Set-Based Analysis for Full Scheme
and Its Use in Soft-Typing

Cormac Flanagan
Matthias Felleisen

Rice COMP TR95-254
October 1995

Department of Computer Science
Rice University

P.O. Box 1892

Houston, TX 77251-1892

Copyright ©1995 by

Cormac Flanagan and Matthias Felleisen

Set-Based Analysis for Full Scheme
and Its Use in Soft-Typing

Cormac Flanagan*® Matthias Felleisen™

Department of Computer Science,
Rice University,

Houston, TX 77251-1982

Abstract

Set-Based Analysis is an efficient and accurate program analysis for higher-order lan-
guages. It exploits an intuitive notion of approximation that treats program variables
as sets of values. We present a new derivation of set-based analysis, based on a reduc-
tion semantics, that substantially simplifies previous formulations. Most importantly,
the derivation easily extends from a functional core language to include imperative
features such as assignments and first-class continuations, and supports the first cor-
rectness proof of set-based analysis for these imperative features. The paper includes
an implementation of the derived analysis for a Scheme-like language, and describes a
soft-typing algorithm that eliminates type-checks based on the information produced
by the analysis.

*Supported in part by NSF grant CCR 91-22518 and a sabbatical at Carnegie Mellon University.

Contents

7

8

Introduction

An Idealized Intermediate Language

2.1 Syntax e e
2.2 Semantics L e e e

Set-Based Analysis

3.1 Deriving Set Constraints,
3.2 Soundness of the Set Constraints
3.3 From Set Constraints to Set-Based Analysis

Set-Based Analysis of Assignments

4.1 Semantics e e e e e e e e e
4.2 Set-Based Analysis Lo oo Lo
4.2.1 Deriving Set Constraints.
4.2.2 Soundness of the Set Constraints

Set-Based Analysis of First-Class Continuations

5.1 Semantics L e
5.2 Set-Based Analysis oL oo o
5.2.1 Deriving Set Constraints
5.2.2 Soundness of the Set Constraints

Application: Soft Typing from Set-Based Analysis

6.1 Soft Typing
6.2 Non-Checking Primitives
6.3 The Soft Typing Algorithm

Related Work

Conclusion

A Set-Based Analysis Algorithm

W N

W W oy !

14
15
15
15

15
16
16
17
18

20
20
20
21

22

24

25

Set-Based Analysis for Full Scheme and Its Use in Soft-Typing 1

1 Introduction

Advanced compiler optimizations heavily rely on static information about the values that
program variables may assume. Computing such information for higher-order languages
such as Scheme [2] and ML [16] is particularly complex, since a static control-flow graph
of a program is not readily available at compile time [19, 22]. Heintze [10, 11] pioneered
a set-based approach to program analysis that controls this complexity in two ways. First,
the approach is based on a single notion of approximation that treats program variables
as sets of values. Second, the approach splits the analysis into two phases: a specification
phase and a solution phase. During the specification phase, the analysis derives constraints
on the sets of values that program variables may assume. These constraints approximate
the dataflow relationships of the analyzed program. During the solution phase, the analysis
produces sets of values that satisfy these constraints. The result is a valid approximation
of the value sets for the program variables.

In contrast to the simplicity of the analysis, Heintze’s derivation of set-based analysis is
complex. The derivation of the specification phase involves a number of intermediate steps.
Specifically, Heintze uses the “natural” semantics framework to define a set-based “natural”
semantics, from which he reads off “safeness” conditions on set environments. He then
shows how to derive set constraints from the set-based semantics and proves that a solution
of these constraints is a safe set environment. The derivation of the solution phase is also
complex. It involves solving constraints on the infinite sets of values that program variables
may assume. Heintze represents these infinite sets using a restricted form of set constraints,
which can be regarded as regular tree grammars, and his solution phase produces a regular
tree grammar representation of the solution of the set constraints.

Not only is Heintze’s derivation complex, it is also limited to the analysis of purely
functional languages. FExtending it beyond a simple functional core is difficult, mostly
due to the use of “natural” semantics, which cannot easily accommodate destructive data
structure manipulations and non-local control operators. Although suitable set constraints
for these imperative features can be produced in an ad-hoc manner, there is no semantic
foundation for these constraints. Thus existing implementations of set-based analysis for
languages like Scheme and ML [10, 11, 8, 7], which include assignments and non-local control
operators, are not semantically well-founded.

We present a simpler derivation of set-based analysis than Heintze’s. It avoids the
complexities and limitations outlined above, and explains the underlying notion of approx-
imation in a clear manner. Qur approach is based on a reduction semantics that explicitly
models the allocation of objects in a global heap [5].! We avoid Heintze’s intermediate steps
by deriving our set constraints and proving their correctness directly from the reduction se-
mantics. Qur semantics also records sufficient information to associate each run-time value
with the corresponding syntactic value in the source program. We exploit this information
to express our set constraints in terms of finite sets of syntactic values in the source program,
thus avoiding the need to reason about constraints on infinite sets of values.

Since our heap-based semantics represents values as general “graphs”, it is straight-
forward to extend both the semantics and the analysis to a language with assignments.
Similarly, because the complete control state is available for each step of the evaluation,

! Also see [17] for an application of this idea to model and verify garbage collection algorithms.

Set-Based Analysis for Full Scheme and Its Use in Soft-Typing 2

the extension to a language with non-local control constructs is also straightforward. Our
derivation supports the first soundness proof of set-based analysis for a language containing
these imperative features.

The presentation of our results proceeds as follows. The second section presents the
syntax and semantics of a simple functional language, and the third section describes the set-
based analysis of that language. The fourth and fifth sections shows how the analysis extends
to assignments and first-class continuations, respectively. The sixth section describes an
application of set-based analysis known as soft-typing, and Section 7 discusses related work.
The appendix includes a simple implementation of the derived analysis for a Scheme-like
language containing both assignments and first-class continuations.

2 An Idealized Intermediate Language

2.1 Syntax

Our motivation in performing program analyses is to produce information for the opti-
mization phases of a compiler. Compilers typically convert source programs into a simple
intermediate representation, and then proceed to analyze and optimize the intermediate
representation of the program. Therefore, we formulate the analysis for an intermediate rep-
resentation of an idealized functional language. Specifically, we use the subset of A-normal
forms [9] of a A-calculus-like language with a let construct and conditional expressions:?
see Figure 1. The language also includes the primitives cons, car, and cdr for list ma-
nipulation, which will serve to illustrate the treatment of primitive operations, and a basic
constant nil denoting the empty list.

The key property of terms in A-normal form is that each intermediate value is explicitly
named and that the order of execution follows the lexical nesting of let-expressions. The
use of A-normal forms thus simplifies the formulation of the semantics and facilitates the
compile-time analysis of programs since every intermediate value is named [20].

Values are either simple values or heap-allocated values. Simple values are either vari-
ables or locations. Locations do not occur in source programs; they are only created during
program evaluation. Heap-allocated values include procedures (Az. M), pairs of values
(cons v v) and basic constants. Procedures and let-expressions are binding constructs, and
we assume that all binding constructs in a program introduce distinct variables. A variable
occurrence is free if it is not bound by an enclosing binding construct, and a term is closed
if it contains no free variables. We use A? to denote the set of location-free, closed terms,
OT programs.

Notation We use the following notations throughout the paper: Py, denotes the finitary
power-set constructor; f : A — B denotes that f is a total function from A to B; and
M € P denotes that the term M occurs in the program P.

20ur langnage follows the Scheme and Lisp tradition of nsing conditional expressions instead of a pattern-
matching construct. The use of conditional expressions, predicates and selectors enables more opportunities
for functional abstraction than the pattern matching approach, but imposes more work on the analysis
phase.

Set-Based Analysis for Full Scheme and Its Use in Soft-Typing 3

Programs:
M,N € A, = v (Expressions)
| (let (= h) M)
| (let (z (car v)) M)
| (let (z (cdr v)) M)
| (let (= (if v M M)) M)
| (let (= (apply v v)) M)
| (let (z M) M)
v € Swval = x| (Simple Values)
r € Vars = {e,y,2,...} (Variables)
[€ Loc (Locations)
h € Hval == (Ax. M) | (cons v v) | ¢ (Heap Values)
¢ € Const = {nil,...} (Basic Constants)

FiGure 1: The A-normalized Intermediate Language

2.2 Semantics

We define the semantics of programs via an abstract machine (see Figure 2) that explicitly
models the allocation of objects into a global heap [17, 5]. A heap is a set of bindings from
locations to heap values. The set Loc of locations contains an infinite subset Loc, reserved
for each variable . The function new takes a heap and a variable z, and returns a new
location from Loc, that is not already allocated in the heap. The operation M|z — [,]
denotes the substitution of the location [, for all occurrences of z within M, and the
operation h[z «— [;] is defined analogously.

Each state of the machine consists of a heap and program term, except for the special
state error. The machine evaluates programs by stepping through a sequence of states
according to a set of transition rules. Each transition rule of the machine defines the se-
mantics of a particular class of expressions. For example, the transition rule (car) evaluates
expressions of the form (let (2 (car {,)) M). If the heap value at location [, is a pair, then
the transition rule extracts the first component of that pair, stores that component at a
new location [, in the heap, and replaces all occurrences of x within M by [,.. Alternatively,
if the heap value at location [, is not a pair, then the transition rule (car) raises an error.
Each of the remaining transition rules has a similar intuitive explanation.

The definition of these transition rules relies on the notion of an evaluation context. An
evaluation context F is a term with a “hole” [] in place of the next subterm to be evaluated.
For example, in the term (let (z M) N), the next expression to be evaluated lies within
M, and thus the definition of evaluation contexts includes the clause (let (z F) M).

The evaluator eval is a function from programs to results. A result is either a basic
constant, or one of the tags procedure or cons, indicating that the program returned an
abstraction or a pair respectively, or the tag error, indicating that the program raised an
error, or 1, indicating that the program diverges.

Set-Based Analysis for Full Scheme and Its Use in Soft-Typing

Evaluator:
eval : AY — Const U {procedure, cons, error, L}
c it (0, Py—*(H,l)and H(l) = ¢
procedure if (), P)—* (H, 1) and H(l) = (Az. M)
eval(P) = cons it (0, P)—*(H,1)and H(l) = (cons I 1)
error if (0, P)—"* error
L if Vi € N 35, such that (@, P) ! 5;
Domains:
S € State = (H, M) |error (States)
H ¢ Heap = {li=hy,... lp=h,} (Heaps)
l € Loc = Uxe Vars Locx (Locations)
l, € Loc, (z-Locations)
E € FvalCtet == []]| (let (z E) M) (Evaluation Contexts)
Transition Function:
(H, E[(let (x c) M) |)
— (HU{ly=c¢}, B[Mz — ;]]) (bind-¢)
where [, = new(H, x)
(H, B[(let (= (\w. X)) M)])
— (HU{l; = (Aw.N)}, B[Mz — ;]]) (bind-lam)

where [, = new(H, x)

(H, E[(let (z (cons I, I,)) M)]}
(HU{ly = (cons [, I)),l;, = H(ly),l, = H(L,)}, evext M [z — [;])
where [, = new(H,z), [, = new(H,y), I, = new(H, z)

—

(H, E[(let (x
(HU{l, = H(l,,)}, E|

(car 1)) M))

Mz —1,]]) if H(l,) =

(cons I, 1,,)

(bind-cons)

— { where [, = new(H, z) (car)
error it H(l,) # (cons I, ,,)
CH, B[(let (x (edr 4,)) M)])
—— analogous to (car) (cdr)
(H, E[(let (z (if I, My Ms)) M)])
. { (H, E[(let (x M) M) 1) ¥fH(ly);£nil (if)
(H, E[(let (z M) M) 1) if H(l;) =nil
(H, B[(et (x (apply I, 1.)) M)]) |
(HU{l, = H(L.)}, E[(let (z N[w — 1,]) M)]) if H(ly) = (Aw.N)
— where 1, = new(H, w) (apply)
error it H(l,) # (Aw. N)
(H, B[(et (x 1,) M)]) |
— (HU{lx_H(l Vb B[M — 1]]) (bind-v)

y
where [, = new(H, x)

FIGURE 2: The C'S-Machine

Set-Based Analysis for Full Scheme and Its Use in Soft-Typing 5

3 Set-Based Analysis

The goal of set-based analysis is to produce information about the sets of values that
program variables may assume during an execution. In general, the exact value set for each
program variable is not computable, and therefore some notion of approximation is needed.
Set-based analysis is based on an intuitive approximation that treats program variables
as sets of values, and ignores the information regarding which specific value a variable
represents at a given point in an execution. Since each value associated with a variable
corresponds to a distinct location in our semantics, we express this notion of approximation
by merging all locations allocated for each variable into a single abstract location. That is,
we use each variable z as an abstract location representing all the locations in Loc, that
may be allocated for x. Thus, if P is the program being analyzed, then we use the set
Varsp of variables occurring in P as the set of abstract locations for the analysis of P.

We extend this notion of representation from variables to heap values as follows: Let
Hvalp be the set of heap values that occur in the program P. Fach heap value produced
during the execution of P is obtained by substitution from a syntactic heap value in Hvalp.
Therefore, we use each heap value h in Hvalp as an abstract value representing all sub-
stitution instances of h, i.e., all heap values obtained from h by substituting appropriate
locations for the free variables of h. We call the resulting set of heap values the substitution
closure of the heap value h. The substitution closure of a set of heap values is defined in a
straightforward manner.

Definition 3.1. (Substitution Closure)

e Lor h € Hval with FV[h] = {z1,...,2,}, the substitution closure of h is

Cl(h) = {hler — 1oy, o oytn — 1z,] | Lz, € Locy, }

e For A C Hval, the substitution closure of A is

ciA)y = | cun)
heA

Our analysis produces a finite table, called a set environment, that maps each program
variable to a set of syntactic heap values from Hwvalp. A set environment & is valid for the
program P if, for each variable x, each heap value associated with z during an execution is
in the substitution closure of £(z).

Definition 3.2. (Set environments, Validity) Let P be a program.
e A mapping & : Varsp — Ps.(Hvalp) is a set environment for P.

o The relation P |= & (read “P validates £, or “£ is valid for P”) holds if
(@, PYy—>(H, M) implies that H |= £.

o The relation H |= & holds if for all bindings (I, = h) € H, h € Cl(E(2)).

Set-Based Analysis for Full Scheme and Its Use in Soft-Typing 6

We develop an analysis that produces valid set environments in two steps. To develop
the specification phase of the analysis, we derive constraints on the sets of values that
program variables may assume and prove the soundness of these constraints with respect
to the abstract machine semantics. For the solution phase of the analysis we develop an
algorithm that solves these constraints.

3.1 Deriving Set Constraints
Given a program P, a set constraint is of the form:

Ap

B
where Ap and B are statements concerning set environments, and Ap also depends on the
program. A set environment & satisfies this constraint if whenever A holds for £ and P,

then B also holds for £. We show how, for each kind of term in P, the analysis must add
certain constraints to the global set of program constraints:

o (let (z (Aw.N)) M)

During execution, this source term will correspond to a run-time term (let (2 (Aw. N')) M"),
where N’ and M’ are substitution instances of N and M respectively. To record that

z may be bound to a substitution instance of (Aw. N'), we require that & satisfies the
following constraint:

(let (x (Aw.N))M)e P
(Aw.N) € &(x)

(C;)Dind-lam)
e (let (z (cons y z)) M)

During execution, this source term will correspond to a run-time term (let (2 (cons {, [,)) M’),
where M’ is a substitution instance of M. To record that z may be bound to a heap
value (cons [} I}), we require that £ satisfies the following constraint:

(let (z (cons y z)) M) e P
(cons y z) € E(x)

P
(Cbind-lam)

o (let (z h) M)

During execution, this source term will correspond to a run-time term (let (z A') M'),
where i/ and M’ are substitution instances of h and M respectively. To record that x
may be bound to a substitution instance of h, we require that &£ satisfies the following
constraint:

(let (x h) M) e P

heé&(x) (5,)

bind-cons

Set-Based Analysis for Full Scheme and Its Use in Soft-Typing 7

e (let (z (car y)) M)

During execution, this term in the source program will correspond to the run-time
term (let (2 (car l,)) M’), where [, is some location for y and M’ is a substitution
instance of M. If the heap maps the location [, to a pair (cons [, [,,), then the
evaluation of this expression will associate x with the heap value at location /,,. If we
assume that £ approximates the value sets of the program variables y and z;, then
E(y) includes (cons z; z2), and £(z1) approximates the heap value at [.,. Therefore,
we ensure that & accounts for the bindings created during the evaluation of this
expression by demanding that &£ satisfies the following constraint:

(let (z (car y)) M) e P (cons 21 23) € E(y)
E(z) C&(x)

(Ctar)

No additional constraints are required for the error case, since whenever y does not
denote a pair, an error state is immediately produced and no further bindings are
created.

o (let (z (apply y z)) M)
Assume that £(y) includes (Aw.N). Then the evaluation of this expression will as-
sociate the formal parameter w with one of the values of the argument variable z.
Moreover, at the corresponding function return, the value of the “return” variable
of the procedure may flow to the variable x. Thus, if FinalVar[N] is a function
that determines the innermost (“result”) variable of NV, then the crucial constraint for
application expressions is as follows:

(let (z (apply y z)) M) e P (Aw.N) € E(y) P
E(z) C &(w) E(FinalVar[N) C E(x)

The definition of FinalVar is straightforward.

Definition 3.3. (FinalVar)

FinalVar : A, — Vars
FinalVar[z] = =z
FinalVar[(let (z ---) M)] = FinalVar[M]

Examining each of the other classes of program terms in a similar manner results in a set
of nine program-based set constraints: see Figure 3.

Set Constraints for a Sample Program To illustrate the derivation of set constraints,
we consider the following program cons-it. The program defines a function cons-it that
returns a cons-cell containing two copies of its argument, and the program then applies this
function to the numbers 1 and 2, producing results pairy and pair, respectively, and finally
returns the car of pairsy:

Set-Based Analysis for Full Scheme and Its Use in Soft-Typing 8

(let (x ¢) M)e P -
ceé(x) (Cbind-c)
(let (z (Aw.N)) M)e P »
(\w. N) € () (Chind-tam)
(let (z (cons y z)) M) € P »
(cons y z) € E(x) (Cbind-cons)
(let (« (car y)) M) € P (cons 1 22) € E())
E(z1) CE(x) (Cear)
(let (& (cdr) M) E P (cons 21 =) € £(1))
E(z2) C E(x) (Cegr)
(let (z (if y My Ms)) M) e P h €&y h #nil »
E(FinalVar[M,]) C (=) (Cif-true)

(let (z (if y My My)) M) e P nil € &(y) B
E(FinalVar[M2]) C E(x) (sz-false)

(let (z (apply y z)) M) € P (Aw.N) € E(y)

E(z) C&(w) E(FinalVar[N]) C E(x) (Cgppl?/)
let (x N)M)e P
ks L (C;)Dind-v)

E(FinalVar[N]) C E(x)

FiGure 3: Set Constraints on £ with respect to P.

(let (cons-it (Ax. (let (r (cons z z)) r)))
(let (tl 1)
(let (pairy (cons-it t1))
(let (tg 2)
(let (pairy (cons-it t3))
(let (a (car pairy))

a))))))

Instantiating the set constraints for this program produces the following constraints:

Set-Based Analysis for Full Scheme and Its Use in Soft-Typing 9

From CF . (. (let (r (cons @ @) 7)) € &(cons-it) (1)
From CF, | (cons z z) € £(r) (2)
From CF . L€ &t) (3)
From C} . 2 € &(ty) (4)
From Co oy £ C E(w)(- g()aniE%Zfizvf%) C &(pairy) (5)
From Cypppy £(12) C &(w) (/\u;,"(]]\;z?nilél’/(aio[?-]z)t)g E(Funpairy) (6)
From CL,, (consgi;1§2)gi,f;f)air2) (7)

Constraints (1) through (4) are atomic constraints, and we satisfy these constraints
by simply adding the appropriate bindings to £. To satisfy the inference constraints (5)
through (7), we extend & as required by these constraints.

From (1),(3),(5) 1eé(x) (8)
From (1),(2),(5): (cons z x) € E(pairy) (9)
From (1),(4),(6): 2€&(x) (10)
From (1),(2),(6): (cons x x) € E(pairy) (11)
From (7),(8),(11): 1€é&(a) (12)
From (7),(10),(11): 2€&(a) (13)

E(cons-it) = {(Az.(let (r (cons z x)) r))} E(t) = {1}

£(r) = {(cons « 2)) fn) = {2)
E(pairy) = {(cons z z)} E(x) = {1,2}
E(pairy) = {(cons z z)} Ela) = {1,2}

A quick examination of the set constraints shows that this set environment satisfies
the constraints for the program cons-it. Furthermore, since each binding in £ is required
by these constraints, £ is the smallest set environment satisfying the set constraints. Of
course, & does not represent the exact set of variable bindings created during an execution.
For example, the variable a only gets bound to the constant 1 during an execution, but
according to &, the set of possible heap-values of a also includes the constant 2.

3.2 Soundness of the Set Constraints

Proving the soundness of the derived constraints requires showing that if a set environment
& satisfies the set constraints for a given program P, then & must be valid for P.

Assume that & satisfies the set constraints relative to P. To prove that &£ is valid for
P, we need to show that for any n, (@, P)——"(H, M) implies that H |= £. The natural

Set-Based Analysis for Full Scheme and Its Use in Soft-Typing 10

approach is to proceed by induction on n. However, as part of the proof, we will need to
consider intermediate transitions from states other than (@, P). Therefore, we strengthen
the induction hypothesis to:

SkEp & and S S implies S’ |=p €

where the invariant relation S |=p & (read “S validates £ with respect to P”) is an appro-
priately chosen relation that supports the proof of the induction hypothesis.> We say that
the relation S |=p & holds for S = (H, M) if and only if H |= £ (see Definition 3.2) and

M |=p £. The new relation M [=p & (read “M validates £ with respect to P”) requires
that M is either derived via substitution from a term in P, or that M is a let-expression
(let (z N) L) whose sub-terms satisfy the same relation, and that the set environment &
accounts for the potential binding of z to the values FinalVar[N | can assume.

Definition 3.4. (Substitution Closure of a Term, M |Ep &, FinalVar, S |=p &)

o For M € A, the substitution closure of M is

CIM)={M[ay — lpy,....xn — lp,] | {21,..., 20} C FV[M] and l,, € Loc,,}

e M |=p & holds if either:

1. M € CI(N) for some N € P, or
2. M=(let (2 N)L), NEp&, Li=p & and E(FinalVar[N]) C E(x).

o The definition of FinalVar is extended to run-time terms (which may contain loca-
tions) as follows:

FinalVar : A, — Vars

FinalVar[z] = =z
FinalVar[l,] = =z
FinalVar[(let (z ---) M)] = FinalVar[M]

e 5 |=p & holds if either:
1. 5=(H, M), H=Eand M Ep &, or

2. § = error.

Our chosen invariant relation supports the proof of the induction hypothesis: if the
invariant holds for a given state S, then the invariant also holds for the successor of 5.

Lemma 3.5 If S |=p &, S+—— 5" and £ satisfies the constraints relative to P, then S’ |=p £.

Proof: By case analysis of the transition rule used for 5 —— 5.

®The relation S |=p & corresponds to the concretization function v used in abstract interpretation.

Set-Based Analysis for Full Scheme and Its Use in Soft-Typing

o Suppose S +—— 5’ via the transition rule (bind-lam). Then:
S = (H, E[(let (z (Aw.N)) M)])
S" = (HU{l, = (Aw.N)}, E[Mz — 1]])

By Lemma 3.6(1), (let (z (Aw. N)) M) =p &. Since alambda-expression is
not a term, Definition 3.4 implies that (let (2 (Aw.N)) M) is a substitution
instance of some term (let (z (Aw.N')) M’) in P, where N € CI(N')
and M € CI(M'). Constraint (C;)Dind-lam) implies that (Aw.N') € £(x).
Therefore (Aw. N) € Cl(E(z)) and HU{l, = (Aw.N)} = &

From M € CI(M') we know that M[z — [,] € CI(M’) and therefore
Mz — I =p €. Also:

FinalVar[(let (z (Aw.N)) M)] = FinalVar[M | = FinalVar] Mz — [,]]

by Lemma 3.6(3). Hence, by Lemma 3.6(2), F[M[z — l;] | Fp €. Thus
S" =p £, and the claim holds for this case.

The case where 5 —— 5’ via the transition rule (bind-c) holds by a similar
argument.

Suppose S —— S’ via the transition rule (bind-cons). Then:
S = (H, E[(let (z (cons [, [.)) M)])
S" = (HU{l,=(cons [} I)}, E[M[z —]])

By Lemma 3.6(1), (let ((comns I, [,)) M) |Ep &. Definition 3.4 im-
plies that (let (2 (cons I, [.)) M) is a substitution instance of some term
(let (z (cons y 2)) M) in P, where M € CI(M'). Constraint (CT’

bind-cons)
implies that (cons y z) € 5(96) Therefore (cons [, IL) € CI(&(x)) and
HU{ly=(cons [} I)} F &

Also, E[M[xz < l;] | Fp & by the same reasoning as for the previous case.
Hence 5 Ep €.

Suppose S +—— 5’ via the transition rule (car). Then S is the state:
§ = (H, B[(let (x (car 1,)) M)])

If H(l,) is not a pair, then S" = error and the claim trivially holds.
Next, consider the case where H([,) is the pair (cons [, [.,). Then:

HU{l, = H(l.,)}, E[Mz < 1]])

=
Since H |= &, H(ly) € Cl(&(y)), and thus (coms z; z3) € &E(y). By
Lemma 3.6(1), (let (2 (car [,)) M) |=p &, and therefore Definition 3.4
implies that (let (z (car [,)) M) is a substitution instance of some term
(let (z (car y)) M') in P, where M € CI(M'). Constraint (CL,,) implies
that £(z1) C &(z), and therefore H(l.,) € CI(E(z)) C Cl(E(x)). Thus
HU{L = L)} E €
Also, E[M[xz < l;] | Fp & by the same reasoning as for the previous case.
Hence 5 Ep €.

11

Set-Based Analysis for Full Scheme and Its Use in Soft-Typing

o The case where S +—— 5’ via the transition rule (edr) holds by a similar
argument.

Suppose S — S’ via the transition rule (if). Then S is the state:
(H, E[(let (« (if 1, My M) M)])
Assume first that H(l,) # nil. Then:
S"=(H, E[(let (x My) M)])

Since S |=p &, there exists h € £(y) with h # nil. By Lemma 3.6(1),
(let (« (if I, My M3)) M) |=p &, and therefore Definition 3.4 implies
that the term (let (z (if [, My My)) M) is a substitution instance of some
term (let (« (if y M; M})) M') in P, where My, € CI(M]) and M €
Cl(M"). By constraint (Cf}-true)’ E(FinalVar[M{]) C £(x) and hence By
Lemma 3.6(4), £(FinalVar[My]) C £(x). Thus (let (2 My) M) |=p £, and
S'Ep €.

The case where H(l,) = nil holds by a similar argument.

Suppose S —— S’ via the transition rule (apply). Then S is the state:
§ = (1, B[(let (« (apply I, L)) M)])
Assume first that H(l,) = (Aw. N). Then:
S = (HU {1, = H(I.)}, B[(let (2 N[w — 1,]) M)])

Since H |= &, H(l,) € Cl(E(y)) and thus (Aw.N') € &(y) with N €
CI(N"). By Lemma 3.6(1), (let (« (apply [, [.)) M) Ep &, which implies
that there exists (let (z (apply y z)) M') € P with M € CI(M’). By
constraint (szjpply)’ E(z) C &(w) and E(FinalVar[N']) C &E(x). Hence
H(l,) € Cl(E&(w)) and thus H U{l, = H(l.)} F &.

Furthermore, by Lemma 3.6(4), FinalVar[N'] = FinalVar[N]. Hence
E(FinalVar[N 1) C £(x), which implies that (let (2 Njw — {,,]) M) =p €.
Thus 5" Ep €.

If H(l,) is not a procedure, then 5’ = error and the claim trivially holds.

Suppose S —— S’ via the transition rule (bind-v). Then:

S = (H, E[(let (x 1,) M)])
S" = (HU{l, = H(l,)}, E] M[z <]])

By Lemma 3.6(1), (let (2 {,) M) |Ep €. By Definition 3.4, either £(y) =
E(FinalVar[l,]) C &(z), or else (let (¢ y) M') € P, in which case by
constraint (C;)Dmd_v), we also have that £(y) C £(z).

Since H(l,) € Cl(&(y)) C Cl(&E(x)), HU{l, = H(l,)} = & Therefore,
S'Ep €.

12

Set-Based Analysis for Full Scheme and Its Use in Soft-Typing 13

[
The previous proof depends on the following lemma.

Lemma 3.6
1. IfE[M] |ng then M |Ip £.

2. Suppose E[M | |=p € and & satisfies the constraints relative to P. Then for all M’
such that M' |=p € and FinalVar[M'] = FinalVar][M], we have that E] M' | |=p €.

3. For N € Ay, FinalVar[N | = FinalVar[N[z — l,]].
4. If N € CI(N'), then FinalVar[N] = FinalVar[N'].

Proof: The first two claims can be proven by induction on the structure of F;
the third follows by induction on the structure of N. Claim 4 is a consequence
of claim 3.

Since the invariant trivially holds for the initial state ((), P), it follows that the set
constraints are sound, i.e., if £ satisfies the set constraints relative to P, then £ is a valid
set environment for P.

Theorem 3.7 (Soundness of Constraints) If £ satisfies the constraints relative to P,

then P = €.
Proof: Suppose & satisfies the constraints relative to P, and that
(0, P)—"(H, M)

By the definition of the invariant relation, (@, P) |=p £. Therefore Lemma 3.5
implies that (H, M) |=p &, which implies by definition that H |= £. The latter
is true for any state derivable from the initial state, hence P = €.

In summary, any set environment satisfying the set constraints with respect to a program
P is a conservative approximation to the set of bindings created during the execution of P.

3.3 From Set Constraints to Set-Based Analysis

The class of set environments for a given program P, denoted SetFnvp, forms a complete
lattice under the natural pointwise partial ordering C defined by:

& C & if and only if Va € Varsp. & (z) C E(x)

The least set environment Lg in the lattice is the trivial mapping: Lg(a) = (0. The size of
the sets Varsp and Hvalp is bounded by |P|, where | P| denotes the number of expressions
in P. Therefore, the height of the lattice SetEnvp is bounded by | P|2.

Each set constraint CL (where x ranges over bind-c, car, ..., bind-v) can be interpreted
as a monotonic function, also denoted by CF, on this lattice. We define the function Cp to
be the least upper bound of the functions C;)Dmd_c, .. .,C;)Dmd_v:

Set-Based Analysis for Full Scheme and Its Use in Soft-Typing 14

Cp : Setbnvp — SetEnvp
P P
Cp(&) = Cbind-c(g) u---u Cbind-v(g)

Since the combined function Cp is also monotonic, the least fixpoint given by | |,.nCp™(Le)
exists. Moreover, since the height of the lattice is bounded by |P|?, this fixpoint is reached
within |P|? steps. We define set-based analysis as the function that returns this least
fixpoint.

Definition 3.8. (sba) The function sba : A, — SetEnvp is given by:

sba(P): |_| Cpn(J_g)
n<|P?

Since the fixpoints of Cp are exactly the solutions to the set constraints, it follows that
sba(P) is the least solution to the set constraints, and hence that sba(P) is a valid set
environment for P.

Theorem 3.9 (Correctness of Set-Based Analysis) P |= sba(P)

Proof: Since sba(P) is a solution to the set constraints, it follows by Theorem 3.7 that

P = sba(P). n

Appendix A contains a complete algorithm that calculates the set-based analysis of a
program by generating and solving set constraints for that program.

4 Set-Based Analysis of Assignments

Realistic programming languages such as Scheme or ML provide a variety of imperative
facilities in addition to a functional core language. These imperative constructs typically
include destructive assignments and non-local control operators. In this section, we consider
how to extend set-based analysis to a language with assignments. The following section deals
with first-class continuations.

Let A! be the extension of A, with assignments:

Me AL z=... | (let (z (set! v v)) M)

The evaluation of an assignment expression (let (z (set! y z)) M) assigns y to the value of
z, and also binds z to this value, before continuing with the evaluation of M.

4.1 Semantics

We define the semantics of A}, by extending the C'S-machine with an additional transition
rule for assignment expressions:
(HU{l, =hy}, E](let (z (set! [, 1)) M)])
— (HU{ly=h,l,=h}, E] Mz < [,]]) (set!)
where h, = H(l,) and I, = new(H U{l, = hy},z)

The evaluator for the extended language is defined in the usual manner (cmp. Figure 2).

Set-Based Analysis for Full Scheme and Its Use in Soft-Typing 15

4.2 Set-Based Analysis
4.2.1 Deriving Set Constraints

The derivation of a set-based analysis for A} follows the development of Section 3. It yields
one additional constraint, which accounts for the effect of assignment expressions. The
new constraint states that for each expression of the form (let (« (set! y z)) M) € P in the
analyzed program, the values of z may flow to both z and y:

(let (z (set!y 2)) M) e P
E(z) C&ly) E(x) C&(x)

(Cet)

4.2.2 Soundness of the Set Constraints

We prove the soundness of the set constraints for A! by showing that every transition step
preserves the invariant relation S |Ep £ from Definition 3.4, which is naturally extended to

Al

a

Lemma 4.1 If S Ep &£, S+—5" and £ satisfies the constraints relative to P, then S |=p £.

Proof:

By case analysis of the transition rule used for S —— S’. The only case we
need to consider concerns assignments, since all the other cases are analyzed in
Lemma 3.5, and can be adopted without change.

Suppose S +—— 5’ via the transition rule (set!/). Then:
S = (HUA{l, =hy}, E[(let (2 (set!{, 1)) M)])
S = (HU{l,=h,lp =h.}, E] Mz — 1]])
where h, = H(l,).

A straightforward adaptation of Lemma 3.6 to the language A! implies that
(let (z (set!l, [.)) M) |=p £. Therefore, this term is a substitution instance of
some term (let (z (set!y z)) M') in P, where M € CI(M'). From constraint
(CP), E(2) C E(y) and &(z) C E(x). Hence h. € CI(E(y)) and h. € CU(E(x)),
which implies that H U{l, = h,,l, = h.} = €.

Furthermore, M € CI(M') implies that M[z — ;] € CI(M'), and therefore
E[M[z — ;]] Fp &. Hence §" |=p &, and the claim holds for this case. n

The rest of the verification of set-based analysis for A! is adapted mutatis mutandis,
which illustrates the flexibility of our semantic framework.

5 Set-Based Analysis of First-Class Continuations

In this section we extend our derivation of set-based analysis to a language that contains
first-class continuations in addition to assignments and the functional core language?. Let

* Assignments and first-class continuations can be added in any order, or independently, to the functional
core language.

Set-Based Analysis for Full Scheme and Its Use in Soft-Typing 16

At be the following extension of A :
M ¢ AfFe u= ... | (let (z (letcc y N)) M)

The evaluation of a letcc-expression (letcec y N) captures the current evaluation context
(or continuation) surrounding that expression, binds y to a location containing this contin-
uation, and continues with the evaluation of N. An invocation of a captured continuation
causes the current evaluation context to be discarded and replaced by the captured contin-
uation.

5.1 Semantics

We define the semantics of A¢ by appropriately extending the C'S-machine. A continuation
is a non-empty evaluation context, and we store captured continuations in the heap. Thus
heaps bind locations to continuations in addition to binding locations to heap values:®

H € Heap == {li=h1,....0h="hy, 01 =F1, ...l =F,}
where E; # []

We extend the C'S-machine with an additional transition rule for capturing continuations,
and modify the transition rule (apply) to correctly apply continuations as well as procedures:
see Figure 4.

(H, E[(let (x (letccy N)) M)])
— (HU{ly = E[(let (z []) M)]}, E[(let (z N[y — {,]) M)]) (letee)
where I, = new(H,y)

(H, E[(let (z (apply l, 1)) M)])
(HU{l, = H(L.)}, E[(let (x N[w — 1,]) M)]) if H(l,) = (\w. N)

where 1, = new(H, w)
Ul = B, BN — 1)) it 71(1,) = B[(let (w [1) N)] (apply)
where 1, = new(H, w)
error otherwise

FIGURE 4: Additional Transition Rules for First-Class Continuations

The evaluator for the extended language is defined in the usual manner (cmp. Figure 2).
If the evaluation of a program returns a captured continuation, then the extended evaluator
simply returns the tag procedure.

5.2 Set-Based Analysis

The analysis of the language A'*¢ requires an extended notion of set environments, since a
heap now maps locations to both heap values and continuations. As before, we use elements
of Hvalp to represent heap values, and we need to choose a finite set of abstract continuations

®For technical reasons that will become clear soon, we do not include continuations in the set of heap
values.

Set-Based Analysis for Full Scheme and Its Use in Soft-Typing 17

to represent the continuations that may be captured during an execution. For set-based
analysis, the crucial property of a continuation F[(let (y []) M)] is that the variable
y receives the argument value passed to the continuation. Therefore, we use the abstract
continuation (cont y) to represent all continuations of the form E[(let (y []) M)]. Let
Contp denote the set {(cont y) | y € Varsp} of abstract continuations used for the analysis
of the program P. A set environment is now a finite table that maps each program variable
to a subset of Hvalp U Contp. A set environment & is valid for P if for each heap value h
associated with a variable z during an execution, h € CI(&(z)), and for each continuation
El(let (y[]) M)] associated with 2 during an execution, (cont y) € £(z).

Definition 5.1. (Contp, Set environments, Validity, H |= &) Let P be a program.
o Contp = {(cont y) | y € Varsp}.
o A mapping & : Varsp — Ps,(Hvalp U Contp) is a set environment for P.
e A set environment & is valid for P if (0, PY+—* (H, M) implies that H | £.
o The relation H |= & (read “H wvalidates £”) holds if and only if:

— for all bindings (I, = h) € H, h € Cl(E(x)), and
— for all bindings (I, = E[(let (y []) M)]) € H, (cont y) € E(x).

5.2.1 Deriving Set Constraints

The set constraints for AF¢ extend those for A). The additional constraints ensure that
the set environment &£ accounts for the bindings created during the capture and invocation
of continuations.

e (let (y (letcc z N)) M)

The evaluation of this expression during an execution captures some run-time evalu-
ation context E] (let (y []) M)] surrounding the letcc-expression, and binds z to
this continuation. In addition, if the evaluation of N terminates, the value of the
“return” variable of N may flow to the variable y. Thus, the crucial constraint for
letcc expressions is as follows:

(let (y (letcc x N)) M) e P
(cont y) € E(x) E(FinalVar[N]) C E(y)

(Cletee)

letce

o (let (z (apply y z)) M)
Suppose that £(y) includes (cont w). Then, the variable y may denote a continuation
of the form E[(let (w []) N)] during an execution, and the evaluation of this
application expression may pass the value of the argument variable z to the variable
w. To ensure that the set environment &£ accounts for bindings created by such
transitions, we require that £ satisfies the following constraint:

Set-Based Analysis for Full Scheme and Its Use in Soft-Typing 18

(let (z (apply y 2)) M) € P (cont w) € E(y) P
£(z) C &(w) Cappiy-t)

Because continuations never return, no constraints concerning & are required for the
return case.

5.2.2 Soundness of the Set Constraints

Proving the soundness of the set constraints for the extended language A% requires showing
that if a set environment & satisfies the set constraints for a given program P, then £ must
be valid for P. As before, the proof proceeds based on an induction hypothesis:

SkEp & and S S implies S’ |=p €

where S |=p £ is an appropriately chosen invariant relation. For the analysis of the language
AMe) we need to strengthen the invariant relation previously used for both A, and A'. The
strengthened invariant relation ensures that only “proper” continuations are stored in the
heap.

Definition 5.2. (H |F=p &, EEPE, SFEPE)
o Hi=p&holdsif H =& and forall (I,=F)e H, El=p&.
o F'l=p & holds for = (let (¢ E') L) if L =p & and either:
- E' =[] or
— F'Ep & and E(FinalVar[E']) C E(x).
e 5 |=p & holds if either:
1. 5=(H,M),HEp&and M Epé&,or

2. § = error.

Our chosen invariant relation supports the proof of the induction hypothesis: if the
invariant holds for a given state S, then the invariant also holds for the successor of 5.

Lemma 5.3 If S |=p &, S+—— 5" and £ satisfies the constraints relative to P, then S |=p £.

Proof: By case analysis of the rule used for S —— 5’. The only cases we need
to consider concern continuation capture and invocation, since the other cases
hold by the arguments used in Lemma 3.5 or Lemma 4.1, and can be adopted
without change.

Set-Based Analysis for Full Scheme and Its Use in Soft-Typing 19

e Suppose S —— S’ via the transition rule (letcc). Then:

S = (H, E[(let (2 (letcc y N)) M)])

5" = (H', Bl (let (z N[y —L,]) M)])
where H' = HU{l, = E[(let (z []) M)]}.
Lemma 3.6(1) implies that (let (z (letcc y N)) M) =p £. Therefore,
the term (let (z (letcc y N)) M) is a substitution instance of some term
(let (z (letcc y N')) M') in P, where N € CI(N') and M € CI(M'). By
the constraint (Cﬁtcc)’ (cont z) € £(y), which implies that H' = £. By
Lemma 5.4, K[(let (z []) M)] |Ep &, and hence H' |=p €.

The constraint (CT,) also implies that &(FinalVar[N']) C &(z), and

letce

therefore by Lemma 3.6, parts 3 and 4, E(FinalVar[N[y < [,]]) C &(z).
Hence (let (2 N[y — {,]) M) |=p &, 5" |Ep €, and the claim holds for this

case.

e Suppose S —— S’ via the transition rule (apply). Then S is the state:
(H, E[(let (z (apply I, I.)) M)])
Assume that H(l,) = E’[(let (w []) N)]. Then:
S'=(HU{l,=H(L)}, E' N[w < 1,]])

Since H = &, we know that (cont w) € &(y). Lemma 3.6(1) implies
that (let (z (apply [, [.)) M) |=p &, and hence (let (2 (apply I, [.)) M)
is a substitution instance of some term (let (2 (apply y z)) M') € P,
where M € CI(M’). By constraint (szjpply-k)’ E(z) C&(w). Thus H(l,) €
Cl(&(w))and HU{l, = H(l,)} E €.

Furthermore, since E'[(let (w []) N)] |[=p &, by Lemma 5.4 we have that
E'[N[w—1,]] Ep &. Hence S’ Ep £, and the claim holds for this case.

The previous proof depends on the following lemma, and on a straightforward extension
of Lemma 3.6 to A'Fe.

Lemma 5.4
1. If E[(let (z (letcc y N)) M)] |=p &, then Ef (let (z []) M) ||=p €.
2. IfE'l (let (w []) N)] [Ep &, then E' N[w « 1]] Ep €.
Proof: The proof of both parts proceeds by induction on the structure of £. 1«

Theorem 5.5 (Soundness of Constraints for A'*°)
For P € A'te, if € satisfies the constraints relative to P, then P |= &.

Proof: Follows from Lemma 5.3, based on the argument used in Theorem 3.7.

The rest of the verification of set-based analysis is again straightforward.

Set-Based Analysis for Full Scheme and Its Use in Soft-Typing 20

6 Application: Soft Typing from Set-Based Analysis

The information produced by set-based analysis facilitates a variety of optimizations. Ex-
amples include partial evaluation [15], escape analysis [18], redundant test elimination [11],
closure analysis [21], touch-optimization [8, 7], dead-code elimination, constant-folding and
code hoisting. Here, we illustrate how set-based analysis applies to soft typing [4, 28, 1, 12,
14].

6.1 Soft Typing

The programming language Scheme [2] is a dynamically-typed language, which imposes no
restrictions on the values that variables or expressions in a program may assume. Dynamic-
typing leads to a simple and flexible language suitable for rapid software development, but
does not provide any compile-time guarantee that primitive operations are only applied to
arguments of the appropriate type. Instead, each primitive operation typically performs a
type-check on its arguments at run-time to ensure that they are of the appropriate type.
Thus, for example, the operation car must first check that its argument is a pair, before
it can extract the first component of that pair. Performing these type-checks can add a
significant overhead to the execution time. For example, Wright [25:p. 105] reports that this
cost is 22% of the execution time under Chez Scheme at optimize-level 2. Since Chez
Scheme eliminates some run-time checks at optimize-level 2, a naive compiler would
spend an even greater fraction of the execution time performing these type-checks.

One of the goals® of soft-typing is to reduce the overhead of dynamic typing by removing
unnecessary type-checks wherever provably possible, without changing the semantics of
programs. In this section, we develop a soft-typing algorithm that exploits the information
produced by set based analysis for this purpose.

6.2 Non-Checking Primitives

The current language does not provide primitives that do not perform type-checks on their
arguments. To express and verify a soft-typing algorithm that replaces the type-checking
primitives car, cdr and apply by non-checking primitives, we extend the language A'*e
with non-checking forms of the type-checking primitive operations, denoted car, edr and
apply, respectively:
M = e

| (let (o (car y)) M)

| (let (« (cdr y)) M)

| (let (2 (apply y 2)) M)

As their name indicates, a non-checking operation behaves in the same manner as the
original version as long as its arguments are of the appropriate type.” If the argument is
not of the appropriate type, the behavior of the non-checking variant is unspecified, and
any arbitrary state may be produced. The extended language is called A'te,

We define the semantics of the extended language A'*° by extending the C'S-machine
with the additional transition rules described in Figure 5. The evaluator for the extended

5Unlike other approaches to soft-typing [4, 28, 1], we are not concerned with inferring types for program

Set-Based Analysis for Full Scheme and Its Use in Soft-Typing 21

(H, E[(let (& (cax 1,)) M)] |
(HU{l, = H(,))}, El M[z —1;]]) it H{l,) = (cons ., 1,,)
— where [, = new(H, z) (car)

unspecified it H(l,) # (cons I, ,,)

(H, E[(let (z (cdr) M)])

—— analogous to (car) (cdr)

(H, E[(let (z (apply I,) M) 1)
{ (HU{l, = H(.)}, E[(let (z N[w — 1,]) M)]) if H(ly) = (Aw.N)

where 1, = new(H, w) (apply)
unspecified it H(l,) # (Aw. N)

FicUure 5: Transition Rules for Non-Checking Primitives

language, eval, is defined in the usual way (cmp. Figures 2). Unlike eval, the evaluator
eval is no longer a total function. There are programs in A’ for which the behavior of the
evaluator eval is unspecified because of the application of a non-checking operation to an
argument of inappropriate type. Still, the two evaluators agree on programs in Ate.

Lemma 6.1 For P € A'F¢, eval(P) = eval(P).

6.3 The Soft Typing Algorithm

Our soft typing algorithm uses the results of set based analysis to replace the type-checking
operations car, cdr and apply by the corresponding non-checking operation whenever
possible, without changing the semantics of programs. For example, suppose that a program
contains (let (z (car y)) M) and that set-based analysis proves that y is only bound to
pairs. Then we can replace the expression with (let (z (car y)) M), which the machine can
execute without performing a type-check on y. In general, if the set environment produced
by set-based analysis shows that the arguments of car, cdr or apply are always of the
correct type, the soft-typing algorithm replaces the operation with its non-checking version.
The soft-typing algorithm 7, parameterized over a set environment £, is defined in Figure 6.
If £ is valid for the program being optimized, then the soft-typing algorithm 7 preserves
the meaning of that program. For every transition step of the source program P there
exists a corresponding transition step for the soft-typed program 7g(P). We extend 7Z¢ in
a compatible manner to states to aid in the proof of this correspondence.

Lemma 6.2 (Step Correspondence) Let P be a program with a set environment £, and
let S be a state for which & is valid.

1. Suppose S +—— 5'. Then Te(S)—— Te(5).

variables and presenting these types to the programmer.
"We only consider procedures and not continuations to be an appropriate first argument to apply in

order to avoid the need for a type-dispatch on this argument within apply.

Set-Based Analysis for Full Scheme and Its Use in Soft-Typing 22

Te : Abre — Ale

Tg[l‘] =
Tel(let (¢))] = (let (s ¢) Te[M])
Tel(let (= (. M) M)] = (et (= (. Te(N))) Te[M])
Te[(let (# (cons y 2)) M)] = (let1 x ((cons y z)))) [[]])) - |
et (car y 1 y) € {(comns z1 22
Tel(let (x (car y)) M)] = { let (# (car y)) Te[M]) if E(y) € {(cons z1 z2)}
Te[(let (# (edr y)) M)] = nalogous to car
Te[(let (z (if y My M) M)} = (let o (if y TSEMl] 7)3[1\742[]]2]) [.f (]9)(€ ()
et (apply vy 2)) T¢ it E(y) C (Aw.
Tel(let (x (apply v 2)) M)] —{ let (x (apply y -)) Te[M]) if £() € {(w.)}
Tl(let 2 N 20)] = (let (o TN 000
Te((let (x (set! y 2) M)] = (let (¢ (setl y 2)) Te[M])
Te[(let (z (letecc y N)) M)] = (let (= (letee y T¢[N])) Te[M])

FicurEe 6: The soft-Typing Algorithm 7°

2. Suppose Tg(S)—— 5", Then there exists 5" such that S —— 8" and T¢(S") = 5.

Proof:

The proof of both parts proceeds by induction on n and by case analysis of
S+—— 5" and Tg(S) — 5" respectively.

The Step Correspondence Lemma implies that a soft-typed program exhibits the same
behavior as the corresponding source program.
Theorem 6.3 For any program P € A'Fe, eval(’sta(P)(P)) = eval(P).

Proof: Both the fact that eval is well-defined on sta(P)(P) and that the equality holds
follow from Lemma 6.2. »

In summary, the soft-typing algorithm removes redundant type-checks from programs
based on the information produced by set-based analysis. This optimization algorithm is
provably-correct with respect to the extended evaluator eval. Any implementation that
realizes eval correctly can therefore make use of this optimization.

7 Related Work

The main contribution of our paper is an elegant and flexible derivation of set-based analysis.
It substantially simplifies previous formulations [10, 11, 8, 7], and explains the underlying
notion of approximation in a clear manner. Unlike the derivation and formalization of other
approaches to program analysis, our derivation is not restricted to purely functional lan-
guages. Instead, it extends in a natural and straightforward manner to imperative features
such as destructive assignments (Section 4) and non-local control operators (Section 5). This

Set-Based Analysis for Full Scheme and Its Use in Soft-Typing 23

extensibility is essential for analyzing programs in languages with higher-order functions as
well as imperative features. In this section, we compare our derivation with a number of
comparable program analyzes, including an advanced type inference algorithm [1] and two
recent variants [23, 13] of Shivers” 0CFA [22]

Aiken et al. [1] develop a type inference algorithm for a purely functional language. They
reduce the type inference problem to a system of type inclusion constraints, which are similar
to our set constraints. They do not present a proof of their type soundness lemma, but
indicate that this proofis based on the denotational semantics of their language. It is well-
known that extending type soundness proofs based on denotational semantics to a language
with imperative features is complex and error-prone, even for a simple Hindley-Milner type
system: see Tofte’s [24] discussion of Damas’s [3] faulty proof of a type soundness theorem.
Extending the derivation and soundness proofs of Aiken et al.’s rich type system would be
even more difficult and complex.

Stefanescu and Zhou [23] present an analysis for an intermediate closure-converted lan-
guage. They start from an operational semantics in which each state is a set of bindings
from locations to either values or expressions. A state transition arbitrarily chooses a
location-expression binding and reduces that expression. Their analysis is parameterized
by a function that maps each location created during an execution into a finite set of ab-
stract locations. They derive a system of equations, similar to our set constraints, that
relates the sets of abstract values that these abstract locations may assume. The result of
their analysis is the least solution to the system of equations.

Their semantics is non-intuitive primarily because it uses bindings for two distinct pur-
poses. States contain both location-value bindings, which correspond to our heap, and
location-expression bindings, which essentially represents a flat version of our A-normal
form control string. This flat representation does not maintain the control information
provided by our control string; instead, their semantics evaluates available redexes in an
indeterminate manner. This indeterminate behavior is a major obstacle to extending their
approach to a language with any imperative features. The addition of destructive assign-
ments is further complicated by the requirement of their indeterminate semantics that all
transitions can only increase the set of bindings in a state, and cannot modify existing
bindings.

Jagannathan and Weeks [13] develop an analysis for a higher-order language, starting
from an unusual operational semantics that records a flow graph in which nodes repre-
sent location-value bindings and edges represent the flow of values between locations in a
program. Like Stefanescu and Zhou, they parameterize their analysis over relations that
describe which locations should be merged. The result of their analysis is the least fixpoint
of an abstract transition function.

The complexity of their approach is primarily a result of their decision to analyze the
source language, instead of a simplified intermediate form. Expressions in their language
can be nested in arbitrarily complex fashions. Fvaluating these expressions in a leftmost-
outermost manner requires a complex strategy to locate the next redex in the program.
Furthermore, the evaluation of nested expressions produces intermediate values not as-
sociated with program variables. To record these intermediate values, Jagannathan and
Weeks label each program expression with a unique label, and then associate each interme-
diate value with the label of the corresponding expression. Thus, their semantics and their

Set-Based Analysis for Full Scheme and Its Use in Soft-Typing 24

analysis record label-value associations in addition to the conventional variable-value asso-
ciations. OQur choice of an intermediate A-normal form representation avoids both of these
complexities. Because the order of execution in our language follows the lexical nesting of
let-expressions [9], control transfer is accomplished in a simple manner. Also, since every
intermediate value in our language is named, we only need to record variable-value associa-
tions, and avoid the additional complexity of labeling each expression in the program [20].

Jagannathan and Weeks further complicate their rewriting semantics using labels of
expressions within their state representation instead of the actual expressions themselves.
Therefore, a state does not completely represent an intermediate stage of a computation and
cannot be further evaluated without knowledge of the original source program. In addition,
their state representation does not contain any explicit control information. Instead, they
use the subtle trick of extracting control information from the edges of their flow-graph.
Specifically, when the body of a function terminates, they retrieve the label of the expression
to which the result of the function body “flows”, and then transfer control to that expression.
It is not obvious how this technique extends to complex control operators such as exceptions
or call/cc.

A final disadvantage of Jagannathan and Weeks derivation is that their analysis is
defined via a complex abstract transition function. This monolithic definition does not
provide the insight and understanding that the specification of set-based analysis in terms
of set constraints provides.

Wright and Felleisen [26] describe a simple and flexible strategy for proving the type
soundness of Hindley-Milner-style polymorphic type systems. Their approach is based on a
reduction semantics that easily extends to encompass imperative constructs, and adapts sub-
ject reduction theorems from combinatory logic to programming languages. Our derivation
of set-based analysis exploits similar techniques. Specifically, our derivation is also based
on a reduction semantics, and Lemma 3.5 can be viewed as a subject reduction lemma: it
states that the reduction of a state preserves correctness with respect to any set environ-
ment satisfying the set constraint. Like Wright and Felleisen’s approach, our derivation
extends to additional imperative facilities in a straightforward manner. We expect that this
flexibility is a result of the subject reduction technique common to both.

8 Conclusion

Static information about program behavior is crucial for the generation of efficient code
for advanced languages. Unfortunately, the derivation of an analysis to compute such
information for higher-order languages is subtle and complex, and is closely tied to the
formulation of the semantics of the language. Many analyses that were originally developed
for a purely functional language can be difficult if not impossible to extend to languages
with additional imperative features. This combination of complexity and inflexibility is a
major obstacle to exploiting these analyses in realistic compilers.

Our derivation of set-based analysis avoids these complexities and limitations. We for-
mulate our derivation for the language of A-normal forms, since this language constitutes
an ideal intermediate representation for compilers [9]. The simplicity of our derivation fol-
lows both from our use of the A-normal form language, and from our text-based reduction
semantics, which explicitly models the allocation of objects into a global heap, and which

Set-Based Analysis for Full Scheme and Its Use in Soft-Typing 25

records information that associates each run-time value with the corresponding syntactic
value. Our use of A-normal forms simplifies our reduction semantics, since the order of
execution follows the lexical nesting of let-expressions. In addition, A-normal forms are
ideally suited to the derivation of analyses, since all intermediate values in the language are
named, and there is no need for the additional complexity of labeling each expression in
the program. We derive our analysis directly from the reduction semantics, thus avoiding
the intermediate steps of Heintze’s derivation, and we exploit the information recorded by
our semantics to express our set constraints on a finite lattice of set environments, instead
of on the infinite lattice required by Heintze’s approach.

Extending our derivation to accommodate additional language facilities is straightfor-
ward. We have seen how the derivation extends to languages with destructive assignments
and first class continuations, thus providing the first soundness proof of set-based analysis for
these imperative features. Additional features such as exceptions or communication chan-
nels are also easily incorporated. The primary reason for the extensibility of our derivation
is the flexibility of our semantics. Since the semantics allocates all values into a global heap,
it easily extends to include assignments or cycle-creating constructs such as letrec. The
semantics also exposes the entire state of the evaluation at each intermediate step, which
facilitates the inclusion of non-local control operators such as first-class continuations or
exceptions.

Our derivation can also be modified to produce a more accurate (but more expensive)
analysis. One possible approach is to apply Heintze’s technique of polyvariance [11], which
is equivalent to creating different “versions” of certain functions in the source program by
preceding the analysis by a series of 3, “expansion” steps.

A more general approach requires modifying our semantics to expose additional de-
tails. Specifically, it involves extracting the environment and continuation components of
the control string, and expressing them as separate components of each intermediate state.
The resulting semantics is essentially a CESK-machine [6, 5] specialized to A-normal forms.
Based on this semantics we can follow our derivation to develop a number of different
constraint-based analyses, with different cost-performance tradeoffs.® It is also possible to
develop a general analysis framework that is parameterized in a fashion similar to Jagan-
nathan and Weeks’s framework [13]. A particular instance of this framework is created by
specifying relations that describe which locations created during program execution should
be merged. Instances of this framework include set-based analysis, as well as a number of
more precise analyses.

A Set-Based Analysis Algorithm

A complete set-based analysis algorithm for a Scheme-like language containing both assign-
ments and first-class continuations is included in Figures 7 through 9. The algorithm is
written in Scheme extended with a special form match for pattern matching [27].

The function SBA traverses an expression to derive the set constraints for that expres-
sion. Certain set constraints cannot be satisfied immediately. Consider, for example, the
expression (let (z (set! y z)) M). The constraint Cfet/ requires that all values in £(2)

#See [8, 7] for a derivation of set-based analysis from a parallel CEK-machine.

Set-Based Analysis for Full Scheme and Its Use in Soft-Typing 26

;; inputs: a term M

;; outputs: calculates FinalVar[M]

;; effects: derives the set constraints for M,

= and invokes a constraint solver on these constraints

(define SBA
(lambda (M)
(match M
[(? variable?) z]
[‘(let (, ,exp) ,body)
(begin
(match exp

[(? constant? ¢) (new-value! z ¢)]

[‘(cons ,yl ,y2) (new-value! © ‘(cons ,yl ,y2))]

[‘(lambda ,y ,N)

(let ([finalvar-N (SBA N)])

(new-value! z ‘(lambda ,y \N finalvar-N)))]

[‘(car ,y) (new-constraint! y ‘(propagate-car-to ,z))]

[‘(edr ,y) (new-constraint! y ‘(propagate-cdr-to ,z))]

[if .y , M1 ,M2)

(let ([finalvar-M1 (SBA M1)][finalvar-M2 (SBA M2)])
(new-constraint! y ‘(conditional-prop #t ,finalvar-M1 |z))
(new-constraint! y ‘(conditional-prop #f finalvar-M2 |z)))]

[‘(apply ,y ,2) (new-constraint! y ‘(application ,z ,z))]

[‘(set! ,y ,2)

(new-constraint! z ‘(propogate-to ,y))

(new-constraint! z ‘(propogate-to ,z))]

[‘(letec ,y ,N)

(let ([finalvar-N (SBA N)])

(new-constraint! finalvar-N ‘(propogate-to ,z))
(new-value! y ‘(cont ,z)))]

[; Must be a term

(let ([finalvar-exp (SBA exp)])

(new-constraint! finalvar-exp ‘(propagate-to ,z)))])

(SBA body)]))))

FiGurE 7: The Set-Based Analysis Algorithm

must be in £(z), but the set £(z) may not yet be known. Therefore, the function SBA
associates a constraint ‘(propagate-to ,z) with the variable z. This constraint is applied (via
the function interpret-constraint) to each value that is added to £(z), and propagates that
value to &(z).

The functions new-value! and new-constraint! associate values and constraints, respec-
tively, with variables. The function interpret-constraint ensures that each constraint on a
variable is satisfied for all possible values of that variable, by creating additional values or
new constraints as necessary.

The worst-case time complexity of the algorithm is O(|P|?), which can be verified as

Set-Based Analysis for Full Scheme and Its Use in Soft-Typing 27

;; inputs: a variable and a value
;; outputs: void
;; effects: adds the value to £(var), and applies the appropriate constraints to that value
(define new-value!
(lambda (var value)
(unless (in-€? var value)
(add-to-E! var value)
(foreach-in-C var (lambda (constraint) (interpret-constraint constraint value))))))

;; inputs: a variable and a constraint
;; outputs: void
;; effects: associates the constraint with var, and applies the constraint to all values in £(var)
(define new-constraint!
(lambda (var constraint)
(unless (in-C? var constraint)
(add-to-C! var constraint)
(foreach-in-& var (lambda (value) (interpret-constraint constraint value))))))

;; inputs: a constraint and a value
;; outputs: void
;; effects: ensures that the constraint is satisfied, given that the constraint
= and the value are associated with the same variable
(define interpret-constraint
(lambda (constraint value)
(match (cons constraint value)
[‘((propagate-to ,z) . ,v) (new-value! z v)]
[‘((propagate-car-to ,z) . (cons ,y! ,y2)) (new-constraint! y1 ‘(propagate-to ,z))]
[‘((propagate-cdr-to ,z) . (cons ,yI ,y2)) (new-constraint! y2 ‘(propagate-to ,z))]
[‘((application ,result ;arg) . (lambda ,para ,_ finalvar))
(new-constraint! finalvar ‘(propagate-to ,result))
(new-constraint! arg ‘(propagate-to ,para))]
[‘((application ,result ;arg) . (cont ,x)) (new-constraint! arg ‘(propagate-to ,z))]
[‘((conditional-prop ,test ,from ,to) . ,value)
(when (eq? (null? value) test) (new-constraint! from ‘(propagate-to ,t0)))]

[- (voud)])))

Ficure 8: The Set-Based Analysis Algorithm: Auxiliary Functions 1

follows: We assume that the functions in-£?, add-to-£!, in-C? and add-to-C! operate in
constant time, and that the functions foreach-in-& and foreach-in-C operate in time linear
in the number of elements in the appropriate set.

Each call of the functions new-value! and new-constraint! takes constant time, exclud-
ing the time spent in the body of the respective unless expressions. The number of vari-
ables, the number of values, and the number of constraints are all O(|P|). Therefore the
test conditions of each unless expression can succeed at most O(|P|?) times, and func-
tion interpret-constraint is called at most O(|P|®) times. Each call of interpret-constraint
terminates in constant time. Therefore, the entire algorithm takes O(|P|?) time.

Set-Based Analysis for Full Scheme and Its Use in Soft-Typing

28

;; The following three functions maintain a mapping £ from program
;; variables to sets of values

;; inputs: a variable and a value
;; outputs: returns true if £(var) contains the value
;; effects: none

(define in-£¢ (lambda (var value) ...))

;; inputs: a variable and a value

;; outputs: void

;; effects: adds wvalue to E(var)

(define add-to-£! (lambda (var value) ...))

;; inputs: a variable and a function
;; outputs: none
;; effects: applies fa to each value in E(var)

(define foreach-in-&€ (lambda (var fr) ...))

;; The following three functions maintain a mapping C from program
;; variables to sets of constraints

;; inputs: a variable and a constraint
;; outputs: returns true if C(var) contains the constraint

;; effects: none
(define in-C? (lambda (var constraint) ...))

;; inputs: a variable and a constraint
;; outputs: void
;; effects: adds constraint to C(var)

(define add-to-C! (lambda (var constraint) ...))

;; inputs: a variable and a function
;; outputs: none
;; effects: applies fn to each constraint in £(var)

(define foreach-in-C (lambda (var fr) ...))

FiGure 9: The Set-Based Analysis Algorithm: Auxiliary Functions 2

Acknowledgements We thank Nevin Neintze for discussions on set-based analysis and for
access to his implementation of set-based analysis for ML. We also thank Chris Colby and

Stephanie Weirich for comments on an earlier version of this paper.

References

[1] AIKEN, A., WiMMERS, E. L., AND Laksaman, T. K. Soft typing with conditional
types. In Proceedings of the ACM Sigplan Conference on Principles of Programming

Languages (1994), pp. 163-173.

Set-Based Analysis for Full Scheme and Its Use in Soft-Typing 29

[2] CLINGER, W., AND JONATHAN REES, E. The revised! report on the algorithmic
language scheme. ACM Lisp Pointers 4, 3 (July 1991).

[3] Damas, L. M. M. Type Assignment in Programming Languages. PhD thesis, Univer-
sity of Edinburgh, 1985.

[4] Facan, M. Soft Typing. PhD thesis, Rice University, 1990.

[6] FELLEISEN, M., AND FRIEDMAN, D. P. A calculus for assignments in higher-order
languages. In Conference Record of the 14th Annual ACM Symposium on Principles
of Programming Languages (Munich, West Germany, Jan. 1987), pp. 314-345.

[6] FELLEISEN, M. The Calculi of Lambda-v-CS-Conversion: A Syntactic Theory of Con-
trol and State in Imperative Higher-Order Programming Languages. PhD thesis, Indi-
ana University, 1987.

[7] Franagan, C., aND FELLEISEN, M. Well-founded touch optimization for futures.
Rice University Computer Science TR94-239.

[8] Franacan, C., aND FELLEISEN, M. The semantics of future and its use in pro-
gram optimizations. In Proceedings of the ACM Sigplan Conference on Principles of
Programming Languages (1995), pp. 209-220.

[9] Franacan, C., SABRY, A., DuBA, B. F., AND FELLEISEN, M. The essence of compil-
ing with continuations. In Proceedings of the ACM Sigplan Conference on Programming
Language Design and Implementation (1993), pp. 237-247.

[10] HEINTZE, N. Set Based Program Analysis. PhD thesis, Carnegie Mellon University,
1992.

[11] HEINTZE, N. Set-based analysis of ML programs. In Proceedings of the 1990 ACM
Conference on Lisp and Functional Programming (1994), pp. 306-317.

[12] HENGLEIN, F. Dynamic typing: syntax and proof theory. Science of Computer Pro-
gramming 22 (1994), 197-230.

[13] JAGANNATHAN, S., AND WEEKS, S. A unified treatment of flow analysis in higher-
order languages. In 22nd ACM Symposium on Principles of Programming Languages
(1995), pp. 393-407.

[14] JAGANNATHAN, S., AND WRIGHT, A. Effective flow analysis for avoiding run-time
checks. , 1995.

[15] MALMKIJAER, K., HEINTZE, N., AND Danvy, O. ML partial evaluation using set-
based analysis. Tech. Rep. CMU-CS-94-129, Carnegie Mellon University, 1994.

[16] MILNER, R., ToFTE, M., AND HaRPER, R. The Definition of Standard ML. MIT
Press, 1990.

[17] MORRISETT, G., FELLEISEN, M., AND HARPER, R. Abstract models of memory man-
agement. In Functional Programming and Computer Architecture (1995). To appear.

Set-Based Analysis for Full Scheme and Its Use in Soft-Typing 30

[18] ParK, Y. G., AND GOLDBERG, B. Escape analysis on lists. In Proceedings of the

ACM Sigplan Conference on Programming Language Design and Implementation (June
1992), pp. 116-127.

[19] Rozas, G. J. Liar, an Algol-like compiler for scheme. Master’s thesis, Massachusetts
Institute of Technology, January 1984.

[20] SABRY, A., AND FELLEISEN, M. Is continuation-passing useful for data flow analysis.
In Proceedings of the ACM Sigplan Conference on Programming Language Design and
Implementation (1994), pp. 1-12.

[21] SHAO, Z., AND APPEL, A. Space-efficient closure representations. In Proceedings of
the ACM Symposium on Lisp and Functional Programming (1994), pp. 150-161.

[22] SHIVERS, O. Control-flow Analysis of Higher-Order Languages or Taming Lambda.
PhD thesis, Carnegie-Mellon University, 1991.

[23] STRFANESCU, D., AND ZHOU, Y. An equational framework for the flow analysis of
higher order functional programs. In LFP (1994), pp. 318-327.

[24] TorTE, M. Operational Semantics and Polymorphic Type Inference. PhD thesis,
University of Edinburgh, 1987.

[25] WRIGHT, A. Practical Soft Typing for Scheme. PhD thesis, Rice University, 1994.

[26] WRIGHT, A., AND FELLEISEN, M. A syntactic approach to type soundness. Tech.
Rep. 160, Rice University, 1991.

[27] WricHT, A. K., aAND DuBa, B. F. Pattern matching for Scheme. Unpublished
manuscript, 1993. Available at "ftp://cs.rice.edu/public/wright/match.ps.Z".

[28] WRIGHT, A. AND R. CARTWRIGHT. A practical soft type system for scheme. In
Proceedings of the 1990 ACM Conference on Lisp and Functional Programming (1994),
pp. 250-262.

