S; and 8o, we
close them under © and then have:
So I—.I,@) Sy

VO (Ss) | 2 HO(S1) |k by defn g
W(O(S:)) & 2 O(S) & by lemma 4.12

U(S2) [g 2 11(S1) |p as S; = O(8))
compat(I1(Ss) |g) 2 11(S1) | by lemma 4.12

compat(La,(R)) 2 Lo, (R) by lemma 4.11
where G; = G(S;, F)

ﬂﬂﬂﬂﬂ

22 C. Flanagan, M. Felleisen

The Entailment Algorithm

In the following, Pg, denotes the finite power-set constructor.
Let:
Gy
Go

Gr (81, E) Li
G(S2, F) U;

{ap | @ € Vars(
{av | o € Vars(

= Si)}
- S)}

)
Assume (G; and Gy are pre-processed to remove e-transitions. For C' € Py, (Lo x Us), define:

L(C) =A{[rr <]| {er,fv) €, ar —a, T, fv —a, U}

The relation Rg, s,[-, -, -, | is defined as the largest relation on Ly X Uy X Prn(La X Us) X Pgn (Lo X Us)
such that if:
Rs,,s.lar, v, C, D] ap g, X Bu —a, Y

then one of the following cases hold:
1. L([X <Y)) C L(CUD).
2. X =rng(a}), Y =rng(fy) and Rs, s,[af, 8, C, D], where
D' ={(v,6p) | (v,0v) € CU D,y =, tng(vy),du —a, rng(dy)}
3. X =dom(af;), Y =dom(f;) and Rs, s,[67, of, C, D], where
D' = ({84, 9) | (11,60} € CU D, 71 g, dom(3y),du —, don(d))}
The computable entailment relation S, I—flg & holds if and only if Ve € Vars(Sy):

R51,52[aLaaUa {<7La7U> | v E VGTS(SZ)}’@]

E

Figure 7: The computable entailment relation -,

The containment question:

£G2 (R) 2 ’CGl (R)

can be decided via a standard RT'G containment algorithm [?]. To decide the more difficult
question:

compat (L, (R)) 2 L, (R)

we extend the RT'G containment algorithm to allow for constraints inferred via (compat)
on the language Lq, (R).

The extended algorithm is presented in figure 7. It first computes the largest relation
Rs, s, such that Rs, s,[ar, Bu, C, D] holds if and only if:

L([er < Bu]) € compat (L(C)) U L(D)

where «ap, [y describe collections of types; C', D describe collections of constraints; and
L([ar, < Bu]) denotes the language {[r, < 7] | ar =" 71, B =" 7}, The first case

Modular and Polymorphic Set-Based Analysis: Theory and Practice 23

in the definition of R uses an RTG containment algorithm to detect if L([az, < fir]) C
L(C)YUL(D). The two remaining cases handle constraints of the form [rng(a}) < rng(5;)]
or [dom(aj;) < dom(f7)], and allow for inferences via (compat). The relation R can be
computed by starting with a maximal relation (true at every point), and then iteratively
setting entries to false, until the largest relation satisfying the definition is reached.

Based on this relation, the algorithm then defines a computable entailment relation I—ﬁg

on constraint systems. This relation is equivalent to I—g.

Theorem 4.13 (Correctness of the Entailment Algorithm) S; I—g Sy if and only if
Sy Hhig St

Proof: See Appendix A.6. 1

The entailment algorithm takes exponential time, since the size of R is exponential
in the number of set variables in &3. Although faster algorithms for the entailment may
exist, these algorithms must all be in PSPACE, because the containment problem on NFA’s,
which is PSPACE-complete [1], can be polynomially reduced to the entailment problem on
constraint systems.

By using the entailment algorithm in both directions, we can now decide if two constraint
systems are observable equivalent. Thus, given a constraint system, we can find a minimal,
observably equivalent system by systematically generating all constraint systems in order of
increasing size, until we find one observably equivalent to the original system. Of course, the
process of computing the minimal equivalent system with this algorithm is far too expensive
for use in practical program analysis systems.

4.8 Practical Constraint System Simplification

~

Fortunately, to take advantage of the rule (%) in program analysis algorithms, we do not
need a completely minimized constraint system. Any simplifications in a constraint system
produces corresponding reductions in the time and space required for the overall analysis.
For this purpose, we exploit the connection between constraint systems and RTGs. By
Lemma 4.11, any transformation on constraint systems that preserves the language:

La,os),8) (R)

also preserves the observable behavior of § with respect to . Based on this observation,
we have transformed a variety of existing algorithms for simplifying regular tree grammars
to algorithms for simplifying constraint systems. In the following subsections, we present
the four most promising algorithms found so far. We use G to denote G¢(S, F), and we
let X range over non-terminals and p over paths, which are sequences of the constructors
dom and rng. Each algorithm assumes that the constraint system § is closed under ©.
Computing this closure corresponds to propagating data-flow information locally within a
program component. This step is relatively cheap, since program components are typically
small (less than a thousand lines of code).

24 C. Flanagan, M. Felleisen

Constraints Production Rules Non-empty Reachable
Fo< o R~ [f <af]
dom(a’) < o aj + dom(al)
1 < o R — [1<ab] 1 < o 1 < o
o' < mglaf) b o rmglad)
mg(a’) < a® | a% o mglal)
o < a” a¥, = ay ap—al o < a”
a” < dom(af) | ol — dom(ozé)
g < af R~ [g<ay] g < a” g < af
dom(a®) < ¥ a¥ — dom(af) dom(a®) < at
a® < rngla®) | af — rng(af) a® < rngla®) | a® < rngla?)
o < a” s afr af—al o < a”
al < a® ay = af af —aj al < a® al < a®
1 < a° [1<af] 1 < af 1 < af
af » af ab = af

Figure 8: The constraint system, grammar and simplified systems for P = (Ay.((M2.1) y))

4.8.1 Empty Constraint Simplification

A non-terminal X is empty if L&(X) = 0. Similarly, a production is empty if it refers to
empty non-terminals, and a constraint is empty if it only induces empty productions. Since
empty productions have no effect on the language generated by G, an empty constraint in
S can be deleted without changing S’s observable behavior.

Let us illustrate this idea with the program component P = (Ay.((AM2.1) y)) we con-
sidered earlier. Although this example is unrealistic, it illustrates the behavior of our
simplification algorithms. The solved constraint system Sp for P is shown in figure 8, to-
gether with the corresponding grammar G4(Sp, E) where ' = {a’}. An inspection of this
grammar shows that the set of non-empty non-terminals is:

P Py 1
{aL 9 aU7 aL7 Oé%], O/,L7 aU? O‘i? R}

Five of the constraints in Sp are empty, and are removed by this simplification algorithm,
yielding a simplified system of eight non-empty constraints.

4.8.2 TUnreachable Constraint Simplification

A non-terminal X is unreachable if there is no production R — [Y < Z] or R — [Z < Y]
such that L5(Y) # 0 and Z —7, p(X). Similarly, a production is unreachable if it refers to
unreachable non-terminals, and a constraint is unreachable if it only induces unreachable
productions. Unreachable productions have no effect on the language L (R), and hence
unreachable constraints in § can be deleted without changing the observable behavior of §.

In the above example, the reachable non-terminals are af;, af; and of;. Three of the
constraints are unreachable, and are removed by this algorithm, yielding a simplified system
with five reachable constraints.

Modular and Polymorphic Set-Based Analysis: Theory and Practice 25

1. Use a variant of Hopcroft’s algorithm [12] to compute an equivalence relation ~ on the set
variables of & that satisfies the following conditions:

(a) FEach set variable in F is in an equivalence class by itself.

(b) Tf [<] € S then Vo ~ of 33 ~ 3 such that [o/ < '] € S.

(c) Tf [o < rng(B)] € S then Yo ~ o' 33 ~ ' such that [o' <rng(f)] e S
(d) Tf [rng(a) < 5] € S then Ya ~ o' 33 ~ 3 such that [rng(a’) < 5] € S.
(e) If [< dom(B)] € S then Yo ~ o' V3 ~ ' such that [o' < dom(5')] € S

2. Merge set variables according to their equivalence class.

f
f
f
f

I

Figure 9: The Hopcroft algorithm

4.8.3 Removing ¢-Constraints

A constraint of the form [ao < §] € S is an e-constraint. Suppose a ¢ E and the only upper
bound on « in § is the e-constraint [< f3], i.e., there are no other constraints of the form
a <7, rng(a) <v,or v <dom(a) in S. Then, for any solution p of §, the set environment
p’ defined by:
, 8) iféd# a
a0 :{ ZE% S
is also a solution of §. Therefore we can replace all occurrences of o in & by 3 while still
preserving the observable behavior Soln(S) |g. This substitution transforms the constraint
[< 5] to the tautology [3 < 3], which can be deleted. Dually, if [0 < §] € S with ¢ F
and 8 having no other lower bounds, then we can replace § by «, again eliminating the
constraint [a < f].
To illustrate this idea, consider the remaining constraints for P. In this system, the
only upper bound for the set variable a! is the e-constraint [a! < a?]. Hence this algorithm
replaces all occurrences of al' by a®, which further simplifies this constraint system into:

{1 <a® a" <rng(al), g < al}

This system is the smallest simple constraint system observably equivalent to the original

system O(S).

4.8.4 Hopcroft’s Algorithm

The previous algorithm merges set variables under certain circumstances, and only when
they are related by an e-constraint. We would like to identify more general circumstances
under which set variables can be merged. To this end, we define a valid unifier for S to be
an equivalence relation ~ on the set variables of § such that we can merge the set variables
in each equivalence class of ~ without changing the observable behavior of §. Using a
model-theoretic argument, we can show that an equivalence relation ~ is a valid unifier for
S if for all solutions p € Soln(S) there exists another solution p’ € Soln(S) such that p’
agrees with p on E and p/(«) = p/(3) for all a ~ §.

26 C. Flanagan, M. Felleisen

A natural strategy for generating p’ from p is to map each set variable to the least upper
bound of the set variables in its equivalence class:

plla)="L1 pd)

OZ/NOZ

Figure 9 describes sufficient conditions to ensure that p’ is a solution of §, and hence that
~ is a valid unifier for §. To produce an equivalence relation satisfying these conditions,
we use a variant of Hopcroft’s O(nlgn) time algorithm [12] for computing an equivalence
relation on states in a DFA and then merge set variables according to their equivalence
class.®

The following theorem states that this simplification algorithm preserves the observable
behavior of constraint systems.

Theorem 4.14 (Correctness of the Hopcroft Algorithm) LetS be a simple constraint
system with external variables E; let ~ be an equivalence relation on the set variables in a
constraint system S satisfying conditions (a) to (e) from figure 9; let the substitution f map
each set variable to a representation element of its equivalence class; and let 8" = f(S§), i.e.,

S’ denotes the constraint system S with set variables merged according to their equivalence
class. Then S =g S'.

Proof: See Appendix A.7. 1

4.9 Simplification Benchmarks

empty unreachable e-removal Hoperoft
Definition lines size || factor | time || factor | time || factor | time || factor | time
map 5 221 3| <10 6 20 11 30 13 30
reverse 6 287 4| <10 8 20 20 10 20 30
substring 8 579 12 10 64 10 64 10 96 20
gsort 41 1387 15 | <10 15 30 58 50 66 40
unify 89 2921 10 10 11 80 55 120 65 150
hopcroft 201 8429 25 10 42 100 118 100 124 | 200
check 237 | 21854 4 50 4 | 1150 26 370 168 510
escher-fish | 493 | 30509 187 10 678 40 678 40 678 80
scanner 1209 | 59215 3 180 17 840 45 | 2450 57 | 2120

Figure 10: Behavior of the constraint simplification algorithms.

To test the effectiveness of the simplification algorithms, we extended MrSpidey with the
four algorithms that we have just described: empty, unreachable, e-removal, and Hopcroft.
Each algorithm also implements the preceding simplification strategies. The first three
algorithms are linear in the number of non-empty constraints in the system, and Hopcroft
is log-linear.

®A similar development based on the definition p'(a) = M{p(a’) | & ~ @'} results in an alternative
algorithm, which is less effective in practice.

Modular and Polymorphic Set-Based Analysis: Theory and Practice 27

We tested the algorithms on the constraint systems for nine program components on a
167MHz Sparc Ultra 1 with 326M of memory, using the MzScheme compiler [9]. The results
are described in figure 10. The second column gives the number of lines in each program
component, and the third column gives the number of constraints in the original (unsimpli-
fied) constraint system after closing it under the rules ©. The remaining columns describe
the behavior of each simplification algorithm, presenting the factor by which the number
of constraints was reduced, and the time (in milliseconds) required for this simplification.
Since MzScheme is a byte code compiler, porting the simplification algorithms to a native
code compiler could be expected to produce a speed-up of roughly a factor of 5.

The results demonstrate the effectiveness and efficiency of our simplification algorithms.
The resulting constraint systems are typically at least an order of magnitude smaller than
the original system. The cost of these algorithms is reasonable, particularly considering that
they were run on a byte code compiler. As expected, the more sophisticated algorithms are
more effective, but are also more expensive.

5 Componential Set-Based Analysis

Equipped with the simplification algorithms, we can now return to our original problem
of extending set-based analysis to handle significantly larger programs. These programs
are typically constructed as a collection of program components (e.g. modules, packages
or files). Exploiting this component-based structure is the key to analyzing such programs
efficiently.

The following section describes componential set-based analysis. Section 5.2 presents
experimental results on the effectiveness of the analysis, and section 5.3 describes how
MrSpidey presents the analysis results for multi-component programs to the programmer.

The constraint simplification algorithms also enables an efficient polymorphic, or context-
sensitive, analysis that only duplicates a simplified constraint system for each reference to a
polymorphic function. A description of this polymorphic analysis is presented in section 77,
together with experimental results on the behavior of the analysis.

5.1 Componential Set-Based Analysis

Componential set-based analysis processes programs in three steps.

1. For each component in the program, the analysis derives and simplifies the constraint
system for that component and saves the simplified system in a constraint file, for
use in later runs of the analysis. The simplification is performed with respect to the
external variables of the component, excluding expression labels, in order to minimize
the size of the simplified system. Thus, the simplified system only needs to describe
how the component interacts with the rest of the program, and the simplification
algorithm can discard constraints that are only necessary to infer local value set
invariants. These discarded constraints are reconstructed later as needed.

This step can be skipped for each program component that has not changed since the
last run of the analysis, and the component’s constraint file can be used instead.

28 C. Flanagan, M. Felleisen

2. The analysis combines the simplified constraint systems of the entire program and
closes the combined collection of constraints under ©, thus propagating data-flow
information between the constraint systems for the various program components.

3. Finally, to reconstruct the full analysis results for the program component that the
programmer is focusing on, the analysis tool combines the constraint system from the
second step with the unsimplified constraint system for that component. It closes
the resulting system under ©, which yields appropriate value set invariants for each
labeled expression in the component.

The new analysis can easily process programs that consist of many components. For its
first step, it eliminates all those constraints that have only local relevance, thus producing
a small combined constraint system for the entire program. As a result, the analysis tool
can solve the combined system more quickly and using less space than traditional set-based
analysis [10]. Finally, it recreates as much precision as traditional set-based analysis as
needed on a per-component basis.

The new analysis performs extremely well in an interactive setting because it exploits
the saved constraint files where possible and thus avoids re-processing many program com-
ponents unnecessarily.

5.2 Experimental Results

We implemented four variants of componential set-based analysis. Each analysis uses a
particular simplification algorithm from chapter ?? to simplify the constraint systems for
the program components. We tested these analyses with five benchmark programs, ranging
from 1,200 to 17,000 lines. For comparison purposes, we also analyzed each benchmark
with the standard set-based analysis that performs no simplification. The analyses handled
library functions in a context-sensitive, polymorphic manner according to the constraint
derivation rules (let) and (inst) to avoid merging information between unrelated calls to
these functions. The remaining functions were analyzed in a context-insensitive, monomor-
phic manner. The results are documented in figure 11.

The fourth column in the figure shows the maximum size of the constraint system
generated by each analysis, and also shows this size as a percentage of the constraint system
generated by the standard analysis. The analyses based on the simplification algorithms
produce significantly smaller constraint systems, and can also analyze more programs, such
as sba and poly, for which the standard analysis exhausted heap space.

The fifth column shows the time required to analyze each program from scratch, without
using any existing constraint files.” The analyses that exploit constraint simplification yield
significant speed-ups over the standard analysis because they manipulate much smaller
constraint systems. The results indicate that, for these benchmarks, the e-removal algorithm
yields the best trade-off between efficiency and effectiveness of the simplification algorithms.
The additional simplification performed by the more expensive Hopcroft algorithm is out-
weighed by the overhead of running the algorithm. The tradeoff may change as we analyze
larger programs.

"These times exclude scanning and parsing time.

Modular and Polymorphic Set-Based Analysis: Theory and Practice 29

Num. of Analysis | Re-analysis | Constraint file
Program lines Analysis constraints time time size (bytes)
scanner 1253 standard 61K 14.1s 7.7s 572K
empty 24K (39%) 12.0s 3.1s 189K
unreachable 15K (25%) 9.7s 2.0s 39K
e-removal 14K (23%) 9.5s 1.7s 28K
Hopcroft 14K (23%) 10.4s 1.7s 25K
zodiac 3419 standard 704K 133.4s 110.6s 1634K
empty 62K (9%) 34.1s 8.1s 328K
unreachable 21K (3%) 28.8s 4.5s 169K
e-remouval 13K (2%) 28.8s 3.8s 147K
Hopcroft 11K (2%) 31.4s 3.8s 136K
nucleic 3432 standard 333K 83.9s 51.2s 2882K
empty 90K (27%) 52.8s 17.8s 592K
unreachable 68K (20%) 48.4s 14.6s 386K
e-remouval 56K (17%) 48.3s 13.1s 330K
Hopcroft 56K (17%) 60.9s 13.2s 328K
sbha 11560 standard *, >HM * * *
empty 1908K (<38%) 181.5s 65.5s 1351K
unreachable 106K (<2%) 149.5s 43.3s 920K
e-removal 76K (<2%) 147.1s 42.2s TT0K
Hopcroft 65K (<1%) 156.8s 41.1s 716K
mod-poly | 17661 standard *, >H6M * * *
empty *, >HM * * *
unreachable 201K (<4%) 259.6s 26.9s 1517K
e-removal 68K (<1%) 239.6s 13.3s 1038K
Hopcroft 8K (<1%) 254.1s 10.9s 907K

* indicates the analysis exhausted heap space

Figure 11: Behavior of the modular analyses.

To test the responsiveness of the componential analyses in an interactive setting based
on an analyze-debug-edit cycle, we re-analyzed each benchmark after changing a randomly
chosen component in that benchmark. The re-analysis times are shown in the sixth column
of figure 11. These times show an order-of-magnitude improvement in analysis times over
the original, standard analysis, since the saved constraint files are used to avoid reanalyzing
all of the unchanged program components. For example, the analysis of zodiac, which used
to take over two minutes, now completes in under four seconds. Since practical debugging
sessions using MrSpidey typically involve repeatedly analyzing the project each time the
source code of one module is modified, e.g., when a bug is identified and eliminated, using
separate analysis substantially improves the usability of MrSpidey.

The disk-space required to store the constraint files is shown in column seven. Even
though these files use a straight-forward, text-based representation, their size is typically
within a factor of two or three of the corresponding source file.

30 C. Flanagan, M. Felleisen

copy Relative time of smart polymorphic analyses Mono.
Program | lines || analysis || empty | unreachable | e-removal | Hopcroft || analysis
lattice | 215 4.2s 39% 36% 35% 38% 42%
browse 233 2.5s 76% 76% 76% 81% 5%
splay 265 7.9s 5% 73% 70% 2% 83%
check 281 50.1s 21% 23% 14% 14% 23%
graphs 621 2.8s 85% 85% 82% 87% 82%
boyer 624 4.3s 46% 46% 49% 50% 40%
matrix 744 7.5s 64% 57% 51% 52% 45%
maze 857 6.2s 64% 59% 58% 61% 54%
nbody 880 39.6s 57% 25% 25% 26% 28%
nucleic | 3335 * * 243s * 425 * 42s * 443 * 36s

* indicates the copy analysis exhausted heap space,
and the table contains absolute times for the other analyses

Figure 12: Times for the smart polymorphic analyses, relative to the copy analysis.

5.3 User Interface for Multi-File Programs

We extended MrSpidey’s user interface to cope with programs consisting of multiple source
files, or components. MrSpidey first analyses the program, using the componential set-based
analysis described above, and then displays an annotated version of the program’s main
file with the usual static debugging mark-ups. The programmer can also view annotated
versions of any other source file by using the File|Open ... dialog box (shown in Figure ?7)
to select the source file of interest.

In multi-file programs, the source (or destination) of an arrow may sometimes refer to
a program point in a separate file. In this case MrSpidey draws an arrow originating (or
terminating) in the left margin of the program, as shown in figure ??. Clicking on the
arrow provides the option to zoom to and highlight the term at the other end of the arrow,
as shown in figures ?? and ??. These facilities are useful for following the flow of values
through multi-file programs.

5.4 [Efficient Polymorphic Analysis

The constraint simplification algorithms also enables an efficient polymorphic, or context-
sensitive, analysis. To avoid merging information between unrelated calls to functions that
are used in a polymorphic fashion, a polymorphic analysis duplicates the function’s con-
straints at each call site. We extended MrSpidey with five polymorphic analyses. The first
analysis is copy, which duplicates the constraint system for each polymorphic reference via a
straightforward implementation of the rules (let) and (inst).® The remaining four analyses
are smart analyses that simplify the constraint system for each polymorphic definition.
We tested the analyses using a standard set of benchmarks [13]. The results of the test
runs are documented in figure 12. The second column shows the number of lines in each

8We also implemented a polymorphic analysis that re-analyzes a definition at each reference, but found
its performance to be comparable to, and sometimes worse than, the copy analysis.

Modular and Polymorphic Set-Based Analysis: Theory and Practice 31

benchmark; the third column presents the time for the copy analysis; and columns four
to seven show the times for each smart polymorphic analysis, as a percentage of the copy
analysis time. For comparison purposes, the last column shows the relative time of the
original, but less accurate, monomorphic analysis.

The results again demonstrate the effectiveness of our constraint simplification algo-
rithms. The smart analyses that exploit constraint simplification are always significantly
faster and can analyze more programs than the copy analysis. For example, while copy
exhausts heap space on the nucleic benchmark, all smart analyses successfully analyzed
this benchmark.

Again, it appears that the e-removal analysis yields the best trade-off between efficiency
and effectiveness of the simplification algorithms. This analysis provides the additional
accuracy of polymorphism without much additional cost over the coarse, monomorphic
analysis. With the exception of the benchmarks browse, splay and graphs, which do not
re-use many functions in a polymorphic fashion, this analysis is a factor of 2 to 4 times
faster than the copy analysis, and it is also capable of analyzing larger programs.

6 Competitive Work

A number of researchers have investigated the problem of constraint simplification in order
to derive faster and more scalable analyses and type systems.

Deutsch and Heintze [?] examine constraint simplification for set-based analysis. They
discover two simplification algorithms, which are analogous to our empty and unreachable
constraint simplification algorithms, but do not present results on the cost or effectiveness
of these simplification algorithms.

Fahndrich and Aiken [6] examine constraint simplification for an analysis based on a
more complex constraint language. They develop a number of heuristic algorithms for
constraint simplification, which they test on programs of up to 6000 lines. Their fastest
approach yields a factor of 3 saving in both time and space, but is slow in absolute times
compared to other program analyses.

Pottier [17] studies an ML-style language with subtyping. Performing type inference
on this language produces subtype constraints that are similar to our constraints. Pot-
tier defines an entailment relation on constraints, and presents an incomplete algorithm
for deciding entailment. In addition, he proposes some ad hoc algorithms for simplifying
constraints. He does not report any results on the cost or effectiveness of these algorithms.

Trifonov and Smith [20] describe a subtyping relation between constrained types, which
are similar to our constraint systems, and they present an incomplete decision algorithm
for subtyping. They do not discuss constraint simplification. Eifrig, Smith and Trifonov [5]
discuss constraint simplification in the context of type inference for objects. They present
three algorithms for simplifying constraint systems, two of which which are similar to the
empty and e-removal algorithms, and the third is a special case of the Hopcroft algorithm.
They do not present results on the cost or effectiveness of these algorithms.

Duesterwald et al [4] describe algorithms for simplifying data flow equations. These
algorithms are similar to the e-removal and Hopcroft algorithms. Their approach only pre-
serves the greatest solution of the equation system and assumes that the control flow graph
is already known. Hence it cannot be used to analyze programs in a componential manner

32 C. Flanagan, M. Felleisen

or to analyze programs with advanced control-flow mechanisms such as first-class functions
and virtual methods. The paper does not present results on the cost or effectiveness of
these algorithms.

7 Future Work

All our constraint simplification algorithms preserve the observable behavior of constraint
systems, and thus do not effect the accuracy of the analysis. If we were willing to tolerate
a less accurate analysis, we could choose a compressed constraint system that does not pre-
serve the observable behavior of the original, but only entails that behavior. This approach
allows the use of much smaller constraint systems, and hence yields a faster analysis.

A promising approach for deriving such approximate constraint systems is to rely on
a programmer-provided signature describing the behavior of a polymorphic function or
module, and to derive the new constraint system from that signature. After checking the
entailment condition to verify that signature-based constraints correctly approximates the
behavior of the module, we could use those constraints in the remainder of the analysis.
Since the signature-based constraints are expected to be smaller than the derived ones, this
approach could significantly reduce analysis times for large projects. We are investigating
this approach for developing a typed module language on top of Scheme.

A Proofs

A.1 Subject Reduction Proof

Lemma 3.4 (Subject Reduction for —). IfI' = My @ «,81 and My — Mj, then
I'F M;: a8 such that Sy = Ss.

Proof: The proof proceeds by case analysis according to the relation M; — M.
e Suppose My — Mj via (8,). Then:
M; = (Ma.N) V)
M; = Nz — V]
The typing derivation on M is of the form:

Fru{z: 6.} FN:08n,Sn
LE(A'2.N): B, St
' M :a,8

(abs) T'FV:pBy,Sy

(app)

where:

S = SyU{t < By, dom(By) < B, By < rng(Bi)}
Si = S USy U {fv < dom(f), rng(f:) < a}

By the Substitution Lemma A.1:

I'F M,y : By,Sh where SyUSyU{fy < 6.} S}

Modular and Polymorphic Set-Based Analysis: Theory and Practice

By the Flow Lemma 3.6:
'eM;:a,8 where S,U{Bnv < a}E S,
Since §; O Sy U Sy, we have that §; = Sy U Sy. Also:

Si 2 {Bv <dom(By), dom(fy) < B} E {Bv < Be}
Si 2 {pn <rng(B), rng(p) <a} E {fnv<a}

Hence 81 | Ss, as required.
e Suppose M; — M, via (3},4). Then:
M, = (let (z V) N)
My = N[z — V]
The typing derivation on M is of the form:

'EvV:ay,Sy
@ = SetVar(Sy) \ (FV[range(I')] U Label)
lv{z:va. (ay,Sv)} - N: 3,8
I+ M1 : ﬁ,S

(let)

By the Subject Reduction for let Lemma A.2:
I'EM,:3,8
as required.
e Suppose My — My via (unlabel). Then:
My = V!
My, =V
The typing derivation on M is of the form:
r=v:a Sy
IEviig Syu{a<i,a<p}

(label)

Hence I' -V : a, Sy, and by the Flow Lemma 3.6, ' -V : 3,8, where §; E Ss.

Lemma A.1 (Substitution) If

Fv{z:a,} F N :ay,Sn
'EV:ay,Sy

then
I'FNz—=V]:iay,§ where SyUSyU{ay <a.}ES

33

34 C. Flanagan, M. Felleisen

Proof: The proof proceeds by induction on the number of let-expressions in N, and on
the size of N:
Fv{z:a,} F N :ay,Sn

If 2 ¢ FV[N], then N[z — V] = N, § = Sy and the lemma trivially holds.
Otherwise we proceed by case analysis on the constraint derivation rule used in the last
step in the derivation.

e (var): Since z € FV[N], N = 2. Hence Sy = {a, < an}, N[z — V] =V and this
case holds via the Flow Lemma 3.6.

e (const): This case cannot occur since z € FV[N].
e (label): This case is straightforward.

e (abs): In this case N = (A'y.M), and the constraint derivation is:

Fu{z:ag,yraytt Moy, Sy
Fu{z:a,} - A\y.M):an,Sy

(abs)

where:
Sy =SuU{t <apn, dom(ay) < oy, apr < roglan)}

Since x € FV[N], # # y. Hence N[z — V] = (A'y.M[z — V]). By induction:
TU{z:apy:aytE Ma— V]:an, Sy
where:
Sy USy U{ay <a,}):S]/W

Hence, via (abs):

I'EN[z—V]:an,S

where:
§ =8y U{t <ap, dom(an) < ay, ay < rnglay)}

Since Sy USy U{ay < a,} E S, the lemma holds for this case.

e (app): In this case M = (M; Ms), and the constraint derivation is:

Fru{ez:a,}F M :5;,S;
Fudz:axt F (M M) :an, Sy

(app)

where

Sy = 81U S U {B2 < dom(B1), rng(f1) < ant

By induction,
I+ MZ[x — V] : ﬁi,Sz{

where

SZ'USVU{OéVgO@}):S;

Modular and Polymorphic Set-Based Analysis: Theory and Practice 35

Hence

I'EM[z—V]:ayn,S

where
S =81 US,U{Bs < dom(3),rng(B1) < an}
Obviously, Sy U Sy U{ayv < a,} E S, and the lemma holds for this case.

o (let): In this case N = (let (y W) M), where W € Value. Hence:
Fuf{z:a,} b (let (y W) M) :an,Sy
and therefore by the following Subject Reduction for let Lemma A.2:
vz ot FMly— W]:ayn,Sy

By induction:
I'EMly— W]z~ V]:an,S

where Sy U Sy U{ay < a,} = S. Since:
My — W]z — N]= M[z — N][y— W[z — NJ]]
we have that:
'EMz—V]ym Wz V] :ay,S
and therefore, by the Subject Reduction for let Lemma A.2:
I't(let (y Wiz — V]) Mz — V]):an,S

or, equivalently:

I't(let (y W) M)z — V]:an,S

and thus the lemma holds in this case.

e (inst): This case cannot occur since € FV[N] and 2 is bound to a set variable in
the derivation context.

The constraint derivation rules uses constraint schemas to accurately analyze polymor-
phic let-expressions. The constraint system for a let-expression is actually equivalent to the

9

constraint system for the corresponding (3;.4-expanded expression”. The following lemma

demonstrates this equivalence of constraint systems.

Lemma A.2 (Subject Reduction for let)
I'-(let (z V) N):an,Sn

if and only if
FFN[xi—}V]:OéN,SN

°This equivalence contrasts with the situation for the other reduction rules, where the constraint system
for the redex only entails the constraint system for the contractum, as shown in the Subject Reduction for
— Lemma 3.4.

36 C. Flanagan, M. Felleisen

Proof: The derivation I' - (let (2 V) N) : an,Sny holds if and only if:

'EV:ay,Sy
@ = SetVar(Sy) \ (FV[range(I')] U Label)
o = Va. (Ozv7 Sv)
F'v{z:0}F N:ay,Sn

The proof of both directions proceeds by induction on the number of let-expressions in
N, and on the size of N:
If 2 ¢ FV[N], then N[z +— V] = N and the lemma trivially holds.
Otherwise we proceed by case analysis on the constraint derivation rule used in the last
step in the derivation:
F'v{z:0}F N:ay,Sn

e (var): This case cannot occur since € FV[N] implies N = z, but 2 is bound to a
schema in the derivation context and so the rule (inst) applies.

e (const): This case cannot occur since z € FV[N].
e (abs): In this case N = (A'y.M), and the typing derivation is:

Fru{z:oy:ay} EM:apy, S
Fuf{z:o}t (Ny.M):ayn,Sy

(abs)

where:
Sy =SuU{t <apn, dom(ay) < oy, apr < roglan)}

Since # € FV[N], z # y. Hence N[z — V] = (Aly.M[z — V]). By induction,
Fuf{z:oy:ay} F Mz~ V]:ay, Sy

Hence, via (abs):
FFN[xi—}V]:OéN,SN

The reasoning for the converse direction is similar.

e (app): In this case M = (M; Ms), and the typing derivation is:

Fru{ez:o}t M : 5,8
vz o}t (My M) : an, SN

(app)

where:

Sy = 81U S U {B2 < dom(B1), rng(f1) < ant

By induction,
I+ MZ[x — V] : ﬁi,Si

Hence
I+ M[x — V] : OéN,SN

as required. The reasoning for the converse direction is similar.

Modular and Polymorphic Set-Based Analysis: Theory and Practice 37

e (label): This case is straightforward.
o (let): In this case N = (let (y W) M), where W € Value. Hence:

F'u{z:o}t (let (y W) M) :an,Sn
Since M has fewer let-expressions than N, by induction:
F'v{z:o} - Mly— W]:an,Sy
Since M [y — W] has fewer let-expressions than N, by induction:
I'EMly— Wiz — V]:an,Sn

Since:
My — W]z — N]= M[z — N]ly —» W[z — N]]

we have that:

I'FMz—V]y— Wz — V] :ay,Sn
Since M[z — V][y — W]z — V]] is smaller than N, by induction:

I'F(let (y Wiz — V]) Mz — V]) : an, SN

or, equivalently:

I'(let (y W) M)[z— V]:an,SN
and thus the lemma holds in this case.
(inst): Since z € FV[N], N = z, and the derivation on N must be:
l'u{z:o}lFa:an,Sy

where 1 is a substitution of fresh variables for @ and Sy = ¥(Sv) U {(ay) < an}.

If D is the derivation concluding
'EvV:ay,Sy
then (D) is an analogous derivation concluding
IV idlay), v(Sv)
Now N[z — V] =V, and by the Flow Lemma 3.6:
'V :ay,Sy

as required.

Lemma 3.6 (Flow). IfT b M : o, 8 then for all v € SetVar, T & M : ~,8" with
Sufa<y}l ES.

Proof: By induction on the derivation I' - M : o, § and by case analysis on the last step
in this derivation.

C. Flanagan, M. Felleisen

e (var): In this case the derivation for M = z is:
Vu{z:ptra:a,8
where § = {8 < a}. For any v € SetVar, let S’ = {3 < v}, and then:
Vu{e:ptra:y,8
with SU{a <~} E &', as required.
e (const): This case follows by reasoning similar to the (var) case.
e (label): The derivation for M = N! must conclude:

PEN:B,8N
I'FN':a, S
where S =Sy U{f <[,f<a}. Let &' ={3 <[,5 <}, and then:

(label)

FEN:5,S8
(label)
=Ny, S

with SU{a <~} E S
e (abs): The derivation for M = (A'z.N) must conclude:

F'u{z a1} N:ag, Sy

LF(MNa.N): e, S (abs)
where § = {t < a, dom(«) < g, ay < rng(a)}.
Let § = {t < v,dom(y) < a1,z < rng(y)}, and then:
Fru{z:a} - N:ay, Sy (abs)

I'E(A"N.o)y, S
with SU{a <~} E S
e (app): This case follows by reasoning similar to the (app) case.
e (let): This case follows by induction.
e (abs): The derivation for M = & must be:
Frv{z:va. (av,Sv)}Fz:a,8

where § = ¢¥(Sv) U {¢(ay) < a}, and ¢ is a substitution of set variables for @.
Let 8" = (Sv) U{¢(av) < v}. Then

ru{z:va.(av,Sv)}Faz:v,8
with SU{a <~} E S

Modular and Polymorphic Set-Based Analysis: Theory and Practice 39

A.2 Proofs for Computing Set-Based Analysis

Lemma 3.9 (Least Solution of Simple Constraint Systems). Fvery simple constraint
system has a solution that is least with respect to C.

Proof: Let § be a simple constraint system, and define p = M;S0ln(S), using the pointwise
extension of M to set environments. We prove that p € Soln(S) by showing that p satisfies
any constraint C € §. The proof proceeds by case analysis on C.

e The case where C = [a < 3] follows from Lemma A.3.

e Suppose C = [¢c < f]. Then ¢ € const (p'(3)) for all p' € Soln(S), therefore ¢ €
const (p(f)) and p = C.

e Suppose C = [a < rng(/)]. Then:

pla) = N pla)
p'eSoln(s)

C Ny pl(wng(5))
p'eSoln(s)
by Lemma A.3, since p’(a) C p'(rng(53))

= rng M, p'(53) by definition of M,
p'eSoln(s)

= rng (p(8))

= p(rng(f))

Hence p = o < rng(f).

The remaining cases are similar. Hence the set of environments satisfying & has a least
element My {p | pES}.

The following lemma describes some properties about how the two orderings C and C;
defined on D interact.

Lemma A.3 Let I be an index set, and let x;,y; € D for allv € 1.
o Ifu; Cy; forallt e l, then:

Ns a; & Mg oy

i€l el
L = & Us v
i€l el

o Ifa; T,y forallv €1, then:
ma L My
i€l el
LJ v, L LJ Yi

el el

40 C. Flanagan, M. Felleisen

Proof: The proof is based on the interpretation of D as the set of total functions
f : {dom, rng}* — P(Const)

and proceeds by showing the appropriate relation holds between the sets of constant ele-
ments at any path in {dom, rng}*.

To prove the first relation, assume z; C y; for all ¢ € I, and let p be a path in {dom, rng}*.
If p is monotonic, then p(z;) C p(y;). Hence:

p|Ns 2| = N5 pay)
el el
C M p(y)
el
= p|MNs y
el

Conversely, if p is anti-monotonic, then p(z;) 3 p(y;). Hence:

p|Ns 2| = N5 pay)
el el
3 N, ply:)
el
= p|MNs y
el

Hence
Mg oy & Mg
el el

as required.

Theorem 3.12 If P € A and 0 - P : a, S is a most general constraint derivation then:

sba(P)()= {b|Steb<i}
U {(NeM) | Stet <}

Proof:

Stec<a —= SEc<a by lemma A.4
VoES. pEc<a

Vp € Soln(S). ¢ € const(p(w))

¢ € N({eonst(p(a)) | p € Soln(S)})
c € const(N({p(a) | p € Soln(S)}))
c € const(N({p | p € Soln(8)}) ()
c € const(LeastSoln(S)(«))

[

The correctness of this theorem then follows from definition 3.10.

Modular and Polymorphic Set-Based Analysis: Theory and Practice 41

Lemma A.4 (Soundness and Completeness of O) For any simple constraint system
S:
SEc<a — Stec<a

Proof: The soundness of © is straightforward. To prove the completeness of O, assume
S | ¢ < a. Let p be any fixpoint of the functional F' defined as:

F: SetEnv — SetEnv
Flp)(@) = ({c[Stec<aj,
L{p(7) | Ste a <* 4, v < dom(d)},
L{p(7) | Ste v < rng(a)})

where the notation S Fg § <* é means there exists some é1,...,6, with = 46; and ¢, = ¢
such that:
SI—@{&g&H, |1§i<n}

The asymmetry between the definition of the domain and range components F(p)(«)
arises from the rules ©. These rules propagate set variables denoting the result of functions
in « forward along data-flow paths into constraints of the form v < rng(a). However, the
same propagation does not occur for set variables denoting argument values to functions
in «, and hence this propagation in performed in the definition of F(p)(«) by finding all v
such that v < dom(d) and o <* 4.

If pl= 8, then p = ¢ < a and hence § kg ¢ < a by the definition of p, as required. Thus
it just remains to prove that p = S. We proceed by case analysis on constraints C € S.

e Suppose C = [a <]. We need to show that the correct ordering holds between the
corresponding components of p(«) and p(8). For the first component, by (sq), which
is the first rule in O:

{e]Stec<at C {c|Stec<p}
const (p(a)) T const (p(f))

For the second (domain) component, by (ss3):

[Ste 3<*6] = [Ste a<* 4]
() | SFo B <6 7 <dom(@)} C {p(1)|Skoa<rs, < don(d))
ARp(v) | Ste <76, v <dom(6)} C |Hp(y) | Ste a<rd, v < dom(d)}
) dom (p(@)) T dom (p(a)
For the third (range) component, by (s3):
[SFe v <rng(a)] = [SFe v < rng(F)]
{p(7) | Ste v <rng(a)} C {p(7)|Stey<rng(f)}
L{p(7) [Ste v <rng(a)} T LH{p(7) | Ster < rng(h)}
rng (p(a)) £ rng (p(B))

Hence p(a) C p(5).

42 C. Flanagan, M. Felleisen

Suppose C = [¢ < f]:

p(B) I ({clStec<p} T, 1)
3 {e}, T, 1)
= ple)
e Suppose C = [a < rng(fF)].
{rla); € ()| Ste v <rng(f)}
pla) C LHp(7) | Ste v < rng(h)}
= p(rng(5))
e Suppose C = [rng(a) < f]. Then
p(B) 2 p(v) VSteoy<f
p(B) 2 WHe(y) [Ske v <5}
2 U({P(’V() |))5 Fo v < rng(@)} by (s4)

Suppose C = [a < dom(/3)]. Then

pa)

[l 11 1m
-
——
=
)

AN
=)

).

LI{p(7) | Ste a <*§, v < dom(d)} by (s3)
L{p(7) [S e dom(d) < 3, v < dom(d)}
Us{p(y) | Ste v < 5}

p(5)

Suppose § = [dom(a) <

p(dom(a))

i

Hence p = S, and the lemma holds. «

A.3 Proofs for Conditions for Constraint Simplification

~

The following lemma demonstrates that the rule (22) is admissible in that any derivation in
the extended constraint derivation system produces information equivalent to that produced
by the original analysis.

Lemma 4.1 (Admissibility of (=2)). If0 bt~ P:a,S is a most general constraint derivation
then:
sba(P)(l) = const(LeastSoln(S) (1))

Proof: This lemma follows from the induction hypothesis:

Modular and Polymorphic Set-Based Analysis: Theory and Practice 43
IfI'Fe M @ a,81, and E = FV[range(I')] U {a} U Label, then there exists Sy
such that I' - M : o, Sy and S Zg Ss.

We prove this hypothesis by induction on the derivation I' F~ M : «, 8, and by case
analysis on the last step in the derivation.

e If the last step in the derivation I' o M : o, &1 uses a derivation rule other that (22),
then the lemma holds based on the induction hypothesis.

e Suppose [' Fo M : o, 81 via (=) because I' Fo M @ ar, S5 and S3 =g S;. By induction,

I'M: « 84 where 83 2p S§4. Since 2 is an equivalence relation, $; g S, and
hence the lemma holds.

A.4 Proofs for Proof Theory of Observable Equivalence
The following proofs require a number of auxiliary definitions.
Definition A.5. (Paths)

e A path p,q € Path is a sequence of the constructors dom and rng. We use ¢ to denote
the empty sequence, and p.¢ to denote the concatenation of the paths p and ¢.

e The arity of a path p, denoted np, is the number of dom’s in p, taken modulo 2. If #np
is 0, we say p is monotonic, otherwise p is anti-monotonic.

e Lor a path p, the notation p(7) denotes the set expression 7 enclosed in the dom’s and
rng’s of p, i.e., if p = rng.dom, then p(a) = rng(dom(a)).

e The relations <g and <; denote < and >, respectively.
e The relations Cg and C; denote C and I, respectively.
e The relations Jg and J; denote J and C, respectively.
e The relations Cg and C; denote C and 2D, respectively.
e The operations | |, and | |; denote | | and M, respectively.

e lor a path p and a domain element X € D, the notation p(.X) extracts the component
of X at the position p. This notation is formalized as follows:

e(X) = X
(rng.p)(X) = rng (p(X))
(dom.p)(X) = dom (p(X))

44

C. Flanagan, M. Felleisen

e For a path p and a domain element X € D, the notation X@p is defined as follows:

-@-:D X path — D

X@e = X
X@(domp) = (0, X,L,)@p
XQ(rngp) = (0, L, X)ap

Lemma 4.2 (Soundness and Completeness of A).

and a compound constraint C:

Sta C <

For a compound constraint system S

Sk C

Proof: The soundness of A is straightforward. To demonstrate the completeness of A, we
assume S = C and prove that S 5 C by case analysis on C.

e Suppose C =

Vp € Path. Yo € SetVar. const(p(p(a))) =

[c < k]. Define p by:

{c[Skac<pla)}

We prove p = S by a case analysis showing that p satisfies every constraint C’ € S.

— Suppose C’ = [¢ < ¢(3)]. Then, by the definition of p, ¢ € const(p(q(5))), and

hence p = ¢ < ¢(5).
— Suppose C' =

[p(a) < ¢(B3)]. We need to show that p(p(«)) C p(¢(53)). We prove

this inequality by showing that for any path r:

const(r

If r is monotonic, then:

const(r(
const(r(

(Nl

(p(p(a)))) Car const(r(p(g(5))))

p(p())))
plple))))
{c|Skac<r(
{c|SkFac<r(g
via (trans,), since [p(
and hence S Fa r(p(a))
const(r(q(p())))
const(r(p(q(5))))

pla))}
(8))}

The case where r is anti-monotonic follows by a similar argument.

Hence p = S. But since S | ¢

then we have that:
c

Hence, S Fa ¢ < k&, as required.

< K, p E ¢ < k. Since kK = p(a) for some p and «,

const(p(p(a)))
const(p(p(a))
{c|SFac<pa))

m

Modular and Polymorphic Set-Based Analysis: Theory and Practice 45

e Suppose C = [k1 < K3]. Let ¢ be a constant not used in S or C; let ' = SU{c < Ky };
and let p = LeastSoln(S’). Since p = C, we have that:

pEA{c< kL, v <Kol

Hence p = ¢ < kg and by the first part of this proof, S’ Fa ¢ < ks.

We now show that for any &', S’ A ¢ < &’ if and only if S kA k1 < &’. We prove this
hypothesis by induction on the derivation of S’ kA ¢ < &'.

— Suppose S’ Fa ¢ < K’ because [¢ < k'] € S’. Then «’' = ky, and by the rule
(reflex), S Fa k1 < K1, as required.

— If [e < K] €8, then 8’ Fa ¢ < &' must be derived via the rule (trans,) based
on the antecedents S’ Fa {¢ < k", k" < k'}. By induction, S Fa k; < k”. Hence
Stka k1 < &' via (trans;), as required.

Since S’ Fa ¢ < kg, the above induction hypothesis implies that S Fa k1 < kg, as
required.

Lemma 4.3 For a compound constraint system S, S 2p A(S) |g.

Proof: We need to show that S 25 A(S) |, i.e.:
Soln(S) |g = Soln(A(S) |r) |E

Since the rules A are sound:

Soln(S) |k

because the solution space increases as the constraints A(S) are restricted to F.

To show the containment in the other direction, assume p = A(S) |g. Without loss of
generality, assume p(a) = L, for all o ¢ E. We extend p to a super-environment p’ that
satisfies S as follows:

Vp € Path. Yo € SetVar. const(p(p'(a))) = U{const(p(r)) | Ska 7 <pla)}

We show that p’ = S by case analysis on the constraints C € S.

e Suppose C = [c¢ < ¢(F)]. Then

const(q(5)) Utconst(p(r)) | Sta T < q(B)}

> {0

as required.

46 C. Flanagan, M. Felleisen

e Suppose C = [p(a) < ¢(F)]. Then for any path r, S Fa r(p(a)) <z r(¢(3)). Hence:

U{const(p(r)) | Ska 7 < r(p(a))}
Crr Ufconst(p(r)) | Stka T < r(q(5))}

Therefore:
const(p'(r(p(@)))) Crr const(p'(r(q(5))))

Hence:
p'(p(e)) C p'(a(B))
And hence p’ = C, as required.

Thus p’ = S. It remains to show that p and p’ agree on F. Let @ € F and r € Path. Then:

const(p(r()) = Ufeonst(p(r)) | S Fa 7 < r(a)}
by definition of p’
= Ufconst(p(r)) | Sta 7 < r(a),SetVar(r) C I}
since p(f) = L, for ¢ ¥
and hence p(7) = L, for SetVar(r) Z I/
= Uteonst(p(r) | 7 < r(a) € A(S) |1}
= const(p(r(c))

r(a)] € A(S) |g by (reflex) and (compat), and for [r < r(a)] € A(S) |g,
const(p(r(e))). Thus p and p’ agree on F, and the lemma holds.

since [r(«a)

<
const(p(1)) C

Lemma A.6 For any p € Path and X € D, p(X@Qp) = X.

Proof: By induction on the length of p, and by case analysis on the top constructor in p.
[

Lemma 4.4 (Fquivalence of Proof Systems). For a simple constraint system S:

A(S) = TO(S)

Proof: We show that VO(S) C A(S) by induction on the derivation of C € ¥O(S). For
the base case, if C € VO(S) because C € S, then C € A(S). Otherwise we proceed by case
analysis on the last rule used in the derivation of C € ¥O(S).

e (compose;): In this case C = [a < rng(k)] is derived from the antecedents {a <
rng(f), /0 < k} € VO(S). By induction, these antecedents are also in A(S), and
hence the following derivation shows that C € A(S):

B<k

rng(s) < rng()
a < rng(k)

o < Tng(d) (compat)

(trans;)

Modular and Polymorphic Set-Based Analysis: Theory and Practice 47

(composey), (composes), (composes): These cases follow by similar reasoning.

(reflex), (trans,), (compat): These rules are either equivalent to or subsumed by
corresponding rules in A.

(s1), (s4), (s5): For these cases C € A(S) via (trans,).

(s2), (s3): These rules are special cases of the rules (compose;) and (compose,),
respectively.

There are no other possibilities for the derivation C € VO(S)\A(S), and hence VO(S) C
A(S).

We prove the converse inclusion A(S) C ¥O(S) by induction on the derivation of
C € A(S). Again, for the base case, if C € A(S) because C € §, then C € ¥O(S).

Otherwise we proceed by case analysis on the last rule used in the derivation of C € A(S).

o (reflex), (compat): These rules are also in ¥ and, by induction, the antecedents are

in ¥O(S), hence C € ¥O(S).
e (trans;): The last step in the derivation must be:

m<T 7T< Ty

t
< (trans;)

We proceed by case analysis on 7 to show that [ry < 73] € UO(S).

— The case 7 = ¢ is impossible, since [r; < ¢] is not a compound constraint.

— If 7 € SetVar, then [1 < 73] € ¥O(S) via (trans,).

— Suppose T = rng(7’). If 7/ € SetVar then [1 < 7] € PO(S) via (s4).
Otherwise 7 < rng(7’) and rng(r’) < 7, are not simple constraints, and we

proceed by considering the derivation of these constraints in A(S). The last step
in the derivation of 7y < rng(7’) is either via:

ay < rng(f1) g1 <7
oy < rng(7')

(compose,)

where 7 = «aq, or:
<7

compat
mg) < mma)
where 71 = rng(7{). Similarly, the last step in the derivation of rng(7’) < 3 is
either via:

T'< Py rng(f) <o

rng(7) < ay

(composes)

where ™ = ag, or:
<7

t
() < Tog(ry) P

where 7, = rng(7}). We consider the four possible combinations for the deriva-
tions of 71 < rng(7’) and rng(7') < :

48 C. Flanagan, M. Felleisen

* Suppose 71 < rng(7’) is inferred via (compose;) and rng(7') < 3 is inferred
via (composes). Then {f; < 7,7 < 3} C A(S), and therefore [B; < 2] €
A(S) via (trans,). By induction, [#; < f2] € UO(S), and the following
derivation then shows that [r; < 7] € ¥O(S).

ay < rng(f1) B1 < B2
o < rng(ﬁZ) (82) rng(ﬁZ) = (S)
a1 <o !

* Suppose 71 < rng(7’) is inferred via (compose;) and rng(7') < 3 is inferred
via (compat). Then {8; < 7,7 < 13} C A(S), and therefore [#y < 75] €
A(S) via (trans,). By induction, [3; < 73] € WO(S), and the following
derivation shows that [r; <] € ¥O(S).

ay < rng(fy) B <7
ay < rng(74)

(compose,)

* Suppose 7y < rng(7’) is inferred via (compat) and rng(7’) < 7 is inferred
via (composes). This case holds by similar reasoning to the previous case.

* Suppose 71 < rng(7’) is inferred via (compat) and rng(7’) < 13 is inferred via
(compat). Then {r] < 7/,7" < 71} C A(S), and therefore [r] < 73] € A(S)
via (trans,). By induction, [r{ < 73] € ¥O(S), and therefore a (compat)-
inference shows that [r < 73] € ¥O(S).

There are no other possibilities for the derivations of 7y < rng(7’) and rng(7’) <
2.

— Suppose 7 = dom(7’). This case holds by similar reasoning to the previous case
where 7 = rng(7').

There are no other possibilities for 7.

There are no other possibilities for the derivation of C € A(S), and hence A(S) C VO(S).
'

Lemma 4.5 VO(S) |g = 11O(S) |g.

Proof: Since the rule (compat) does not create any Il or © opportunities, VO(S) =
compat (110(S)), and hence we just need to show that:

compat (110©(8)) |z = 11O(S) |&

Now: compat (11©(S)) 2 11O(S)
compat(11O(S)) | 2 1O(S) |k
compat(11O(S)) | E 11O(S) |k

To prove the converse direction, let p = 11O(S) |g. If p = compat (11O(S)) |g, then let C be
the constraint in compat (110(S)) |g with the smallest derivation such that p = C. Then the
last step in the derivation of C must be via (compat). Let C’ be the antecedent of this rule in

Modular and Polymorphic Set-Based Analysis: Theory and Practice 49

compat (11©(S)). Then SetVar(C’) = SetVar(C) C E, and hence C’ € compat(110(S)) |g
with a smaller derivation. Therefore p = C’, and hence since (compat) is sound, p = C.
Thus p (= compat (I1O(S)) |E, as required. ®

Theorem 4.7 [Soundness and Completeness of o and =]
1. & I—gg Sy if and only if S1 Er Ss.
2. & 259 Sy if and only if S1 =g Ss.

1. Suppose S Eg S;. Then

S1 Er A(S,) by the soundness of A
S1 Er A(S2) |

VC € A(S2) |- S1EC

VC € A(S3) |E. S1kaC by Lemma 4.2

VC € 1O(S2) |5 S1kaC by Lemma 4.4

VC € 10(S2) |g. Sitwe C by Lemma 4.4

VC € 1O(S,) |- C € ¥O(S)) |k
VO(S:) |g 2 1O(S2) |E
Sy Hf]@) So

Conversely, suppose &1 I—gg S3. Then

YO(S1) |5 2 116(Ss) |k

Soln(¥O(S1) |E) C Soln(110(S3) |k)

Soln(PO(S1) |E) |E C Soln(l1O(Sy) |E) |E

Soln(81) | C Soln(S2) |E

by Lemmas 4.3, 4.4 and 4.5, since Soln(S;) |g = Soln(110(S;) |£) |E
S1 Er S

2. Follows from part 1.

A.5 Proofs for Deciding Observable Equivalence

We repeat definition 4.8 here, to avoid having to refer back to the original definition earlier
in the text.

Definition 4.8 (Regular Grammar G,.(S, F)) Let S be a simple constraint system and F
a collection of set variables. The regular grammar G, (S, E) consists of the non-terminals
{ap,ay | a € SetVar(S)} and the following productions:

oy o, af o YVaceFl

oy — Bu, Br — af, V[agﬁ]ES

ay — dom(fr) V]a<dom(f)] €S
ay — rog(fu) V[a < rng(B)eS
B, — dom(ar) V [dom(a) < Bl € S
B, -+ rng(az) V [rng(a) <] € S

50 C. Flanagan, M. Felleisen

Lemma 4.9 Let G =G, (S, E). Then:

La(ar) = {k][k <a] €ll(S) and SetVar(k) C E}
Lalay) = {k|]a<k] €ll(S) and SetVar(k) C E'}

Proof: We prove the left-to-right inclusion by induction on the derivation of the constraint
C € ¥(S), and by case analysis on the last step in that derivation.

e Suppose C € ¥(S) because C € §. We proceed by case analysis on C.

— Suppose C = [a < §]. Then a € F| so fr — af, and ap — « are productions in
the grammar. Hence a € Lg(8r). Similarly, 8 € Lg(av).

The remaining cases for C follow by similar reasoning.

e Suppose C = [a < rng(x)] is inferred via (compose,) from the antecedents [<
rng(f)] and [< k]. Then ay — rng(fu), and by induction Sy —* k. Hence
ay — rng(k), as required.

The remaining cases follow by similar reasoning.

We prove the right-to-left inclusion by induction on the derivation oy —* & or oy =™ k&,
and by case analysis on the last step in the derivation. The reasoning for each case is
straightforward. =

We repeat definition 4.10 here, to avoid having to refer back to the original definition
earlier in the text.

Definition 4.10 (Regular Tree Grammar G¢(S, E)) The regular tree grammar G¢(S, F)
extends the grammar G, (S, F) with the root non-terminal R and the additional productions:

R~ [ar < ay] YV a € SetVar(S)
R [c < ay] Vie<aleS

where [- <] is viewed as a binary constructor. a

Lemma 4.11 Let G = G¢(S, E). Then lI(S) |g = La(R).

Proof: We prove the left-to-right inclusion by case analysis on C € II(S) |g.

e Suppose C = [o < k]. Then by Lemma 4.9, oy —7, k. Since SetVar(C)
and hence ay, —g a. Thus R —¢ [af, < ay] = [a < k], and hence [a <

Cl,ack,
K] € Lo (R).

e The case where C = [k < o] follows by similar reasoning.

Modular and Polymorphic Set-Based Analysis: Theory and Practice 51

e Suppose C=[c<K]. f C €S, then Kk = a, a € F, and
R =g e <ay] =g e <a]

as required.

If C ¢ S, then an examination of the inference rules in Il shows that C can only be
inferred via (trans,), based on the antecedents [¢ < o] and [ov < k]. By Lemma 4.9,
ar, =% ¢ and ap —¢ k. Hence R — [c¢ < k], and hence [¢ < k] € L(R), as required.

e Otherwise C = [k; < k3], where k1, ke € SetVar. An examination of the inference
rules in II shows that C can only be inferred via (frans,), based on the antecedents
(k1 < a] and [a < ko). By Lemma 4.9, af, —¢ k1 and oy —¢ ke Hence R — [k <
k2], and hence [k < k2] € L5 (R), as required.

We prove the right-to-left inclusion by case analysis on C € L (R).

e Suppose C = [k1 < kg]. Then for some «, af, —¢ k1 and ag —§ ky. By Lemma 4.9,
{r1 < o, o < K2} C U(S) and SetVar(k;) C E. By Lemma 4.12, {r; < a, a <
K2} CII(S). Hence [k1 < ko] € II(S) |g, as required.

e Otherwise C = [¢ < k]. Then for some o, [c < a] € § and ay —} x. By Lemma 4.9,
{a < Kk} C U(S) and SetVar(r) C . By Lemma 4.12, {o < s} C II(S). Hence
[c < k] € II(S) |&, as required.

Lemma 4.12 (Staging) For any simple constraint system S:

VO(S) = ¥(O(S)) = compat (11(O(S)))

Proof: The equality ¥(O(S)) = compat (I1(O(S))) holds since (compat) does not create
any Il or © opportunities.

The inclusion VO(S) O ¥(O(S)) obviously holds. To prove the inclusion VO(S) C
U (O(S)) holds, we suppose S Fge C, and prove O(S) Fy C by induction on the derivation
S Fye C, and by case analysis on the last step in this derivation.

e Suppose § Fye C via some rule in W. By induction, the antecedents of this rule are

in U(O(S)), and hence C is also in V(O(S)).

e Suppose S Fgg C via one of the rules (s1), (s2) or (s3). These rules are subsumed by
(trans,), (compose;) and (compose,), and hence this case is subsumed by the previous
case.

e Suppose S Fye C via (s4), based on the antecedents {ov < rng(3), rng(f) <~}. By
induction, these antecedents are in ¥(O(S)). An examination of ¥ shows that ¥ can
only infer [< rng(f)] if there exists o/, 3’ such that ©(S) contains the constraints:

o S* Oé/ Oé/ S rng(ﬁ/) ﬁ/ S* ﬁ

52 C. Flanagan, M. Felleisen

The Entailment Algorithm

In the following, Pg, denotes the finite power-set constructor.

Let:
G
G

Gr (81, E) Li
G(S2, F) U;

{ap | @ € Vars(

Si)}
{av | @ € Vars(S;)}

)

Assume (G; and Gy are pre-processed to remove e-transitions. For C' € Py, (Lo x Us), define:

L(C) =A{[rr <]| {er,fv) €, ar —a, T, fv —a, U}

The relation Rg, s,[-, -, -, | is defined as the largest relation on Ly X Uy X Prn(La X Us) X Pgn (Lo X Us)
such that if:
Rs,,s.lar, v, C, D] ap g, X Bu —a, Y

then one of the following cases hold:
1. L([X <Y)) C L(CUD).
2. X =rng(a}), Y =rng(fy) and Rs, s,[af, 8, C, D], where
D' ={(v,6p) | (v,0v) € CU D,y =, tng(vy),du —a, rng(dy)}
3. X =dom(af;), Y =dom(f;) and Rs, s,[67, of, C, D], where
D' = ({84, 9) | (11,60} € CU D, 71 g, dom(3y),du —, don(d))}
The computable entailment relation S, I—flg & holds if and only if Ve € Vars(Sy):

R51,52[aLaaUa {<7La7U> | v E VGTS(SZ)}’@]

Figure 13: The computable entailment relation I—ﬁg

Similarly, ¥ can only infer [rng(3) < 7] if there exists 5", v such that ©(S) contains
the constraints:

p<p’ rmg(B’) <y A<y

Hence:
SFo o <rng(p”) via multiple applications of (s3)
Stke o <4 via (s4)
O) Fva<y via multiple applications of (trans,)

e The case for (s5) holds by similar reasoning.

A.6 Correctness of the Entailment Algorithm

Theorem 4.13 (Correctness of the Entailment Algorithm). S, I—g S1 if and only if
Sy HE, Si.

alg

Modular and Polymorphic Set-Based Analysis: Theory and Practice 53

Proof: The definitions of the computable entailment relation and the relation R are shown
in figure 13. We prove this theorem based on the following invariant concerning the relation

R$1,$2 ['7 RS]
Rs, s, lar, Bu, C, D] — L([ar, < Bu]) C compat (L(C)) U L(D)

Assume this relation holds, and that S I—g S1. Then 11(81) |5 € compat(11(S2)) |. By
lemma 4.11, II(S;) | = L, (R), and hence:

£G1 (R) C compat (£G2 (R))
Thus, for all R —¢, [ar < ayl:

La (lar < ayl)
La (lar < ayl)

compat (L, (R))
compat (La, {{(yr,w) | v € SetVar(S,)}))

Hence:
Rs,.s,lan, av, {{(vr, o) | v € SetVar(S2)}, 0]

Also, from L, (R) C compat(Lq, (R)), we have that for all R —¢q, [c < ay]:

Lo (e<ay]) C compat(La,(R))
Loy(e<av]) C L, (R)
La(av) € Lo ({w | Re=aale <wl})

Hence S, I—ﬁg Sy holds. The proof of the converse implication that S I—ﬁg Sy implies

Sa I—g Sy proceeds by a similar argument.
It remains to show that the invariant concerning R holds. To prove the left-to-right
direction, suppose Rs, s,[ar, fu, C, D] and:

arp g X i—>81 TI,
*
Bu —a Y =5 0

We prove by induction on 77, that
£([rn < 7)) € compat(£(C)) U £(D)
One of three cases in the definition of R must hold.
1. L([ar, < fy]) € L(C' U D). This case is trivial.
2. In this case:

X = rng(af) o =G, T 71, = rng(17)
Y = rng(8y) By =&, T Ty = rng(7{;)

and Rg, s,[af, By, C, D], where
D' = {(5.60) | {ve,00) € C'UD, v —a, tng(y1), du —a, Tng(d)}

By induction, [r7 < 7{;] € compat (L(C)) U L(D").

54

3.

C. Flanagan, M. Felleisen

o If [r; <] € L(D') then there exists (v7,dr) € D such that y; =7, 77 and
8 &, Tir- By the definition of D', there exists (yg,dp) € C'U D such that
VL =g, T and §y =g, . Therefore [, < 7] € L(C'U D), as required.

o If [1; < 7;] € compat(L(C)) then [, < 7] € compat(L(C')), as required.

The proof for the third case of the definition of Rg, s,[-, -, , -] is similar to that for the
second case.

To prove the right-to-left direction, suppose:

L([er < Bu]) € compat (L(C)) U L(D)

and that the relation Rs, s,[ar, fu, C, D] does not hold. Hence there exists X, Y such that
ar, —q, X and By —q, Y and none of the three conditions in figure 13 hold. Furthermore,
since R is the largest relation satisfying the conditions in figure 13, there exists a finite
proof that none of the three conditions hold.

Of all possible such counter-ezamples (o, pr, X,Y,C, D), we pick the one with the
smallest proof that the relation Rs, s,[ar, B, C, D] does not hold, and proceed by case
analysis on the last step in this proof.

Suppose Rs, s,lar, v, C, D] does not hold because of condition one. Then L([X <
Y]) € £{C'U D), which contradicts the assumptions above.

Suppose R, s, or, fu, C, D] does not hold because of condition 2. Then X = rng(af)
and Y = rng(f;;). Consider any pair of set expressions 77, and 77 such that af ¢,
7, and Bi; =%, . We consider the two possibilities for [rng(r) < rng(rp)] €
compat(L(C)) U L(D) separately.

— If [rng(r1) < rng(m)] € L(C) U L(D), then there exists (yz,0y) € C'U D such
that:
VL —6, Tg(vL) =G, Thg(T)
Su —a, tng(dy) =5, rg(tv)

Hence [r;, < 7] € L(D'), where:
D' =A{(v,00) | (2, 0v) € CUD,v1 =a, tng(v1), v —a, rng(dy)}

— Otherwise [rng(7r) < rng(ty)] € compat(L(C)) \ L(C), and hence [, < 1¢/] €
compat (L(C)).

Hence
L([al, < By]) C compat(L(C)) U L(D)

The proof that R, s, [, fu, C, D] does not hold cannot rely on a smaller proof that
Rs, s, 1%, 817, C, D] does not hold, since that would yield a counter-example with a
smaller proof.

The case where R, s,[or, B, C, D] does not hold because of condition 3 is also
impossible via similar reasoning.

Thus the invariant on R is true, and thus the lemma holds. =

Modular and Polymorphic Set-Based Analysis: Theory and Practice 55

A.7T Correctness of the Hopcroft Algorithm

Theorem 4.14 (Correctness of the Hopcroft Algorithm). Let S be a simple constraint
system with external variables E; let ~ be an equivalence relation on the set variables in a
constraint system S satisfying conditions (a) to (e) from figure 9; let the substitution f map
each set variable to a representation element of its equivalence class; and let 8" = f(8), i.e.,
S’ denotes the constraint system S with set variables merged according to their equivalence
class. Then S =g S'.

Proof: Let p be a solution of S. Define p’ by:

Obviously p, p’ agree on E by condition (a) on ~. We claim that p’ = C for all C € § by
case analysis on C.

e Suppose C = [a < rng(F)]. Then for all o such that a ~ o' there exists 4’ such that
B~ (3 and:
pla/) C p(rng(8)
Hence for all o ~ o':

p(a/) T | p(rng(8))
B'nB

and therefore:

LI pla’) © | p(rng(d)
o'~al B

Hence:
plle)y = U pa)

OZ/NOZ

C [p(rng(s))
A'~B

= g (p'(9))
= p'(xng(P))

and thus p’ = C, as required.
e The cases where C = [a < f] and C = [rng(a) <] follow by similar reasoning.
e Suppose C = [a < dom(f3)]. Then Va ~ o' V3 ~ [such that:
pa’) T p(dom(s))

Hence Vo ~ o
p@) T N pldon(s)
B'~p3

56 C. Flanagan, M. Felleisen

and therefore:

LI pe@/) & N p(dom(s))
o'~a B

Hence:

plle) = L ple)

e Suppose C = [dom(/) < «]. Then:

p'(dom(B)) = dom (p'(5))

= dom | U (3
B'~p
= N p(dom (8))
B'~p
C p(dom (B))
C pla)
C U ple)
= pl(a)
e Suppose C = [¢ < a]. Then
plla) = U pla)
3 ple)
= ¢
]
B Notations
Symbol Meaning Section
MeA Terms 2
V € Value Values 2
x € Vars Variables 2
b € BasicConst Basic constants 2

Page

IS S

Modular and Polymorphic Set-Based Analysis: Theory and Practice

t € Tag
[€ Label

By, Bt unlabel
&

—, —"

eval

T € SetFxp

o, B3,...€ SetVar
c € Const

dom, rng

C

S

S e

D.C,T, L, U,n
P

mn

const, dom, rng

p € Setbnv
Soln(S)

):7):E
Soln(S) |k
=F

-
r

g

ES? —|—57 J‘S? |—|57 |_|5
sba
LeastSoln

62{817"'7871}

T

Function tags
Labels

Reduction rules

Evaluation contexts
Standard reduction relation
Evaluator

Set expressions

Set variables

Constants

Type expression constructors
Constraints

Constraint systems

Restriction of a constraint system

Domain, ordering, elements and operations
Power set constructor

Values described by constants

Extract components of element of D

Set environment
Solution space
Satisfies, or entails
Restriction

Observable equivalence

Constraint derivation rules
Set variable context
Constraint schema

Alternative ordering on domain
Analysis function

Least Solution

Inference rules

Deduction

External variables

Free variables in I’

Inference rules on constraint systems
Grammar

Function producing regular grammar
Grammar non-terminals

Language for X in ¢

Function producing RTG

3.1.2
3.1.2
3.1.2
3.1.2

3.2
3.2
3.2
3.2
3.2
3.2
3.2

3.3.1
3.2

3.3.1
77

3.3.2
3.3.2
3.3.2
3.3.2
3.1

3.4
3.4
3.4

3.4
3.10
3.6
3.6.1
3.6.1

4.1
3.4
4.2
4.8
4.8
4.8
4.8
4.10

e

o0 =1 =1 =1 =1 w O Tt S NS IS IS B I WS CUOU s

oo o

12

13
13

14

17
20
20
20
20
21

57

58 C. Flanagan, M. Felleisen

R Root non-terminal 4.10 21
D, q Paths A4 43
7 Arity function A4 43
< <or> A4 43
sel Either dom or rng A4 43
C Converts compound to simple constraints A4 43
-@- Injection function A4 43
<* Transitive closure of < A2 41
References

[1] Ano, A., J. HopcrorT AND J. ULLMAN. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, Mass., 1974.

[2] AIKEN, A., WiMMERs, E. L., AND Laksaman, T. K. Soft typing with conditional
types. In Proceedings of the ACM Sigplan Conference on Principles of Programming
Languages (1994), pp. 163-173.

[3] Cousor, P., anD Cousor, R. Formal language, grammar, and set-constraint-based
program analysis by abstract interpretation. In Proceedings of the 1995 Conference on
Functional Programming and Computer Architecture (1995), pp. 170-181.

[4] DUESTERWALD, E., GUupTa, R., AND Sorra, M. L. Reducing the cost of data flow
analysis by congruence partitioning. In International Conference on Compiler Con-
struction (April 1994).

[5] EirriG, J., SMITH, S., AND TrRIFONOV, V. Sound polymorphic type inference for
objects. In Conference on Object-Oriented Programming Systems, Languages, and
Applications (1995).

[6] FAHNDRICH, M., AND AIKEN, A. Making set-constraint based program analyses scale.
Technical Report UCB/CSD-96-917, University of California at Berkeley, 1996.

[7] Franagan, C., AND FELLEISEN, M. Set-based analysis for full Scheme and its use in
soft-typing. Technical Report TR95-254, Rice University, 1995.

[8] Franacan, C., FLaTT, M., KRISHNAMURTHI, S., WEIRICH, S., AND FELLEISEN, M.
Finding bugs in the web of program invariants. In Proceedings of the ACM Conference
on Programming Language Design and Implementation (1996), pp. 23-32.

[9] FraTT, M. MzScheme Reference Manual. Rice University.

[10] HEINTZE, N. Set-based analysis of ML programs. In Proceedings of the ACM Confer-
ence on Lisp and Functional Programming (1994), pp. 306-317.
[11] HinpLEY, R. J., AND SELDIN, J. P. Introduction to Combinators and \-Calculus.

Cambridge University Press, 1986.

[12]

[13]

[14]

[18]

[19]

[20]

[21]

[22]

Modular and Polymorphic Set-Based Analysis: Theory and Practice 59

HopcrorT, J. . An n log n algorithm for minimizing the states of a finite automaton.
The Theory of Machines and Computations (1971), 189-196.

JAGANNATHAN, S., AND WRIGHT, A. K. Effective flow analysis for avoiding run-time
checks. In Proc. 2nd International Static Analysis Symposium, LNCS 983 (September
1995), Springer-Verlag, pp. 207-224.

JonEs, N., AND MucHNICK, S. A flexible approach to interprocedural data flow
analysis and programs with recursive data structures. In Conference Record of the
Ninth Annual ACM Symposium on Principles of Programming Languages (January
1982), pp. 66-74.

ParLsBerG, J. Closure analysis in constraint form. Transactions on Programming
Languages and Systems 17, 1 (1995), 47-62.

PALSBERG, J., AND O’KEEFE, P. A type system equivalent to flow analysis. In Pro-
ceedings of the ACM SIGPLAN °95 Conference on Principles of Programming Lan-
guages (1995), pp. 367-378.

PorTier, F. Simplifying subtyping constraints. In Proceedings of the 1996 ACM
SIGPLAN International Conference on Functional Programming (1996), pp. 122-133.

ReynoLDs, J. Automatic computation of data set defintions. Information Process-
ing’68 (1969), 456-461.

TorTE, M. Type inference for polymorphic references. Information and Computation
89, 1 (November 1990), 1-34.

TriroNOV, V., AND SMITH, S. Subtyping constrained types. In Third International
Static Analysis Symposium (LNCS 1145) (1996), pp. 349-365.

WRIGHT, A., AND FELLEISEN, M. A syntactic approach to type soundness. Informa-
tion and Computation 115, 1 (1994), 38-94.

WricHT, A. K. Simple imperative polymorphism. Lisp and Symbolic Computation
8, 4 (Dec. 1995), 343-356.

