
Set�Based Analysis for Full Scheme

and Its Use in Soft�Typing

Cormac Flanagan
Matthias Felleisen

Rice COMP TR������

October ����

Department of Computer Science
Rice University
P�O� Box ����
Houston� TX ����������

Copyright c����� by

Cormac Flanagan and Matthias Felleisen

Set�Based Analysis for Full Scheme

and Its Use in Soft�Typing

Cormac Flanagan� Matthias Felleisen�

Department of Computer Science�

Rice University�

Houston� TX ����������

Abstract

Set�Based Analysis is an e�cient and accurate program analysis for higher�order lan�
guages� It exploits an intuitive notion of approximation that treats program variables
as sets of values� We present a new derivation of set�based analysis� based on a reduc�
tion semantics� that substantially simpli�es previous formulations� Most importantly�
the derivation easily extends from a functional core language to include imperative
features such as assignments and �rst�class continuations� and supports the �rst cor�
rectness proof of set�based analysis for these imperative features� The paper includes
an implementation of the derived analysis for a Scheme�like language� and describes a
soft�typing algorithm that eliminates type�checks based on the information produced
by the analysis�

�Supported in part by NSF grant CCR �������� and a sabbatical at Carnegie Mellon University�

Contents

� Introduction �

� An Idealized Intermediate Language �
��� Syntax �
��� Semantics � 	

� Set�Based Analysis �
	�� Deriving Set Constraints �

	�� Soundness of the Set Constraints �
	�	 From Set Constraints to Set�Based Analysis � � � � � � � � � � � � � � � � � � �	

� Set�Based Analysis of Assignments ��
��� Semantics ��
��� Set�Based Analysis ��

����� Deriving Set Constraints ��
����� Soundness of the Set Constraints ��

� Set�Based Analysis of First�Class Continuations ��
��� Semantics �

��� Set�Based Analysis �

����� Deriving Set Constraints ��
����� Soundness of the Set Constraints ��

� Application� Soft Typing from Set�Based Analysis ��

�� Soft Typing ��

�� Non�Checking Primitives ��

�	 The Soft Typing Algorithm ��

	 Related Work ��

 Conclusion ��

A Set�Based Analysis Algorithm ��

Set�Based Analysis for Full Scheme and Its Use in Soft�Typing �

� Introduction

Advanced compiler optimizations heavily rely on static information about the values that
program variables may assume� Computing such information for higher�order languages
such as Scheme
�� and ML
�
� is particularly complex� since a static control��ow graph
of a program is not readily available at compile time
��� ���� Heintze
��� ��� pioneered
a set�based approach to program analysis that controls this complexity in two ways� First�
the approach is based on a single notion of approximation that treats program variables
as sets of values� Second� the approach splits the analysis into two phases� a speci�cation

phase and a solution phase� During the speci�cation phase� the analysis derives constraints
on the sets of values that program variables may assume� These constraints approximate
the data�ow relationships of the analyzed program� During the solution phase� the analysis
produces sets of values that satisfy these constraints� The result is a valid approximation
of the value sets for the program variables�

In contrast to the simplicity of the analysis� Heintze�s derivation of set�based analysis is
complex� The derivation of the speci�cation phase involves a number of intermediate steps�
Speci�cally� Heintze uses the �natural� semantics framework to de�ne a set�based �natural�
semantics� from which he reads o� �safeness� conditions on set environments� He then
shows how to derive set constraints from the set�based semantics and proves that a solution
of these constraints is a safe set environment� The derivation of the solution phase is also
complex� It involves solving constraints on the in�nite sets of values that program variables
may assume� Heintze represents these in�nite sets using a restricted form of set constraints�
which can be regarded as regular tree grammars� and his solution phase produces a regular
tree grammar representation of the solution of the set constraints�

Not only is Heintze�s derivation complex� it is also limited to the analysis of purely
functional languages� Extending it beyond a simple functional core is di�cult� mostly
due to the use of �natural� semantics� which cannot easily accommodate destructive data
structure manipulations and non�local control operators� Although suitable set constraints
for these imperative features can be produced in an ad�hoc manner� there is no semantic
foundation for these constraints� Thus existing implementations of set�based analysis for
languages like Scheme and ML
��� ��� �� ��� which include assignments and non�local control
operators� are not semantically well�founded�

We present a simpler derivation of set�based analysis than Heintze�s� It avoids the
complexities and limitations outlined above� and explains the underlying notion of approx�
imation in a clear manner� Our approach is based on a reduction semantics that explicitly
models the allocation of objects in a global heap
���� We avoid Heintze�s intermediate steps
by deriving our set constraints and proving their correctness directly from the reduction se�
mantics� Our semantics also records su�cient information to associate each run�time value
with the corresponding syntactic value in the source program� We exploit this information
to express our set constraints in terms of �nite sets of syntactic values in the source program�
thus avoiding the need to reason about constraints on in�nite sets of values�

Since our heap�based semantics represents values as general �graphs�� it is straight�
forward to extend both the semantics and the analysis to a language with assignments�
Similarly� because the complete control state is available for each step of the evaluation�

�Also see ���	 for an application of this idea to model and verify garbage collection algorithms�

Set�Based Analysis for Full Scheme and Its Use in Soft�Typing �

the extension to a language with non�local control constructs is also straightforward� Our
derivation supports the �rst soundness proof of set�based analysis for a language containing
these imperative features�

The presentation of our results proceeds as follows� The second section presents the
syntax and semantics of a simple functional language� and the third section describes the set�
based analysis of that language� The fourth and �fth sections shows how the analysis extends
to assignments and �rst�class continuations� respectively� The sixth section describes an
application of set�based analysis known as soft�typing� and Section � discusses related work�
The appendix includes a simple implementation of the derived analysis for a Scheme�like
language containing both assignments and �rst�class continuations�

� An Idealized Intermediate Language

��� Syntax

Our motivation in performing program analyses is to produce information for the opti�
mization phases of a compiler� Compilers typically convert source programs into a simple
intermediate representation� and then proceed to analyze and optimize the intermediate
representation of the program� Therefore� we formulate the analysis for an intermediate rep�
resentation of an idealized functional language� Speci�cally� we use the subset of A�normal
forms
�� of a ��calculus�like language with a let construct and conditional expressions��

see Figure �� The language also includes the primitives cons� car� and cdr for list ma�
nipulation� which will serve to illustrate the treatment of primitive operations� and a basic
constant nil denoting the empty list�

The key property of terms in A�normal form is that each intermediate value is explicitly
named and that the order of execution follows the lexical nesting of let�expressions� The
use of A�normal forms thus simpli�es the formulation of the semantics and facilitates the
compile�time analysis of programs since every intermediate value is named
����

Values are either simple values or heap�allocated values� Simple values are either vari�
ables or locations� Locations do not occur in source programs� they are only created during
program evaluation� Heap�allocated values include procedures ��x�M�� pairs of values
�cons v v� and basic constants� Procedures and let�expressions are binding constructs� and
we assume that all binding constructs in a program introduce distinct variables� A variable
occurrence is free if it is not bound by an enclosing binding construct� and a term is closed
if it contains no free variables� We use ��

a to denote the set of location�free� closed terms�
or programs�

Notation We use the following notations throughout the paper� P�n denotes the �nitary
power�set constructor� f � A �� B denotes that f is a total function from A to B� and
M � P denotes that the term M occurs in the program P �

�Our language follows the Scheme and Lisp tradition of using conditional expressions instead of a pattern�
matching construct� The use of conditional expressions
 predicates and selectors enables more opportunities
for functional abstraction than the pattern matching approach
 but imposes more work on the analysis
phase�

Set�Based Analysis for Full Scheme and Its Use in Soft�Typing 	

Programs�

M�N � �a ��� v �Expressions	
j �let �x h	 M 	
j �let �x �car v		 M 	
j �let �x �cdr v		 M 	
j �let �x �if v M M 		 M 	
j �let �x �apply v v		 M 	
j �let �x M 	 M 	

v � Sval ��� x j l �Simple Values	
x � Vars � fx� y� z� � � �g �Variables	
l � Loc �Locations	
h � Hval ��� ��x�M 	 j �cons v v	 j c �Heap Values	
c � Const � fnil� � � �g �Basic Constants	

Figure �� The A�normalized Intermediate Language

��� Semantics

We de�ne the semantics of programs via an abstract machine �see Figure �� that explicitly
models the allocation of objects into a global heap
��� ��� A heap is a set of bindings from
locations to heap values� The set Loc of locations contains an in�nite subset Locx reserved
for each variable x� The function new takes a heap and a variable x� and returns a new
location from Locx that is not already allocated in the heap� The operation M
x � lx�
denotes the substitution of the location lx for all occurrences of x within M � and the
operation h
x� lx� is de�ned analogously�

Each state of the machine consists of a heap and program term� except for the special
state error� The machine evaluates programs by stepping through a sequence of states
according to a set of transition rules� Each transition rule of the machine de�nes the se�
mantics of a particular class of expressions� For example� the transition rule �car� evaluates
expressions of the form �let �x �car ly�� M�� If the heap value at location ly is a pair� then
the transition rule extracts the �rst component of that pair� stores that component at a
new location lx in the heap� and replaces all occurrences of x within M by lx� Alternatively�
if the heap value at location ly is not a pair� then the transition rule �car� raises an error�
Each of the remaining transition rules has a similar intuitive explanation�

The de�nition of these transition rules relies on the notion of an evaluation context� An
evaluation context E is a term with a �hole�
 � in place of the next subterm to be evaluated�
For example� in the term �let �x M� N�� the next expression to be evaluated lies within
M � and thus the de�nition of evaluation contexts includes the clause �let �x E� M��

The evaluator eval is a function from programs to results� A result is either a basic
constant� or one of the tags procedure or cons� indicating that the program returned an
abstraction or a pair respectively� or the tag error� indicating that the program raised an
error� or �� indicating that the program diverges�

Set�Based Analysis for Full Scheme and Its Use in Soft�Typing �

Evaluator�

eval � ��
a �� Const � fprocedure� cons� error��g

eval �P 	 �

������
�����

c if h �� P i ���� hH� l i and H�l	 � c

procedure if h �� P i ���� hH� l i and H�l	 � ��x�M 	
cons if h �� P i ���� hH� l i and H�l	 � �cons l� l�	
error if h �� P i ���� error

� if �i � N �Si such that h �� P i ���i Si

Domains�

S � State ��� hH� M i j error �States	
H � Heap ��� fl� � h�� � � � � ln � hng �Heaps	
l � Loc ���

S
x�Vars Locx �Locations	

lx � Locx �x�Locations	
E � EvalCtxt ���
 � j �let �x E	 M 	 �Evaluation Contexts	

Transition Function�

hH� E
 �let �x c	 M 	 � i
��� hH � flx � cg� E
 M
x	 lx� � i �bind�c	

where lx � new �H�x	

hH� E
 �let �x ��w�N 		 M 	 � i
��� hH � flx � ��w�N 	g� E
 M
x	 lx� � i �bind�lam	

where lx � new �H�x	

hH� E
 �let �x �cons ly lz		 M 	 � i
��� hH � flx � �cons l�y l�z	� l

�
y � H�ly	� l

�
z � H�lz	g� evcxtM
x	 lx� i �bind�cons	

where lx � new �H�x	� l�y � new�H� y	� l�z � new�H� z	

hH� E
 �let �x �car ly		 M 	 � i

���

��
�

hH � flx � H�lz�	g� E
 M
x	 lx� � i if H�ly	 � �cons lz� lz� 	
where lx � new�H�x	

error if H�ly	
� �cons lz� lz� 	
�car	

hH� E
 �let �x �cdr ly		 M 	 � i
��� analogous to �car	 �cdr	

hH� E
 �let �x �if ly M� M�		 M 	 � i

���

�
hH� E
 �let �x M�	 M 	 � i if H�ly	
� nil

hH� E
 �let �x M�	 M 	 � i if H�ly	 � nil
�if 	

hH� E
 �let �x �apply ly lz		 M 	 � i

���

��
�

hH � flw � H�lz	g� E
 �let �x N
w	 lw�	 M 	 � i if H�ly	 � ��w�N 	
where lw � new�H�w	

error if H�ly	
� ��w�N 	
�apply	

hH� E
 �let �x ly	 M 	 � i
��� hH � flx � H�ly	g� E
 M
x	 lx� � i �bind�v	

where lx � new �H�x	

Figure �� The CS�Machine

Set�Based Analysis for Full Scheme and Its Use in Soft�Typing �

� Set�Based Analysis

The goal of set�based analysis is to produce information about the sets of values that
program variables may assume during an execution� In general� the exact value set for each
program variable is not computable� and therefore some notion of approximation is needed�
Set�based analysis is based on an intuitive approximation that treats program variables
as sets of values� and ignores the information regarding which speci�c value a variable
represents at a given point in an execution� Since each value associated with a variable
corresponds to a distinct location in our semantics� we express this notion of approximation
by merging all locations allocated for each variable into a single abstract location� That is�
we use each variable x as an abstract location representing all the locations in Locx that
may be allocated for x� Thus� if P is the program being analyzed� then we use the set
VarsP of variables occurring in P as the set of abstract locations for the analysis of P �

We extend this notion of representation from variables to heap values as follows� Let
HvalP be the set of heap values that occur in the program P � Each heap value produced
during the execution of P is obtained by substitution from a syntactic heap value in HvalP �
Therefore� we use each heap value h in HvalP as an abstract value representing all sub�
stitution instances of h� i�e�� all heap values obtained from h by substituting appropriate
locations for the free variables of h� We call the resulting set of heap values the substitution
closure of the heap value h� The substitution closure of a set of heap values is de�ned in a
straightforward manner�

De�nition ����
Substitution Closure�

� For h � Hval with FV
h� � fx�� � � � � xng� the substitution closure of h is

Cl�h� � fh
x� � lx� � � � � � xn � lxn � j lxi � Locxig

� For A � Hval � the substitution closure of A is

Cl�A� �
�
h�A

Cl�h�

Our analysis produces a �nite table� called a set environment� that maps each program
variable to a set of syntactic heap values from HvalP � A set environment E is valid for the
program P if� for each variable x� each heap value associated with x during an execution is
in the substitution closure of E�x��

De�nition ����
Set environments� Validity� Let P be a program�

� A mapping E � VarsP � P�n�HvalP � is a set environment for P �

� The relation P j� E �read �P validates E�� or �E is valid for P�� holds if
h �� P i 	��� hH� M i implies that H j� E �

� The relation H j� E holds if for all bindings �lx � h� � H � h � Cl�E�x���

Set�Based Analysis for Full Scheme and Its Use in Soft�Typing

We develop an analysis that produces valid set environments in two steps� To develop
the speci�cation phase of the analysis� we derive constraints on the sets of values that
program variables may assume and prove the soundness of these constraints with respect
to the abstract machine semantics� For the solution phase of the analysis we develop an
algorithm that solves these constraints�

��� Deriving Set Constraints

Given a program P � a set constraint is of the form�

AP

B

where AP and B are statements concerning set environments� and AP also depends on the
program� A set environment E satis�es this constraint if whenever A holds for E and P �
then B also holds for E � We show how� for each kind of term in P � the analysis must add
certain constraints to the global set of program constraints�

� �let �x ��w�N�� M�

During execution� this source term will correspond to a run�time term �let �x ��w�N ��� M ���
where N � and M � are substitution instances of N and M respectively� To record that
x may be bound to a substitution instance of ��w�N�� we require that E satis�es the
following constraint�

�let �x ��w�N�� M� � P

��w�N� � E�x�
�CP

bind�lam�

� �let �x �cons y z�� M�

During execution� this source term will correspond to a run�time term �let �x �cons ly lz��M ���
where M � is a substitution instance of M � To record that x may be bound to a heap
value �cons l�y l

�
z�� we require that E satis�es the following constraint�

�let �x �cons y z�� M� � P

�cons y z� � E�x�
�CP

bind�lam�

� �let �x h� M�

During execution� this source term will correspond to a run�time term �let �x h�� M ���
where h� and M � are substitution instances of h and M respectively� To record that x
may be bound to a substitution instance of h� we require that E satis�es the following
constraint�

�let �x h� M� � P

h � E�x�
�CP

bind�cons�

Set�Based Analysis for Full Scheme and Its Use in Soft�Typing �

� �let �x �car y�� M�

During execution� this term in the source program will correspond to the run�time
term �let �x �car ly�� M

��� where ly is some location for y and M � is a substitution
instance of M � If the heap maps the location ly to a pair �cons lz� lz��� then the
evaluation of this expression will associate x with the heap value at location lz� � If we
assume that E approximates the value sets of the program variables y and z�� then
E�y� includes �cons z� z��� and E�z�� approximates the heap value at lz� � Therefore�
we ensure that E accounts for the bindings created during the evaluation of this
expression by demanding that E satis�es the following constraint�

�let �x �car y�� M� � P �cons z� z�� � E�y�

E�z�� � E�x�
�CP

car�

No additional constraints are required for the error case� since whenever y does not
denote a pair� an error state is immediately produced and no further bindings are
created�

� �let �x �apply y z�� M�

Assume that E�y� includes ��w�N�� Then the evaluation of this expression will as�
sociate the formal parameter w with one of the values of the argument variable z�
Moreover� at the corresponding function return� the value of the �return� variable
of the procedure may �ow to the variable x� Thus� if FinalVar
N � is a function
that determines the innermost ��result�� variable of N � then the crucial constraint for
application expressions is as follows�

�let �x �apply y z�� M� � P ��w�N� � E�y�

E�z� � E�w� E�FinalVar
N �� � E�x�
�CP

apply�

The de�nition of FinalVar is straightforward�

De�nition ����
FinalVar�

FinalVar � �a �� Vars

FinalVar
 x � � x

FinalVar
 �let �x

� M� � � FinalVar
M �

Examining each of the other classes of program terms in a similar manner results in a set
of nine program�based set constraints� see Figure 	�

Set Constraints for a Sample Program To illustrate the derivation of set constraints�
we consider the following program cons�it � The program de�nes a function cons�it that
returns a cons�cell containing two copies of its argument� and the program then applies this
function to the numbers � and �� producing results pair� and pair� respectively� and �nally
returns the car of pair��

Set�Based Analysis for Full Scheme and Its Use in Soft�Typing �

�let �x c	 M 	 � P

c � E�x	
�CP

bind�c	

�let �x ��w�N 		 M 	 � P

��w�N 	 � E�x	
�CP

bind�lam	

�let �x �cons y z		 M 	 � P

�cons y z	 � E�x	
�CP

bind�cons	

�let �x �car y		 M 	 � P �cons z� z�	 � E�y	

E�z�	 � E�x	
�CP

car	

�let �x �cdr y		 M 	 � P �cons z� z�	 � E�y	

E�z�	 � E�x	
�CP

cdr	

�let �x �if y M� M�		 M 	 � P h � E�y	 h
� nil

E�FinalVar
M� �	 � E�x	
�CP

if�true	

�let �x �if y M� M�		 M 	 � P nil � E�y	

E�FinalVar
M� �	 � E�x	
�CP

if�false	

�let �x �apply y z		 M 	 � P ��w�N 	 � E�y	

E�z	 � E�w	 E�FinalVar
N �	 � E�x	
�CP

apply	

�let �x N 	 M 	 � P

E�FinalVar
N �	 � E�x	
�CP

bind�v	

Figure 	� Set Constraints on E with respect to P �

�let �cons�it ��x� �let �r �cons x x�� r���
�let �t� ��

�let �pair� �cons�it t���
�let �t� ��

�let �pair� �cons�it t���
�let �a �car pair���
a������

Instantiating the set constraints for this program produces the following constraints�

Set�Based Analysis for Full Scheme and Its Use in Soft�Typing �

From CP
bind�lam

� ��x� �let �r �cons x x�� r�� � E�cons�it� ���

From CP
bind�cons� �cons x x� � E�r� ���

From CP
bind�c � � � E�t�� �	�

From CP
bind�c � � � E�t�� ���

From CP
apply �

��w�N� � E�cons�it�

E�t�� � E�w� E�FinalVar
N �� � E�pair��
���

From CP
apply �

��w�N� � E�cons�it�

E�t�� � E�w� E�FinalVar
N �� � E�funpair��
�
�

From CP
car �

�cons z� z�� � E�pair��

E�z�� � E�a�
���

Constraints ��� through ��� are atomic constraints� and we satisfy these constraints
by simply adding the appropriate bindings to E � To satisfy the inference constraints ���
through ���� we extend E as required by these constraints�

From ���� �	�� ��� � � � E�x� ���
From ���� ���� ��� � �cons x x� � E�pair�� ���
From ���� ���� �
� � � � E�x� ����
From ���� ���� �
� � �cons x x� � E�pair�� ����
From ���� ���� ���� � � � E�a� ����
From ���� ����� ���� � � � E�a� ��	�

At this stage E is the set environment�

E�cons�it� � f��x� �let �r �cons x x�� r��g
E�r� � f�cons x x�g

E�pair�� � f�cons x x�g
E�pair�� � f�cons x x�g

E�t�� � f�g
E�t�� � f�g
E�x� � f�� �g
E�a� � f�� �g

A quick examination of the set constraints shows that this set environment satis�es
the constraints for the program cons�it� Furthermore� since each binding in E is required
by these constraints� E is the smallest set environment satisfying the set constraints� Of
course� E does not represent the exact set of variable bindings created during an execution�
For example� the variable a only gets bound to the constant � during an execution� but
according to E � the set of possible heap�values of a also includes the constant ��

��� Soundness of the Set Constraints

Proving the soundness of the derived constraints requires showing that if a set environment
E satis�es the set constraints for a given program P � then E must be valid for P �

Assume that E satis�es the set constraints relative to P � To prove that E is valid for
P � we need to show that for any n� h �� P i 	��n hH� M i implies that H j� E � The natural

Set�Based Analysis for Full Scheme and Its Use in Soft�Typing ��

approach is to proceed by induction on n� However� as part of the proof� we will need to
consider intermediate transitions from states other than h �� P i� Therefore� we strengthen
the induction hypothesis to�

S j�P E and S 	�� S� implies S� j�P E

where the invariant relation S j�P E �read �S validates E with respect to P�� is an appro�
priately chosen relation that supports the proof of the induction hypothesis�� We say that
the relation S j�P E holds for S � hH� M i if and only if H j� E �see De�nition 	��� and
M j�P E � The new relation M j�P E �read �M validates E with respect to P�� requires
that M is either derived via substitution from a term in P � or that M is a let�expression
�let �x N� L� whose sub�terms satisfy the same relation� and that the set environment E
accounts for the potential binding of x to the values FinalVar
N � can assume�

De�nition ����
Substitution Closure of a Term� M j�P E� FinalVar� S j�P E�

� For M � �a� the substitution closure of M is

Cl�M� � fM
x� � lx�� � � � � xn � lxn� j fx�� � � � � xng � FV
M � and lxi � Locxig

� M j�P E holds if either�

�� M � Cl�N� for some N � P � or

�� M � �let �x N� L�� N j�P E � L j�P E and E�FinalVar
N �� � E�x��

� The de�nition of FinalVar is extended to run�time terms �which may contain loca�
tions� as follows�

FinalVar � �a �� Vars

FinalVar
 x � � x

FinalVar
 lx � � x

FinalVar
 �let �x

� M� � � FinalVar
M �

� S j�P E holds if either�

�� S � hH� M i� H j� E and M j�P E � or

�� S � error�

Our chosen invariant relation supports the proof of the induction hypothesis� if the
invariant holds for a given state S� then the invariant also holds for the successor of S�

Lemma ��� If S j�P E� S 	��S� and E satis�es the constraints relative to P � then S� j�P E�

Proof� By case analysis of the transition rule used for S 	�� S��

�The relation S j�P E corresponds to the concretization function � used in abstract interpretation�

Set�Based Analysis for Full Scheme and Its Use in Soft�Typing ��

� Suppose S 	�� S� via the transition rule �bind�lam�� Then�

S � hH� E
 �let �x ��w�N�� M� � i

S� � hH � flx � ��w�N�g� E
 M
x� lx� � i

By Lemma 	�
���� �let �x ��w�N��M� j�P E � Since a lambda�expression is
not a term� De�nition 	�� implies that �let �x ��w�N��M� is a substitution
instance of some term �let �x ��w�N ��� M �� in P � where N � Cl�N ��
and M � Cl�M ��� Constraint �CP

bind�lam� implies that ��w�N �� � E�x��
Therefore ��w�N� � Cl�E�x�� and H � flx � ��w�N�g j� E �

From M � Cl�M �� we know that M
x � lx� � Cl�M �� and therefore
M
x� lx� j�P E � Also�

FinalVar
 �let �x ��w�N�� M� � � FinalVar
M � � FinalVar
M
x� lx� �

by Lemma 	�
�	�� Hence� by Lemma 	�
���� E
 M
x � lx� � j�P E � Thus
S� j�P E � and the claim holds for this case�

� The case where S 	�� S� via the transition rule �bind�c� holds by a similar
argument�

� Suppose S 	�� S� via the transition rule �bind�cons�� Then�

S � hH� E
 �let �x �cons ly lz�� M� � i

S� � hH � flx � �cons l�y l
�
z�g� E
 M
x� lx� � i

By Lemma 	�
���� �let �x �cons ly lz�� M� j�P E � De�nition 	�� im�
plies that �let �x �cons ly lz�� M� is a substitution instance of some term
�let �x �cons y z�� M �� in P � where M � Cl�M ��� Constraint �CP

bind�cons�
implies that �cons y z� � E�x�� Therefore �cons l�y l�z� � Cl�E�x�� and
H � flx � �cons l�y l

�
z�g j� E �

Also� E
 M
x� lx� � j�P E by the same reasoning as for the previous case�
Hence S� j�P E �

� Suppose S 	�� S� via the transition rule �car�� Then S is the state�

S � hH� E
 �let �x �car ly�� M� � i

If H�ly� is not a pair� then S� � error and the claim trivially holds�

Next� consider the case where H�ly� is the pair �cons lz� lz��� Then�

S� � hH � flx � H�lz��g� E
 M
x� lx� � i

Since H j� E � H�ly� � Cl�E�y��� and thus �cons z� z�� � E�y�� By
Lemma 	�
���� �let �x �car ly�� M� j�P E � and therefore De�nition 	��
implies that �let �x �car ly�� M� is a substitution instance of some term
�let �x �car y�� M �� in P � where M � Cl�M ��� Constraint �CP

car� implies
that E�z�� � E�x�� and therefore H�lz�� � Cl�E�z��� � Cl�E�x��� Thus
H � flx � H�lz��g j� E �

Also� E
 M
x� lx� � j�P E by the same reasoning as for the previous case�
Hence S� j�P E �

Set�Based Analysis for Full Scheme and Its Use in Soft�Typing ��

� The case where S 	�� S� via the transition rule �cdr� holds by a similar
argument�

� Suppose S 	�� S� via the transition rule �if �� Then S is the state�

hH� E
 �let �x �if ly M� M��� M� � i

Assume �rst that H�ly� �� nil� Then�

S� � hH� E
 �let �x M�� M� � i

Since S j�P E � there exists h � E�y� with h �� nil� By Lemma 	�
����
�let �x �if ly M� M��� M� j�P E � and therefore De�nition 	�� implies
that the term �let �x �if ly M� M��� M� is a substitution instance of some
term �let �x �if y M �

� M �
��� M �� in P � where M� � Cl�M �

�� and M �
Cl�M ��� By constraint �CP

if�true�� E�FinalVar
M �
� �� � E�x� and hence By

Lemma 	�
���� E�FinalVar
M� �� � E�x�� Thus �let �x M�� M� j�P E � and
S� j�P E �

The case where H�ly� � nil holds by a similar argument�

� Suppose S 	�� S� via the transition rule �apply�� Then S is the state�

S � hH� E
 �let �x �apply ly lz�� M� � i

Assume �rst that H�ly� � ��w�N�� Then�

S� � hH � flw � H�lz�g� E
 �let �x N
w� lw�� M� � i

Since H j� E � H�ly� � Cl�E�y�� and thus ��w�N �� � E�y� with N �
Cl�N ��� By Lemma 	�
���� �let �x �apply ly lz�� M� j�P E � which implies
that there exists �let �x �apply y z�� M �� � P with M � Cl�M ��� By
constraint �CP

apply�� E�z� � E�w� and E�FinalVar
N � �� � E�x�� Hence

H�lz� � Cl�E�w�� and thus H � flw � H�lz�g j� E �

Furthermore� by Lemma 	�
���� FinalVar
N � � � FinalVar
N �� Hence
E�FinalVar
N �� � E�x�� which implies that �let �x N
w� lw�� M� j�P E �
Thus S� j�P E �

If H�ly� is not a procedure� then S� � error and the claim trivially holds�

� Suppose S 	�� S� via the transition rule �bind�v�� Then�

S � hH� E
 �let �x ly� M� � i

S� � hH � flx � H�ly�g� E
 M
x� lx� � i

By Lemma 	�
���� �let �x ly� M� j�P E � By De�nition 	��� either E�y� �
E�FinalVar
 ly �� � E�x�� or else �let �x y� M �� � P � in which case by
constraint �CP

bind�v�� we also have that E�y� � E�x��

Since H�ly� � Cl�E�y�� � Cl�E�x��� H � flx � H�ly�g j� E � Therefore�
S� j�P E �

Set�Based Analysis for Full Scheme and Its Use in Soft�Typing �	

The previous proof depends on the following lemma�

Lemma ���

�� If E
 M � j�P E then M j�P E�

�� Suppose E
 M � j�P E and E satis�es the constraints relative to P � Then for all M �

such that M � j�P E and FinalVar
M � � � FinalVar
M �� we have that E
 M � � j�P E�

�� For N � �a� FinalVar
N � � FinalVar
N
x� lx� ��

�� If N � Cl�N ��� then FinalVar
N � � FinalVar
N � ��

Proof� The �rst two claims can be proven by induction on the structure of E�
the third follows by induction on the structure of N � Claim � is a consequence
of claim 	�

Since the invariant trivially holds for the initial state h �� P i� it follows that the set
constraints are sound � i�e�� if E satis�es the set constraints relative to P � then E is a valid
set environment for P �

Theorem ��	
Soundness of Constraints� If E satis�es the constraints relative to P �

then P j� E�

Proof� Suppose E satis�es the constraints relative to P � and that

h �� P i 	��� hH� M i

By the de�nition of the invariant relation� h �� P i j�P E � Therefore Lemma 	��
implies that hH� M i j�P E � which implies by de�nition that H j� E � The latter
is true for any state derivable from the initial state� hence P j� E �

In summary� any set environment satisfying the set constraints with respect to a program
P is a conservative approximation to the set of bindings created during the execution of P �

��� From Set Constraints to Set�Based Analysis

The class of set environments for a given program P � denoted SetEnvP � forms a complete
lattice under the natural pointwise partial ordering v de�ned by�

E� v E� if and only if
x � VarsP � E��x� � E��x�

The least set environment �E in the lattice is the trivial mapping� �E�x� � �� The size of
the sets VarsP and HvalP is bounded by jP j� where jP j denotes the number of expressions
in P � Therefore� the height of the lattice SetEnvP is bounded by jP j��

Each set constraint CP
x �where x ranges over bind�c� car � � � � � bind�v� can be interpreted

as a monotonic function� also denoted by CP
x � on this lattice� We de�ne the function CP to

be the least upper bound of the functions CP
bind�c� � � � � C

P
bind�v�

Set�Based Analysis for Full Scheme and Its Use in Soft�Typing ��

CP � SetEnvP �� SetEnvP

CP �E� � CP
bind�c�E�t

 t CP

bind�v�E�

Since the combined function CP is also monotonic� the least �xpoint given by
F
n�N CP

n��E�
exists� Moreover� since the height of the lattice is bounded by jP j�� this �xpoint is reached
within jP j� steps� We de�ne set�based analysis as the function that returns this least
�xpoint�

De�nition ��
�
sba� The function sba � �a �� SetEnvP is given by�

sba�P � �
G

n�jP j�

CP
n��E�

Since the �xpoints of CP are exactly the solutions to the set constraints� it follows that
sba�P � is the least solution to the set constraints� and hence that sba�P � is a valid set
environment for P �

Theorem ���
Correctness of Set�Based Analysis� P j� sba�P �

Proof� Since sba�P � is a solution to the set constraints� it follows by Theorem 	�� that
P j� sba�P ��

Appendix A contains a complete algorithm that calculates the set�based analysis of a
program by generating and solving set constraints for that program�

� Set�Based Analysis of Assignments

Realistic programming languages such as Scheme or ML provide a variety of imperative
facilities in addition to a functional core language� These imperative constructs typically
include destructive assignments and non�local control operators� In this section� we consider
how to extend set�based analysis to a language with assignments� The following section deals
with �rst�class continuations�

Let ��
a be the extension of �a with assignments�

M � ��
a ��� � � � j �let �x �set� v v�� M�

The evaluation of an assignment expression �let �x �set� y z�� M� assigns y to the value of
z� and also binds x to this value� before continuing with the evaluation of M �

��� Semantics

We de�ne the semantics of ��
a by extending the CS�machine with an additional transition

rule for assignment expressions�

hH � fly � hyg� E
 �let �x �set� ly lz�� M� � i
	�� hH � fly � hz � lx � hzg� E
 M
x� lx� � i �set� �

where hz � H�lz� and lx � new�H � fly � hyg� x�

The evaluator for the extended language is de�ned in the usual manner �cmp� Figure ���

Set�Based Analysis for Full Scheme and Its Use in Soft�Typing ��

��� Set�Based Analysis

����� Deriving Set Constraints

The derivation of a set�based analysis for ��
a follows the development of Section 	� It yields

one additional constraint� which accounts for the e�ect of assignment expressions� The
new constraint states that for each expression of the form �let �x �set� y z�� M� � P in the
analyzed program� the values of z may �ow to both x and y�

�let �x �set� y z�� M� � P

E�z� � E�y� E�z� � E�x�
�CP

set��

����� Soundness of the Set Constraints

We prove the soundness of the set constraints for ��
a by showing that every transition step

preserves the invariant relation S j�P E from De�nition 	��� which is naturally extended to
��
a�

Lemma ��� If S j�P E� S 	��S� and E satis�es the constraints relative to P � then S� j�P E�

Proof�

By case analysis of the transition rule used for S 	�� S�� The only case we
need to consider concerns assignments� since all the other cases are analyzed in
Lemma 	��� and can be adopted without change�

Suppose S 	�� S� via the transition rule �set� �� Then�

S � hH � fly � hyg� E
 �let �x �set� ly lz�� M� � i

S� � hH � fly � hz � lx � hzg� E
 M
x� lx� � i

where hz � H�lz��

A straightforward adaptation of Lemma 	�
 to the language ��
a implies that

�let �x �set� ly lz�� M� j�P E � Therefore� this term is a substitution instance of
some term �let �x �set� y z�� M �� in P � where M � Cl�M ��� From constraint
�CP

set��� E�z� � E�y� and E�z� � E�x�� Hence hz � Cl�E�y�� and hz � Cl�E�x���
which implies that H � fly � hz � lx � hzg j� E �

Furthermore� M � Cl�M �� implies that M
x � lx� � Cl�M ��� and therefore
E
 M
x� lx� � j�P E � Hence S� j�P E � and the claim holds for this case�

The rest of the veri�cation of set�based analysis for ��
a is adapted mutatis mutandis�

which illustrates the �exibility of our semantic framework�

� Set�Based Analysis of First�Class Continuations

In this section we extend our derivation of set�based analysis to a language that contains
�rst�class continuations in addition to assignments and the functional core language�� Let

�Assignments and �rst�class continuations can be added in any order
 or independently
 to the functional
core language�

Set�Based Analysis for Full Scheme and Its Use in Soft�Typing �

���c
a be the following extension of ��

a�

M � ���c
a ��� � � � j �let �x �letcc y N�� M�

The evaluation of a letcc�expression �letcc y N� captures the current evaluation context
�or continuation� surrounding that expression� binds y to a location containing this contin�
uation� and continues with the evaluation of N � An invocation of a captured continuation
causes the current evaluation context to be discarded and replaced by the captured contin�
uation�

��� Semantics

We de�ne the semantics of ���c
a by appropriately extending the CS�machine� A continuation

is a non�empty evaluation context� and we store captured continuations in the heap� Thus
heaps bind locations to continuations in addition to binding locations to heap values��

H � Heap ��� fl� � h�� � � � � ln � hn� l
�
� � E�� � � � � l

�
m � Emg

where Ei ��
 �

We extend the CS�machine with an additional transition rule for capturing continuations�
and modify the transition rule �apply� to correctly apply continuations as well as procedures�
see Figure ��

hH� E
 �let �x �letcc y N 		 M 	 � i
��� hH � fly � E
 �let �x
 �	 M 	 �g� E
 �let �x N
y 	 ly�	 M 	 � i �letcc	

where ly � new �H� y	

hH� E
 �let �x �apply ly lz		 M 	 � i

���

������
�����

hH � flw � H�lz	g� E
 �let �x N
w	 lw�	 M 	 � i if H�ly	 � ��w�N 	
where lw � new�H�w	

hH � flw � H�lz	g� E�
 N
w	 lw� � i if H�ly	 � E�
 �let �w
 �	 N 	 �
where lw � new�H�w	

error otherwise

�apply	

Figure �� Additional Transition Rules for First�Class Continuations

The evaluator for the extended language is de�ned in the usual manner �cmp� Figure ���
If the evaluation of a program returns a captured continuation� then the extended evaluator
simply returns the tag procedure�

��� Set�Based Analysis

The analysis of the language ���c
a requires an extended notion of set environments� since a

heap now maps locations to both heap values and continuations� As before� we use elements
of HvalP to represent heap values� and we need to choose a �nite set of abstract continuations

�For technical reasons that will become clear soon
 we do not include continuations in the set of heap
values�

Set�Based Analysis for Full Scheme and Its Use in Soft�Typing ��

to represent the continuations that may be captured during an execution� For set�based
analysis� the crucial property of a continuation E
 �let �y
 �� M� � is that the variable
y receives the argument value passed to the continuation� Therefore� we use the abstract

continuation �cont y� to represent all continuations of the form E
 �let �y
 �� M� �� Let
ContP denote the set f�cont y� j y � VarsP g of abstract continuations used for the analysis
of the program P � A set environment is now a �nite table that maps each program variable
to a subset of HvalP � ContP � A set environment E is valid for P if for each heap value h

associated with a variable x during an execution� h � Cl�E�x��� and for each continuation
E
 �let �y
 �� M� � associated with x during an execution� �cont y� � E�x��

De�nition ����
ContP � Set environments� Validity� H j� E� Let P be a program�

� ContP � f�cont y� j y � VarsP g�

� A mapping E � VarsP � P�n�HvalP � ContP � is a set environment for P �

� A set environment E is valid for P if h �� P i 	��� hH� M i implies that H j� E �

� The relation H j� E �read �H validates E�� holds if and only if�

� for all bindings �lx � h� � H � h � Cl�E�x��� and

� for all bindings �lx � E
 �let �y
 �� M� �� � H � �cont y� � E�x��

����� Deriving Set Constraints

The set constraints for ���c
a extend those for ��

a� The additional constraints ensure that
the set environment E accounts for the bindings created during the capture and invocation
of continuations�

� �let �y �letcc x N�� M�

The evaluation of this expression during an execution captures some run�time evalu�
ation context E
 �let �y
 �� M� � surrounding the letcc�expression� and binds x to
this continuation� In addition� if the evaluation of N terminates� the value of the
�return� variable of N may �ow to the variable y� Thus� the crucial constraint for
letcc expressions is as follows�

�let �y �letcc x N�� M� � P

�cont y� � E�x� E�FinalVar
N �� � E�y�
�CP

letcc�

� �let �x �apply y z�� M�

Suppose that E�y� includes �cont w�� Then� the variable y may denote a continuation
of the form E
 �let �w
 �� N� � during an execution� and the evaluation of this
application expression may pass the value of the argument variable z to the variable
w� To ensure that the set environment E accounts for bindings created by such
transitions� we require that E satis�es the following constraint�

Set�Based Analysis for Full Scheme and Its Use in Soft�Typing ��

�let �x �apply y z�� M� � P �cont w� � E�y�

E�z� � E�w�
�CP

apply�k�

Because continuations never return� no constraints concerning E are required for the
return case�

����� Soundness of the Set Constraints

Proving the soundness of the set constraints for the extended language ���c
a requires showing

that if a set environment E satis�es the set constraints for a given program P � then E must
be valid for P � As before� the proof proceeds based on an induction hypothesis�

S j�P E and S 	�� S� implies S� j�P E

where S j�P E is an appropriately chosen invariant relation� For the analysis of the language
���c
a � we need to strengthen the invariant relation previously used for both �a and ��

a� The
strengthened invariant relation ensures that only �proper� continuations are stored in the
heap�

De�nition ����
H j�P E� E j�P E� S j�P E�

� H j�P E holds if H j� E and for all �lx � E� � H � E j�P E �

� E j�P E holds for E � �let �x E�� L� if L j�P E and either�

� E� �
 �� or

� E� j�P E and E�FinalVar
E� �� � E�x��

� S j�P E holds if either�

�� S � hH� M i� H j�P E and M j�P E � or

�� S � error�

Our chosen invariant relation supports the proof of the induction hypothesis� if the
invariant holds for a given state S� then the invariant also holds for the successor of S�

Lemma ��� If S j�P E� S 	��S� and E satis�es the constraints relative to P � then S� j�P E�

Proof� By case analysis of the rule used for S 	�� S�� The only cases we need
to consider concern continuation capture and invocation� since the other cases
hold by the arguments used in Lemma 	�� or Lemma ���� and can be adopted
without change�

Set�Based Analysis for Full Scheme and Its Use in Soft�Typing ��

� Suppose S 	�� S� via the transition rule �letcc�� Then�

S � hH� E
 �let �x �letcc y N�� M� � i

S� � hH �� E
 �let �x N
y � ly�� M� � i

where H � � H � fly � E
 �let �x
 �� M� �g�

Lemma 	�
��� implies that �let �x �letcc y N�� M� j�P E � Therefore�
the term �let �x �letcc y N�� M� is a substitution instance of some term
�let �x �letcc y N ��� M �� in P � where N � Cl�N �� and M � Cl�M ��� By
the constraint �CP

letcc�� �cont x� � E�y�� which implies that H � j� E � By
Lemma ���� E
 �let �x
 �� M� � j�P E � and hence H � j�P E �

The constraint �CP
letcc� also implies that E�FinalVar
N � �� � E�x�� and

therefore by Lemma 	�
� parts 	 and �� E�FinalVar
N
y � ly� �� � E�x��
Hence �let �x N
y� ly �� M� j�P E � S� j�P E � and the claim holds for this
case�

� Suppose S 	�� S� via the transition rule �apply�� Then S is the state�

hH� E
 �let �x �apply ly lz�� M� � i

Assume that H�ly� � E�
 �let �w
 �� N� �� Then�

S� � hH � flw � H�lz�g� E
�
 N
w� lw� � i

Since H j� E � we know that �cont w� � E�y�� Lemma 	�
��� implies
that �let �x �apply ly lz�� M� j�P E � and hence �let �x �apply ly lz�� M�
is a substitution instance of some term �let �x �apply y z�� M �� � P �
where M � Cl�M ��� By constraint �CP

apply�k�� E�z� � E�w�� Thus H�lz� �

Cl�E�w�� and H � flw � H�lz�g j� E �

Furthermore� since E�
 �let �w
 �� N� � j�P E � by Lemma ��� we have that
E�
 N
w� lw� � j�P E � Hence S� j�P E � and the claim holds for this case�

The previous proof depends on the following lemma� and on a straightforward extension
of Lemma 	�
 to ���c

a �

Lemma ���

�� If E
 �let �x �letcc y N�� M� � j�P E� then E
 �let �x
 �� M� � j�P E�

�� If E�
 �let �w
 �� N� � j�P E� then E�
 N
w� lw� � j�P E�

Proof� The proof of both parts proceeds by induction on the structure of E�

Theorem ���
Soundness of Constraints for ���c
a �

For P � ���c
a � if E satis�es the constraints relative to P � then P j� E�

Proof� Follows from Lemma ��	� based on the argument used in Theorem 	���

The rest of the veri�cation of set�based analysis is again straightforward�

Set�Based Analysis for Full Scheme and Its Use in Soft�Typing ��

� Application� Soft Typing from Set�Based Analysis

The information produced by set�based analysis facilitates a variety of optimizations� Ex�
amples include partial evaluation
���� escape analysis
���� redundant test elimination
����
closure analysis
���� touch�optimization
�� ��� dead�code elimination� constant�folding and
code hoisting� Here� we illustrate how set�based analysis applies to soft typing
�� ��� �� ���
����

��� Soft Typing

The programming language Scheme
�� is a dynamically�typed language� which imposes no
restrictions on the values that variables or expressions in a program may assume� Dynamic�
typing leads to a simple and �exible language suitable for rapid software development� but
does not provide any compile�time guarantee that primitive operations are only applied to
arguments of the appropriate type� Instead� each primitive operation typically performs a
type�check on its arguments at run�time to ensure that they are of the appropriate type�
Thus� for example� the operation car must �rst check that its argument is a pair� before
it can extract the �rst component of that pair� Performing these type�checks can add a
signi�cant overhead to the execution time� For example� Wright
���p� ���� reports that this
cost is ��� of the execution time under Chez Scheme at optimize�level �� Since Chez
Scheme eliminates some run�time checks at optimize�level �� a na��ve compiler would
spend an even greater fraction of the execution time performing these type�checks�

One of the goals� of soft�typing is to reduce the overhead of dynamic typing by removing
unnecessary type�checks wherever provably possible� without changing the semantics of
programs� In this section� we develop a soft�typing algorithm that exploits the information
produced by set based analysis for this purpose�

��� Non�Checking Primitives

The current language does not provide primitives that do not perform type�checks on their
arguments� To express and verify a soft�typing algorithm that replaces the type�checking
primitives car� cdr and apply by non�checking primitives� we extend the language ���c

a

with non�checking forms of the type�checking primitive operations� denoted car� cdr and
apply� respectively�

M ��� � � �

j �let �x �car y�� M�
j �let �x �cdr y�� M�
j �let �x �apply y z�� M�

As their name indicates� a non�checking operation behaves in the same manner as the
original version as long as its arguments are of the appropriate type�	 If the argument is
not of the appropriate type� the behavior of the non�checking variant is unspeci�ed� and
any arbitrary state may be produced� The extended language is called ���c

a �

We de�ne the semantics of the extended language ���c
a by extending the CS�machine

with the additional transition rules described in Figure �� The evaluator for the extended

�Unlike other approaches to soft�typing �

 ��
 �	
 we are not concerned with inferring types for program

Set�Based Analysis for Full Scheme and Its Use in Soft�Typing ��

hH� E
 �let �x �car ly		 M 	 � i

���

��
�

hH � flx � H�lz�	g� E
 M
x	 lx� � i if H�ly	 � �cons lz� lz� 	
where lx � new�H�x	

unspeci�ed if H�ly	
� �cons lz� lz� 	
�car	

hH� E
 �let �x �cdr ly		 M 	 � i
��� analogous to �car	 �cdr	

hH� E
 �let �x �apply ly lz		 M 	 � i

���

��
�

hH � flw � H�lz	g� E
 �let �x N
w	 lw�	 M 	 � i if H�ly	 � ��w�N 	
where lw � new�H�w	

unspeci�ed if H�ly	
� ��w�N 	
�apply	

Figure �� Transition Rules for Non�Checking Primitives

language� eval � is de�ned in the usual way �cmp� Figures ��� Unlike eval � the evaluator
eval is no longer a total function� There are programs in ���c

a for which the behavior of the
evaluator eval is unspeci�ed because of the application of a non�checking operation to an
argument of inappropriate type� Still� the two evaluators agree on programs in ���c

a �

Lemma ��� For P � ���c
a � eval�P � � eval�P ��

��� The Soft Typing Algorithm

Our soft typing algorithm uses the results of set based analysis to replace the type�checking
operations car� cdr and apply by the corresponding non�checking operation whenever
possible� without changing the semantics of programs� For example� suppose that a program
contains �let �x �car y�� M� and that set�based analysis proves that y is only bound to
pairs� Then we can replace the expression with �let �x �car y�� M�� which the machine can
execute without performing a type�check on y� In general� if the set environment produced
by set�based analysis shows that the arguments of car� cdr or apply are always of the
correct type� the soft�typing algorithm replaces the operation with its non�checking version�
The soft�typing algorithm T � parameterized over a set environment E � is de�ned in Figure
�
If E is valid for the program being optimized� then the soft�typing algorithm TE preserves
the meaning of that program� For every transition step of the source program P there
exists a corresponding transition step for the soft�typed program TE�P �� We extend TE in
a compatible manner to states to aid in the proof of this correspondence�

Lemma ���
Step Correspondence� Let P be a program with a set environment E� and
let S be a state for which E is valid�

�� Suppose S 	�� S �� Then TE�S� 	�� TE�S���

variables and presenting these types to the programmer�
�We only consider procedures and not continuations to be an appropriate �rst argument to apply in

order to avoid the need for a type�dispatch on this argument within apply�

Set�Based Analysis for Full Scheme and Its Use in Soft�Typing ��

TE � ���c
a �����c

a

TE
x� � x

TE
�let �x c	 M 	� � �let �x c	 TE
M �	
TE
�let �x ��y�N 		 M 	� � �let �x ��y� TE �N 			 TE
M �	

TE
�let �x �cons y z		 M 	� � �let �x �cons y z		 TE
M �	

TE
�let �x �car y		 M 	� �

�
�let �x �car y		 TE
M �	 if E�y	 � f�cons z� z�	g
�let �x �car y		 TE
M �	 if E�y	
� f�cons z� z�	g

TE
�let �x �cdr y		 M 	� � analogous to car
TE
�let �x �if y M� M�		 M 	� � �let �x �if y TE
M�� TE
M��		 TE
M �	

TE
�let �x �apply y z		 M 	� �

�
�let �x �apply y z		 TE
M �	 if E�y	 � f��w�N 	g
�let �x �apply y z		 TE
M �	 if E�y	
� f��w�N 	g

TE
�let �x N 	 M 	� � �let �x TE
N �	 TE
M �	
TE
�let �x �set� y z		 M 	� � �let �x �set� y z		 TE
M �	

TE
�let �x �letcc y N 		 M 	� � �let �x �letcc y TE
N �		 TE
M �	

Figure
� The soft�Typing Algorithm T

�� Suppose TE�S� 	�� S��� Then there exists S� such that S 	�� S� and TE�S�� � S���

Proof�

The proof of both parts proceeds by induction on n and by case analysis of
S 	�� S� and TE�S� 	�� S�� respectively�

The Step Correspondence Lemma implies that a soft�typed program exhibits the same
behavior as the corresponding source program�

Theorem ��� For any program P � ���c
a � eval�Tsba
P ��P �� � eval�P ��

Proof� Both the fact that eval is well�de�ned on Tsba
P ��P � and that the equality holds
follow from Lemma
���

In summary� the soft�typing algorithm removes redundant type�checks from programs
based on the information produced by set�based analysis� This optimization algorithm is
provably�correct with respect to the extended evaluator eval � Any implementation that
realizes eval correctly can therefore make use of this optimization�

� Related Work

The main contribution of our paper is an elegant and �exible derivation of set�based analysis�
It substantially simpli�es previous formulations
��� ��� �� ��� and explains the underlying
notion of approximation in a clear manner� Unlike the derivation and formalization of other
approaches to program analysis� our derivation is not restricted to purely functional lan�
guages� Instead� it extends in a natural and straightforward manner to imperative features
such as destructive assignments �Section �� and non�local control operators �Section ��� This

Set�Based Analysis for Full Scheme and Its Use in Soft�Typing �	

extensibility is essential for analyzing programs in languages with higher�order functions as
well as imperative features� In this section� we compare our derivation with a number of
comparable program analyzes� including an advanced type inference algorithm
�� and two
recent variants
�	� �	� of Shivers� �CFA
���

Aiken et al�
�� develop a type inference algorithm for a purely functional language� They
reduce the type inference problem to a system of type inclusion constraints� which are similar
to our set constraints� They do not present a proof of their type soundness lemma� but
indicate that this proof is based on the denotational semantics of their language� It is well�
known that extending type soundness proofs based on denotational semantics to a language
with imperative features is complex and error�prone� even for a simple Hindley�Milner type
system� see Tofte�s
��� discussion of Damas�s
	� faulty proof of a type soundness theorem�
Extending the derivation and soundness proofs of Aiken et al��s rich type system would be
even more di�cult and complex�

Stefanescu and Zhou
�	� present an analysis for an intermediate closure�converted lan�
guage� They start from an operational semantics in which each state is a set of bindings
from locations to either values or expressions� A state transition arbitrarily chooses a
location�expression binding and reduces that expression� Their analysis is parameterized
by a function that maps each location created during an execution into a �nite set of ab�
stract locations� They derive a system of equations� similar to our set constraints� that
relates the sets of abstract values that these abstract locations may assume� The result of
their analysis is the least solution to the system of equations�

Their semantics is non�intuitive primarily because it uses bindings for two distinct pur�
poses� States contain both location�value bindings� which correspond to our heap� and
location�expression bindings� which essentially represents a �at version of our A�normal
form control string� This �at representation does not maintain the control information
provided by our control string� instead� their semantics evaluates available redexes in an
indeterminate manner� This indeterminate behavior is a major obstacle to extending their
approach to a language with any imperative features� The addition of destructive assign�
ments is further complicated by the requirement of their indeterminate semantics that all
transitions can only increase the set of bindings in a state� and cannot modify existing
bindings�

Jagannathan and Weeks
�	� develop an analysis for a higher�order language� starting
from an unusual operational semantics that records a 	ow graph in which nodes repre�
sent location�value bindings and edges represent the �ow of values between locations in a
program� Like Stefanescu and Zhou� they parameterize their analysis over relations that
describe which locations should be merged� The result of their analysis is the least �xpoint
of an abstract transition function�

The complexity of their approach is primarily a result of their decision to analyze the
source language� instead of a simpli�ed intermediate form� Expressions in their language
can be nested in arbitrarily complex fashions� Evaluating these expressions in a leftmost�
outermost manner requires a complex strategy to locate the next redex in the program�
Furthermore� the evaluation of nested expressions produces intermediate values not as�
sociated with program variables� To record these intermediate values� Jagannathan and
Weeks label each program expression with a unique label� and then associate each interme�
diate value with the label of the corresponding expression� Thus� their semantics and their

Set�Based Analysis for Full Scheme and Its Use in Soft�Typing ��

analysis record label�value associations in addition to the conventional variable�value asso�
ciations� Our choice of an intermediate A�normal form representation avoids both of these
complexities� Because the order of execution in our language follows the lexical nesting of
let�expressions
��� control transfer is accomplished in a simple manner� Also� since every
intermediate value in our language is named� we only need to record variable�value associa�
tions� and avoid the additional complexity of labeling each expression in the program
����

Jagannathan and Weeks further complicate their rewriting semantics using labels of
expressions within their state representation instead of the actual expressions themselves�
Therefore� a state does not completely represent an intermediate stage of a computation and
cannot be further evaluated without knowledge of the original source program� In addition�
their state representation does not contain any explicit control information� Instead� they
use the subtle trick of extracting control information from the edges of their �ow�graph�
Speci�cally� when the body of a function terminates� they retrieve the label of the expression
to which the result of the function body ��ows�� and then transfer control to that expression�
It is not obvious how this technique extends to complex control operators such as exceptions
or call�cc�

A �nal disadvantage of Jagannathan and Weeks derivation is that their analysis is
de�ned via a complex abstract transition function� This monolithic de�nition does not
provide the insight and understanding that the speci�cation of set�based analysis in terms
of set constraints provides�

Wright and Felleisen
�
� describe a simple and �exible strategy for proving the type
soundness of Hindley�Milner�style polymorphic type systems� Their approach is based on a
reduction semantics that easily extends to encompass imperative constructs� and adapts sub�
ject reduction theorems from combinatory logic to programming languages� Our derivation
of set�based analysis exploits similar techniques� Speci�cally� our derivation is also based
on a reduction semantics� and Lemma 	�� can be viewed as a subject reduction lemma� it
states that the reduction of a state preserves correctness with respect to any set environ�
ment satisfying the set constraint� Like Wright and Felleisen�s approach� our derivation
extends to additional imperative facilities in a straightforward manner� We expect that this
�exibility is a result of the subject reduction technique common to both�

	 Conclusion

Static information about program behavior is crucial for the generation of e�cient code
for advanced languages� Unfortunately� the derivation of an analysis to compute such
information for higher�order languages is subtle and complex� and is closely tied to the
formulation of the semantics of the language� Many analyses that were originally developed
for a purely functional language can be di�cult if not impossible to extend to languages
with additional imperative features� This combination of complexity and in�exibility is a
major obstacle to exploiting these analyses in realistic compilers�

Our derivation of set�based analysis avoids these complexities and limitations� We for�
mulate our derivation for the language of A�normal forms� since this language constitutes
an ideal intermediate representation for compilers
��� The simplicity of our derivation fol�
lows both from our use of the A�normal form language� and from our text�based reduction
semantics� which explicitly models the allocation of objects into a global heap� and which

Set�Based Analysis for Full Scheme and Its Use in Soft�Typing ��

records information that associates each run�time value with the corresponding syntactic
value� Our use of A�normal forms simpli�es our reduction semantics� since the order of
execution follows the lexical nesting of let�expressions� In addition� A�normal forms are
ideally suited to the derivation of analyses� since all intermediate values in the language are
named� and there is no need for the additional complexity of labeling each expression in
the program� We derive our analysis directly from the reduction semantics� thus avoiding
the intermediate steps of Heintze�s derivation� and we exploit the information recorded by
our semantics to express our set constraints on a �nite lattice of set environments� instead
of on the in�nite lattice required by Heintze�s approach�

Extending our derivation to accommodate additional language facilities is straightfor�
ward� We have seen how the derivation extends to languages with destructive assignments
and �rst class continuations� thus providing the �rst soundness proof of set�based analysis for
these imperative features� Additional features such as exceptions or communication chan�
nels are also easily incorporated� The primary reason for the extensibility of our derivation
is the �exibility of our semantics� Since the semantics allocates all values into a global heap�
it easily extends to include assignments or cycle�creating constructs such as letrec� The
semantics also exposes the entire state of the evaluation at each intermediate step� which
facilitates the inclusion of non�local control operators such as �rst�class continuations or
exceptions�

Our derivation can also be modi�ed to produce a more accurate �but more expensive�
analysis� One possible approach is to apply Heintze�s technique of polyvariance
���� which
is equivalent to creating di�erent �versions� of certain functions in the source program by
preceding the analysis by a series of �v �expansion� steps�

A more general approach requires modifying our semantics to expose additional de�
tails� Speci�cally� it involves extracting the environment and continuation components of
the control string� and expressing them as separate components of each intermediate state�
The resulting semantics is essentially a CESK�machine

� �� specialized to A�normal forms�
Based on this semantics we can follow our derivation to develop a number of di�erent
constraint�based analyses� with di�erent cost�performance tradeo�s�� It is also possible to
develop a general analysis framework that is parameterized in a fashion similar to Jagan�
nathan and Weeks�s framework
�	�� A particular instance of this framework is created by
specifying relations that describe which locations created during program execution should
be merged� Instances of this framework include set�based analysis� as well as a number of
more precise analyses�

A Set�Based Analysis Algorithm

A complete set�based analysis algorithm for a Scheme�like language containing both assign�
ments and �rst�class continuations is included in Figures � through �� The algorithm is
written in Scheme extended with a special form match for pattern matching
����

The function SBA traverses an expression to derive the set constraints for that expres�
sion� Certain set constraints cannot be satis�ed immediately� Consider� for example� the
expression �let �x �set� y z�� M�� The constraint CP

set� requires that all values in E�z�

�See ��
 �	 for a derivation of set�based analysis from a parallel CEK�machine�

Set�Based Analysis for Full Scheme and Its Use in Soft�Typing �

 inputs� a term M

 outputs� calculates FinalVar
M �

 e�ects� derives the set constraints for M �

 and invokes a constraint solver on these constraints

�de�ne SBA

�lambda �M 	
�match M

�� variable� x 	 x �

��let ��x �exp	 �body	
�begin
�match exp

�� constant� c	 �new�value� x c	�

��cons �y� �y� 	 �new�value� x ��cons �y� �y� 		�

��lambda �y �N 	
�let �
�nalvar�N �SBA N 	�	
�new�value� x ��lambda �y �N ��nalvar�N 			�

��car �y	 �new�constraint� y ��propagate�car�to �x 		�

��cdr �y	 �new�constraint� y ��propagate�cdr�to �x 		�

��if �y �M� �M� 	
�let �
�nalvar�M� �SBA M� 	�
�nalvar�M� �SBA M� 	�	
�new�constraint� y ��conditional�prop �t ��nalvar�M� �x 		
�new�constraint� y ��conditional�prop �f ��nalvar�M� �x 			�

��apply �y �z 	 �new�constraint� y ��application �x �z 		�

��set� �y �z 	
�new�constraint� z ��propogate�to �y		
�new�constraint� z ��propogate�to �x 		�

��letcc �y �N 	
�let �
�nalvar�N �SBA N 	�	
�new�constraint� �nalvar�N ��propogate�to �x 		
�new�value� y ��cont �x 			�

 Must be a term
�let �
�nalvar�exp �SBA exp	�	
�new�constraint� �nalvar�exp ��propagate�to �x 			�	

�SBA body	�				

Figure �� The Set�Based Analysis Algorithm

must be in E�x�� but the set E�z� may not yet be known� Therefore� the function SBA

associates a constraint �propagate�to �x� with the variable z� This constraint is applied �via
the function interpret�constraint� to each value that is added to E�z�� and propagates that
value to E�x��

The functions new�value� and new�constraint� associate values and constraints� respec�
tively� with variables� The function interpret�constraint ensures that each constraint on a
variable is satis�ed for all possible values of that variable� by creating additional values or
new constraints as necessary�

The worst�case time complexity of the algorithm is O�jP j��� which can be veri�ed as

Set�Based Analysis for Full Scheme and Its Use in Soft�Typing ��

 inputs� a variable and a value

 outputs� void

 e�ects� adds the value to E�var	� and applies the appropriate constraints to that value
�de�ne new�value�

�lambda �var value	
�unless �in�E� var value	

�add�to�E � var value	
�foreach�in�C var �lambda �constraint	 �interpret�constraint constraint value						

 inputs� a variable and a constraint

 outputs� void

 e�ects� associates the constraint with var� and applies the constraint to all values in E�var	
�de�ne new�constraint�

�lambda �var constraint	
�unless �in�C� var constraint	

�add�to�C� var constraint	
�foreach�in�E var �lambda �value	 �interpret�constraint constraint value						

 inputs� a constraint and a value

 outputs� void

 e�ects� ensures that the constraint is satis�ed� given that the constraint

 and the value are associated with the same variable
�de�ne interpret�constraint

�lambda �constraint value	
�match �cons constraint value	

���propagate�to �x 	 � �v	 �new�value� x v	�

���propagate�car�to �x 	 � �cons �y� �y� 		 �new�constraint� y� ��propagate�to �x 		�

���propagate�cdr�to �x 	 � �cons �y� �y� 		 �new�constraint� y� ��propagate�to �x 		�

���application �result �arg	 � �lambda �para � ��nalvar		
�new�constraint� �nalvar ��propagate�to �result		
�new�constraint� arg ��propagate�to �para		�

���application �result �arg	 � �cont �x 		 �new�constraint� arg ��propagate�to �x 		�

���conditional�prop �test �from �to	 � �value	
�when �eq� �null� value	 test	 �new�constraint� from ��propagate�to �to			�

 �void	�			

Figure �� The Set�Based Analysis Algorithm� Auxiliary Functions �

follows� We assume that the functions in�E
 � add�to�E� � in�C
 and add�to�C� operate in
constant time� and that the functions foreach�in�E and foreach�in�C operate in time linear
in the number of elements in the appropriate set�

Each call of the functions new�value� and new�constraint� takes constant time� exclud�
ing the time spent in the body of the respective unless expressions� The number of vari�
ables� the number of values� and the number of constraints are all O�jP j�� Therefore the
test conditions of each unless expression can succeed at most O�jP j�� times� and func�
tion interpret�constraint is called at most O�jP j�� times� Each call of interpret�constraint
terminates in constant time� Therefore� the entire algorithm takes O�jP j�� time�

Set�Based Analysis for Full Scheme and Its Use in Soft�Typing ��

 The following three functions maintain a mapping E from program

 variables to sets of values

 inputs� a variable and a value

 outputs� returns true if E�var	 contains the value

 e�ects� none
�de�ne in�E� �lambda �var value	 � � � 		

 inputs� a variable and a value

 outputs� void

 e�ects� adds value to E�var	
�de�ne add�to�E � �lambda �var value	 � � � 		

 inputs� a variable and a function

 outputs� none

 e�ects� applies fn to each value in E�var	
�de�ne foreach�in�E �lambda �var fn	 � � � 		

 The following three functions maintain a mapping C from program

 variables to sets of constraints

 inputs� a variable and a constraint

 outputs� returns true if C�var	 contains the constraint

 e�ects� none
�de�ne in�C� �lambda �var constraint	 � � � 		

 inputs� a variable and a constraint

 outputs� void

 e�ects� adds constraint to C�var	
�de�ne add�to�C� �lambda �var constraint	 � � � 		

 inputs� a variable and a function

 outputs� none

 e�ects� applies fn to each constraint in E�var	
�de�ne foreach�in�C �lambda �var fn	 � � � 		

Figure �� The Set�Based Analysis Algorithm� Auxiliary Functions �

Acknowledgements We thank Nevin Neintze for discussions on set�based analysis and for
access to his implementation of set�based analysis for ML� We also thank Chris Colby and
Stephanie Weirich for comments on an earlier version of this paper�

References

�� Aiken� A�� Wimmers� E� L�� and Lakshman� T� K� Soft typing with conditional
types� In Proceedings of the ACM Sigplan Conference on Principles of Programming

Languages ������� pp� �
	!��	�

Set�Based Analysis for Full Scheme and Its Use in Soft�Typing ��

�� Clinger� W�� and Jonathan Rees� e� The revised� report on the algorithmic
language scheme� ACM Lisp Pointers �� 	 �July ������

	� Damas� L� M� M� Type Assignment in Programming Languages� PhD thesis� Univer�
sity of Edinburgh� �����

�� Fagan� M� Soft Typing� PhD thesis� Rice University� �����

�� Felleisen� M�� and Friedman� D� P� A calculus for assignments in higher�order
languages� In Conference Record of the ��th Annual ACM Symposium on Principles

of Programming Languages �Munich� West Germany� Jan� ������ pp� 	��!	���

� Felleisen� M� The Calculi of Lambda�v�CS�Conversion� A Syntactic Theory of Con�

trol and State in Imperative Higher�Order Programming Languages� PhD thesis� Indi�
ana University� �����

�� Flanagan� C�� and Felleisen� M� Well�founded touch optimization for futures�
Rice University Computer Science TR����	��

�� Flanagan� C�� and Felleisen� M� The semantics of future and its use in pro�
gram optimizations� In Proceedings of the ACM Sigplan Conference on Principles of

Programming Languages ������� pp� ���!����

�� Flanagan� C�� Sabry� A�� Duba� B� F�� and Felleisen� M� The essence of compil�
ing with continuations� In Proceedings of the ACM Sigplan Conference on Programming

Language Design and Implementation ����	�� pp� �	�!����

��� Heintze� N� Set Based Program Analysis� PhD thesis� Carnegie Mellon University�
�����

��� Heintze� N� Set�based analysis of ML programs� In Proceedings of the ���
 ACM

Conference on Lisp and Functional Programming ������� pp� 	�
!	���

��� Henglein� F� Dynamic typing� syntax and proof theory� Science of Computer Pro�

gramming �� ������� ���!�	��

�	� Jagannathan� S�� and Weeks� S� A uni�ed treatment of �ow analysis in higher�
order languages� In ��nd ACM Symposium on Principles of Programming Languages

������� pp� 	�	!����

��� Jagannathan� S�� and Wright� A� E�ective �ow analysis for avoiding run�time
checks� � �����

��� Malmkjaer� K�� Heintze� N�� and Danvy� O� ML partial evaluation using set�
based analysis� Tech� Rep� CMU�CS�������� Carnegie Mellon University� �����

�
� Milner� R�� Tofte� M�� and Harper� R� The De�nition of Standard ML� MIT
Press� �����

��� Morrisett� G�� Felleisen� M�� and Harper� R� Abstract models of memory man�
agement� In Functional Programming and Computer Architecture ������� To appear�

Set�Based Analysis for Full Scheme and Its Use in Soft�Typing 	�

��� Park� Y� G�� and Goldberg� B� Escape analysis on lists� In Proceedings of the

ACM Sigplan Conference on Programming Language Design and Implementation �June
������ pp� ��
!����

��� Rozas� G� J� Liar� an Algol�like compiler for scheme� Master�s thesis� Massachusetts
Institute of Technology� January �����

��� Sabry� A�� and Felleisen� M� Is continuation�passing useful for data �ow analysis�
In Proceedings of the ACM Sigplan Conference on Programming Language Design and

Implementation ������� pp� �!���

��� Shao� Z�� and Appel� A� Space�e�cient closure representations� In Proceedings of

the ACM Symposium on Lisp and Functional Programming ������� pp� ���!�
��

��� Shivers� O� Control�	ow Analysis of Higher�Order Languages or Taming Lambda�

PhD thesis� Carnegie�Mellon University� �����

�	� Strfanescu� D�� and Zhou� Y� An equational framework for the �ow analysis of
higher order functional programs� In LFP ������� pp� 	��!	���

��� Tofte� M� Operational Semantics and Polymorphic Type Inference� PhD thesis�
University of Edinburgh� �����

��� Wright� A� Practical Soft Typing for Scheme� PhD thesis� Rice University� �����

�
� Wright� A�� and Felleisen� M� A syntactic approach to type soundness� Tech�
Rep� �
�� Rice University� �����

��� Wright� A� K�� and Duba� B� F� Pattern matching for Scheme� Unpublished
manuscript� ���	� Available at �ftp���cs�rice�edu�public�wright�match�ps�Z��

��� Wright� A� and R� Cartwright� A practical soft type system for scheme� In
Proceedings of the ���
 ACM Conference on Lisp and Functional Programming �������
pp� ���!�
��

